Screening Methods for Antimicrobial Residues in the Dairy Chain—The Past and the Present
Abstract
:1. Introduction
2. Methodology
3. Requirements on Methods for Detecting Antimicrobial Residues
4. Microbiological Inhibition Methods
4.1. The First Microbiological Inhibition Methods
4.2. Plate Diffusion Methods
4.2.1. Development of the Plate Diffusion Methods
4.2.2. The Use of Plate Diffusion Methods at Present
4.2.3. Pros and Cons of Plate Diffusion Methods
4.3. Commercially Available Microbiological Inhibition Methods
4.3.1. Development of the First Commercially Available Microbiological Inhibition Methods
4.3.2. History of Some Commercially Available Microbiological Inhibition Tests and Their Current Variants
- BR-Test (AiM-Analytik in Milch Produktions-und Vertriebs GmbH, München, Germany)
- Delvotest® (DSM Food Specialties, Delft, The Netherlands)
- Eclipse tests (ZEU-Inmunotec SL, Zaragoza, Spain)
- Charm tests (Charm Sciences Inc., Lawrence, KS, USA)
- CMT-Copan Milk Test (Copan Italia S.p.A, Brescia, Italy)
- Other commercially available microbiological inhibition tests
4.3.3. The Use of Commercially Available Microbiological Inhibition Tests at Present
4.3.4. Pros and Cons of Commercially Available Microbiological Inhibition Methods
4.4. Rapid Specific Tests for the Detection of Antibiotics in Milk
4.4.1. Microbial Receptor-Based Assay
4.4.2. Receptor Binding and Enzymatic Assays
4.4.3. Lateral Flow Immunoassay
Use of LFIA for the Detection of Antimicrobials in Milk
Pros and Cons of LFIA
5. Discussion
6. Conclusions and Future Perspectives
- (1)
- the wide range of commercially available test formats, from test kits usable in situ to sophisticated laboratory instrumentation systems allowing large-scale testing in laboratories,
- (2)
- screening methods that can be used to analyze for a wide range of antimicrobials, with some allowing the detection of a specific antibiotic, while others detecting entire groups of antibiotics simultaneously,
- (3)
- manufacturers offering test kits compatible with automatic termination of incubation and test evaluation, with subsequent data transfer to a mobile app, or
- (4)
- the availability of assays with different sensitivities reflecting specific requirements for maximum concentration levels of antimicrobials according to specific sets of limits (EU MRL, Codex MRL, FDA limits).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADI | Acceptable Daily Intake |
AOAC | International Association of Official Analytical Collaboration International |
BRT | Brilliant Black Reduction Test |
CFU | Colony Forming Units |
CRL | The Community Reference Laboratory |
EEC | European Economic Community |
EGTA | Ethyleneglycol-bis-(b-amino-ethyl ether)-N,N,N,N-tetra-acetic acid |
EU-RL | The European Union Reference Laboratories |
FAO | Food and Agriculture Organization of the United Nations |
FDA | Food and Drug Administration |
HACCP | Hazard Analysis and Critical Control Points system |
hCG | human chorionic gonadotropin |
IDF | International Dairy Federation |
ISO | International Organization for Standardization |
IU | International Unit |
LOD | Limit of Detection |
LFIA | Lateral Flow Immuno Chromatography |
MRL | Maximum Residue Limit |
MRLVD | Maximum Limit for Residues of Veterinary Drugs |
STAR method | Screening test for antibiotics residues |
WHO | World Health Organization |
WTO | World Trade Organization |
References
- Heeschen, W.H.; Blüthgen, A. Veterinary drugs and pharmacologically active compounds. In Monograph on Residues and Contaminants in Milk and Milk Products; IDF: Brussel, Belgium, 1991; pp. 13–69. [Google Scholar]
- Mitchell, J.M.; Griffiths, M.W.; McEwen, S.A.; McNab, W.B.; Yee, A.J. Antimicrobial drug residues in milk and meat: Cause, concerns, prevalence, regulations, tests, and test performance. J. Food Prot. 1998, 61, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Charm, S.E.; Zomer, E. The evolution and direction of rapid detection/identification of antimicrobial drug residues. In Proceedings of the Symposium on Residues of Antimicrobial Drugs and Other Inhibitors in Milk, Kiel, Germany, 28–31 August 1995; pp. 224–233. [Google Scholar]
- Neculai-Valeanu, A.S.; Ariton, A.M.; Radu, C.; Porosnicu, I.; Sanduleanu, C.; Amaritii, G. From herd health to public health: Digital tools for combating antibiotic resistance in dairy farms. Antibiotics 2024, 13, 634. [Google Scholar] [CrossRef] [PubMed]
- De Brabander, H.F.; Noppe, H.; Verheyden, K.; Van den Bussche, J.; Wille, K.; Okerman, L.; Vanhaecke, L.; Reybroeck, W.; Ooghe, S.; Croubels, S. Residue analysis? Future trends from a historical perspective. J. Chromatogr. A 2009, 1216, 7964–7976. [Google Scholar] [CrossRef] [PubMed]
- Suhren, G. Possibilities and limitations of microbiological inhibitor test. In Proceedings of the Symposium on Residues of Antimicrobial Drugs and Other Inhibitors in Milk, Kiel, Germany, 28–31 August 1995; pp. 159–171. [Google Scholar]
- Bishop, J.R.; White, C.H. Antibiotic residue detection in milk—A review. J. Food. Prot. 1984, 47, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Albright, J.L.; Tuckey, S.L.; Woods, G.T. Antibiotics in milk—A review. J. Dairy Sci. 1961, 44, 779–807. [Google Scholar] [CrossRef]
- Heeschen, W.H.; Burt, R.; Blüthgen, A. Introduction and background information. In Monograph on Residues and Contaminants in Milk and Milk Products; Special Issue 9701; IDF: Brussel, Belgium, 1997; pp. 1–4. [Google Scholar]
- Council Directive 85/397/EEC of 5 August 1985 on Health and Animal-Health Problems Affecting Intra-Community Trade in Heat-Treated Milk. OJEU 1985, 226, 13–29. Available online: http://data.europa.eu/eli/dir/1985/397/oj (accessed on 20 April 2024).
- Heeschen, W.H. Residues of antibiotics and sulfonamides in milk: Significance and toxicological evaluation, legal situation within the European Community (EEC), and method-related activities of the International Dairy Federation (IDF). Inhibitory substances in milk—Current analytical practice. IDF Bull. 1993, 283, 3–12. [Google Scholar]
- Herrman, J.L. Codex Alimentarius and assessments of residues of veterinary drugs by FAO and WHO: Concepts and strategies. In Proceedings of the Symposium on Residues of Antimicrobial Drugs and Other Inhibitors in Milk, Kiel, Germany, 28–31 August 1995; pp. 107–113. [Google Scholar]
- Honkanen-Buzalski, T.; Reybroeck, W. Antimicrobials. In Monograph on Residues and Contaminants in Milk and Dairy Products; IDF: Brussel, Belgium, 1997; pp. 26–33. [Google Scholar]
- Council Regulation (EEC) No 2377/90 of 26 June 1990 Laying Down a Community Procedure for the Establishment of Maximum Residue Limits of Veterinary Medicinal Products in Foodstuffs of Animal Origin. OJEU 1990, 224, 1–8. Available online: http://data.europa.eu/eli/reg/1990/2377/oj (accessed on 20 April 2024).
- Heeschen, W.H. Principles for the toxicological evaluation of residues. In Monograph on Residues and Contaminants in Milk and Milk Products; Special Issue 9101; IDF: Brussel, Belgium, 1991; pp. 12–15. [Google Scholar]
- Heeschen, W.H.; Bluthgen, A.; Burt, R. Definitions (basic terms). In Monograph on Residues and Contaminants in Milk and Milk Products; Special Issue 9701; IDF: Brussel, Belgium, 1997; pp. 5–12. [Google Scholar]
- International Dairy Federation. Milk and Milk Products: Detection of Inhibitors: Reference, Routine and Confirmation Methods. IDF Bull. 1987, 220, 78. [Google Scholar]
- International Dairy Federation. Detection and confirmation of inhibitors in milk and milk products. IDF Bull. 1991, 258, 99. [Google Scholar]
- Commission Decision 91/180/EEC: Of 14 February 1991 laying down certain methods of analysis and testing of raw milk and heat-treated milk. OJEU 1991, 93, 1–48. Available online: http://data.europa.eu/eli/dec/1991/180/oj (accessed on 20 April 2024).
- International Dairy Federation. Monograph on Residues and Contaminants in Milk and Milk Products; Special Issue 9701; IDF: Bulletin, Belgium, 1997; p. 132. [Google Scholar]
- Heeschen, W.H. Integrated detections systems for antimicrobials in milk: The IDF approach. IDF Mastit. News 21 1996, 144, 3–6. [Google Scholar]
- Heeschen, W.H.; Suhren, G. IDF integrated detection system for antimicrobials: Introductory statement and practical experiences in Germany. In Proceedings of the Symposium on Residues of Antimicrobial Drugs and Other Inhibitors in Milk, Kiel, Germany, 28–31 August 1995; pp. 310–318. [Google Scholar]
- ISO 13969:2003 (IDF 183); Milk and Milk Products—Guidelines for a Standardized Description of Microbial Inhibitor Tests. European Committee for Standardization: Brussel, Belgium, 2003; p. 13.
- ISO 18330:2003 IDF 188:2003; Milk and Milk Products—Guidelines for the Standardized Description of Immunoassays or Receptor Assays for the Detection of Antimicrobial Residues. European Committee for Standardization: Brussel, Belgium, 2003; p. 12.
- Commission Decision 2002/657/EC of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results (Text with EEA relevance). OJEU 2002, 221, 8–36. Available online: http://data.europa.eu/eli/dec/2002/657/oj (accessed on 20 April 2024).
- Community Reference Laboratories Residues (CRLs) 20/1/2010 Guidelines for the Validation of Screening Methods for Residues of Veterinary Medicines (Initial Validation and Transfer). 2010, p. 18. Available online: https://api.semanticscholar.org/CorpusID:35157920 (accessed on 10 April 2024).
- Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results as Well as on the Methods to be Used for Sampling and Repealing Decisions 2002/657/EC and 98/179/EC (Text with EEA Relevance). OJEU 2021, 180, 84–109. Available online: http://data.europa.eu/eli/reg_impl/2021/808/oj (accessed on 10 April 2024).
- ISO/TS 23758:2021|IDF/RM 251:2021; Guidelines for the Validation of Qualitative Screening Methods for the Detection of Residues of Veterinary Drugs in Milk and Milk Products. European Committee for Standardization: Brussel, Belgium, 2021; p. 34.
- Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R. Fast screening methods to detect antibiotic residues in food samples. TrAC, Trends Anal. Chem. 2010, 29, 1038–1049. [Google Scholar] [CrossRef]
- Dopter, P. La recherche d’antibiotiques seuls on associes, dans le lait. Lait. 1957, 37, 20–25. [Google Scholar] [CrossRef]
- Berridge, N.J. Some uses of a very sensitive pH discriminator. Dairy Ind. 1957, 22, 1022. [Google Scholar]
- Berridge, N.J. Testing for penicillin in milk. Dairy Ind. 1953, 18, 586. [Google Scholar]
- Berridge, N.J. Penicillin in milk. I. The rapid routine assay of low concentrations of penicillin in milk. J. Dairy Res. 1956, 23, 336–341. [Google Scholar] [CrossRef]
- Collins, E.B. A simple method for detecting inhibitory substances in milk. Milk Prod. J. 1957, 48, 48–50. [Google Scholar]
- Galesloot, T.E. Het aantonen van penicilline in melk en zuivelproducten. Neth. Milk Dairy J. 1955, 9, 158–164. [Google Scholar]
- Neal, C.E. The development of a method for the detection of starter inhibitory substances in milk and the determination of the incidence of lactic starter inhibitory substances in the milk supply of Wisconsin. Diss. Abstr. 1956, 16, 1777. [Google Scholar]
- Neal, C.E.; Calbert, H.E. The use of 2,3,5-triphenyltetrazolium chloride as a test for antibiotic substances in milk. J. Dairy Sci. 1955, 38, 629–633. [Google Scholar] [CrossRef]
- Schipper, I.A.; Peterson, W.E. Assay of aureomycin in milk by use of methylene blue. Vet. Med. 1951, 46, 222–224. [Google Scholar]
- Igarashi, R.T.; Baughman, R.; Nelson, F.E.; Hartman, P.A. Rapid antibiotic assay methods using Bacillus stearothermophilus. J. Dairy Sci. 1960, 43, 841–842. [Google Scholar] [CrossRef]
- Igarashi, R.T.; Baughman, R.W.; Nelson, F.E.; Hartman, P.A. Rapid antibiotic assay methods using Bacillus stearothermophilus. J. Milk Food Technol. 1961, 24, 143–146. [Google Scholar] [CrossRef]
- Ruehe, H.A. Penicillin and other starter inhibitors. Milk Plant Mon. 1950, 39, 36. [Google Scholar]
- Krienke, W.A. Effects on acid production by lactic starters of various drugs in milk from mastitis treated cows. Milk Plant Mon. 1950, 39, 36–37. [Google Scholar]
- Fleischmann, K. Lasst sich penicillin in der milch nachweisen. Deut. Mokeri-Ztg. 1954, 75, 534–536. [Google Scholar]
- Adamse, A.D. Een Onderzolk van penicilline. Bevattende Melk. Neth. Milk Dairy J. 1955, 9, 121–137. [Google Scholar]
- Abraham, E.P.; Chain, E.B.; Fletcher, C.M.; Gardner, A.D.; Heatley, N.G.; Jennings, M.A.; Florey, H.W. Further observations on penicillin. Lancet 1941, 238, 177–189. [Google Scholar] [CrossRef]
- Foster, J.W.; Woodruff, H.B. Microbiological aspects of penicillin: VI. Procedure for the cup assay for penicillin. J. Bacteriol. 1944, 47, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W.H.; Moyer, A.J. Penicillin: I. Methods of assay. J. Bacteriol. 1944, 47, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Beadle, G.W.; Mitchell, H.K.; Bonner, D. Improvements in the cylinder-plate method for penicillin assay. J. Bacteriol. 1945, 49, 101–104. [Google Scholar] [CrossRef]
- Marth, E.H. Antibiotics in milk—A review. J. Food Prot. 1961, 24, 70–82. [Google Scholar] [CrossRef]
- Vincent, J.G.; Vincent, H.W.; Morton, J. Filter paper disc modification of the Oxford cup penicillin determination. Proc. Soc. Exp. Biol. Med. 1944, 55, 162–164. [Google Scholar] [CrossRef]
- De Beer, E.J.; Sherwood, M.B. The paper-disc agar-plate method for the assay of antibiotic substances. J. Bacteriol. 1945, 50, 459–467. [Google Scholar] [CrossRef]
- Epstein, J.A.; Foley, E.J.; Perrine, I.; Lee, S.W. Convenient assay method for penicillin and similar substances. J. Lab. Clin. Med. 1944, 29, 319–320. [Google Scholar]
- Sherwood, M.B.; Falco, E.A.; De Beer, E.J. A rapid, quantitative method for the determination of penicillin. Science 1944, 99, 247–248. [Google Scholar] [CrossRef]
- Welsh, M.; Langer, P.H.; Burkhardt, R.L.; Schroeder, C.R. Penicillin blood and milk concentrations in the normal cow following parenteral administration. Science 1948, 108, 185–187. [Google Scholar] [CrossRef]
- Drury, A.R. A test for the presence of penicillin in milk. Conv. Proc. Milk Ind. Found 1951, 4, 62–66. [Google Scholar]
- Gogas, W.; Bicknell, A.K. The determination of penicillin in milk. Milk Plant Mon. 1953, 42, 26–28. [Google Scholar]
- Johns, C.K.; Berzins, I. Observations on the determination of antibiotics in milk. J. Milk Food Technol. 1956, 19, 14–17. [Google Scholar] [CrossRef]
- Arret, B.; Kirshbaum, A. A rapid disc assay method for detecting penicillin in milk. J. Milk Food Technol. 1959, 22, 329–331. [Google Scholar] [CrossRef]
- Johns, C.K. Comments on a new test for penicillin in milk. J. Milk Food Technol. 1960, 23, 6–7. [Google Scholar] [CrossRef]
- Wolin, A.G.; Kosikowski, F.V. Formation of bacterial inhibitory zones in whey agar by raw milk. J. Dairy Sci. 1958, 41, 34–40, ISSN 0022-0302. [Google Scholar] [CrossRef]
- Bogaerts, R.; Wolf, F. A standardised method for the detection of residues of antibacterial substances in fresh meat. Fleischwirtschaft 1980, 60, 672–673. [Google Scholar]
- International Dairy Federation. Inhibitory substances in milk-current analytical practice. IDF Bull. 1993, 283, 76. [Google Scholar]
- Nouws, J.F.M.; van Egmond, H.; Smulders, I.; Loeffen, G.; Schouten, J.; Stegeman, H. A microbiological assay system for assessment of raw milk exceeding EU maximum residue levels. Int. Dairy J. 1999, 9, 85–90. [Google Scholar] [CrossRef]
- Nouws, J.F.M.; van Egmond, H.; Loeffen, G.; Schouten, J.; Keukens, H.; Smulders, I.; Stegeman, H. Suitability of the Charm HVS and a microbiological multiplate system for detection of residues in raw milk at EU maximum residue levels. Vet. Q. 1999, 21, 21–27. [Google Scholar] [CrossRef]
- Gaudin, V.; Maris, P.; Fuselier, R.; Ribouchon, J.L.; Cadieu, N.; Rault, A. Validation of a microbiological method: The STAR protocol, a five-plate test, for screening of antibiotic residues in milk. Food Addit. Contam. 2004, 21, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Ellerbroek, L. The microbiological determination of the quinolone carbonic-acid derivatives enrofloxacin, ciprofloxacin and flumequin. Fleischwirtschaft 1991, 71, 187–189. [Google Scholar]
- Aureli, P.; Ferrini, A.M.; Mannoni, V. Presumptive identification of sulphonamide and antibiotic residues in milk by microbial inhibitor tests. Food Control 1996, 7, 165–168. [Google Scholar] [CrossRef]
- STAR Protocol. Screening Test for Antibiotic Residues; Laboratoire D’etudes et de Recherches Sur Les Medicaments Veterinaires et Les Disinfectants: Fougères, France; Community Reference Laboratory: Debret, Ethiopia, 2002; p. 14. [Google Scholar]
- Botsoglou, N.A.; Fletouris, D.J. Drug Residues in Foods, 1st ed.; Marcel Dekker: New York, NY, USA, 2001; p. 1194. ISBN 0-8247-8959-8. [Google Scholar]
- Navrátilová, P.; Vyhnálková, J.; Zachovalová, H.; Vorlová, L. A microbiological multi-plate method to detect cephalosporin residues in milk. Acta Vet. Brno. 2020, 89, 201–208. [Google Scholar] [CrossRef]
- The Czech National Reference Laboratory. Methodological Guidelines for the Detection of Residues of Inhibitory Substances in Tissues, Milk, Eggs and Foods of Animal Origin; State Veterinary Institute: Jihlava, Czech Republic, 2008; p. 14. [Google Scholar]
- Kirbiš, A. Microbiological 5-plate screening method for detection of tetracyclines, aminoglycosides, cephalosporins and macrolides in milk. Slov. Vet. Res. 2006, 43, 161–168. [Google Scholar]
- FDA. Bacteriological Analytical Manual (BAM) Inhibitory Substances in Milk, Bacteriological Analytical Manual, 8th Edition, Revision A, 1998. Chapter 20A. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-20a-inhibitory-substances-milk (accessed on 30 October 2024).
- AlMashhadany, D.A. Screening of antibiotic residues in raw milk of cows and buffalos by diffusion assays. Ital. J. Food Saf. 2021, 10, 9034. [Google Scholar] [CrossRef]
- Kumarswamy, N.P.; Latha, C.; Vrinda, K.M.; Sethukekshmi, C.; Mercy, K.A. Detection of antibiotic residues in raw cow milk in Thrissur, India. Pharma Innov. 2018, 7, 452–454. [Google Scholar]
- Kantiani, L.; Farré, M.; Barceló, D. Analytical methodologies for the detection of β-lactam antibiotics in milk and feed samples. TrAC, Trends Anal. Chem. 2009, 28, 729–744. [Google Scholar] [CrossRef]
- Kraack, J.; Tolle, A. Brilliantschwarz-Reduktionstest mit Bac. stearothermophilus var. calidolactis zum Nachweis von Hemmstoffen in der Milch. Milchwissenschaft 1967, 22, 669–673. [Google Scholar]
- Müller, F.J.; Jones, A. BR-test and BRT-AS methods. Inhibitory substances in milk—Current analytical practice. IDF Bull. 1993, 283, 24–28. [Google Scholar]
- Van Os, J.L.; Lameris, S.A.; Doodewaard, J.; Oostendorp, J.G. Diffusion test for the determination of antibiotic residues in milk. Neth. Milk Dairy J. 1975, 29, 16–34. [Google Scholar]
- Mäyrä-Mäkinen, A. The Valio T101 Method (T101 Test). Inhibitory substances in milk—Current analytical practice. IDF Bull. 1993, 283, 29–31. [Google Scholar]
- Charm, S.E.; Ruth, G.P. Advances in Charm technology for antimicrobial residues in milk. Inhibitory substances in milk—Current analytical practice. IDF Bull. 1993, 283, 32–34. [Google Scholar]
- Zomer, E.; Lieu, T. AIM-96, a broad spectrum anti-microbial drug inhibition monitoring assay: Advantages and enhancement of an integrated monitoring system. In Proceedings of the Symposium on Residues of Antimicrobial Drugs and Other Inhibitors in Milk, Kiel, Germany, 28–31 August 1995; pp. 192–194. [Google Scholar]
- Adriany, A.; Märtlbauer, E.; Zaadhof, K.J. A modified Brilliant Black-Reduction Test (BRT) with improved sensitivity for tetracyclines and sulfonamides. In Proceedings of the Symposium on Residues of Antimicrobial Drugs and Other Inhibitors in Milk, Kiel, Germany, 28–31 August 1995; pp. 172–176. [Google Scholar]
- The Brilliant Black Reduction Test—Background and Basic Information; Analytik in Milch Produktions und Vertriebs, GmbH: München, Germany, 2015; Volume 8, pp. 1–4.
- Analytik in Milch Produktions und Vertriebs, GmbH. Independent Certification of AiM GmbH’s Inhibitor Test Systems; Analytik in Milch Produktions und Vertriebs, GmbH: München, Germany, 2021; p. 134. [Google Scholar]
- Stead, S.L.; Ashwin, H.; Richmond, S.F.; Sharman, M.; Langeveld, P.C.; Barendse, J.P.; Stark, J.; Keely, B.J. Evaluation and validation according to international standards of the Delvotest® SP-NT screening assay for antimicrobial drugs in milk. Int. Dairy J. 2008, 18, 3–11. [Google Scholar] [CrossRef]
- Larose, D. NF VALIDATION 102 (AFNOR Certification): Protocol for Validation of Methods for the Detection and Quantification of Veterinary Drugs in Food Products (Revision n°1: Adopted on June 1st, 2017), Summary Report. 2023, p. 117. Available online: https://nf-validation.afnor.org/wp-content/uploads/2024/01/N%C2%B016_2023-12_Summary-report_DSM_DelvotestT.pdf (accessed on 10 April 2024).
- Hennart, S.; Faragher, J. Validation of the Delvotest SP NT DA. Performance Tested Method 011101. J. AOAC Int. 2012, 95, 252–260. [Google Scholar] [CrossRef] [PubMed]
- DSM Food Specialties. Delvotest. Technical Information. Available online: www.delvotest.com (accessed on 10 April 2024).
- ZEU-Inmunotec, SL. Eclipse Test. Available online: www.zeulab.com (accessed on 10 April 2024).
- Charm Sciencies Inc. Charm Cow Side II. Test, Charm Blue Yelow Test. Technical Information. Available online: www.charm.com (accessed on 10 April 2024).
- Copan Italia S.p.a. CMT—Copan Milk Test. Technical Information. Available online: www.copaninnovation.com (accessed on 10 April 2024).
- Euroclone, S.p.a. Euroclone Kalidos MP and TB. Technical Information. Available online: www.euroclone.net (accessed on 10 April 2024).
- Ring Biotechnology Co., Ltd. The Accuplus MAT5 Test Kit. Technical Information. Available online: www.ringbio.com/products/milk/accuplus-mat5-antibiotic-residue-test-kit (accessed on 10 April 2024).
- Treiber, F.M.; Beranek-Knauer, H. Antimicrobial residues in food from animal origin—A review of the literature focusing on products collected in stores and markets worldwide. Antibiotics 2021, 10, 534. [Google Scholar] [CrossRef]
- Virto, M.; Santamarina-García, G.; Amores, G.; Hernández, I. Antibiotics in dairy production: Where is the problem? Dairy 2022, 3, 541–564. [Google Scholar] [CrossRef]
- Beukers, R. Some special aspects of Delvotest. Inhibitory substances in milk—Current analytical practice. IDF Bull. 1991, 283, 20–23. [Google Scholar]
- Van Eenennaam, A.L.; Cullor, J.S.; Perani, L.; Cardner, T.A.; Smith, W.L.; Dellinger, J.; Guterbock, W.M.; Jensen, L. Evaluation of milk antibiotic residue screening test in cattle with occurring clinical mastitis. J. Dairy Sci. 1993, 76, 3041–3053. [Google Scholar] [CrossRef]
- Althaus, R.; Torres, A.; Peris, C.; Carmen Beltran, M.; Fernandez, N.; Pilar Molina, M. Accuracy of BRT and Delvotest Microbial Inhibition Tests as affected by composition of ewe’s milk. J. Food Prot. 2003, 66, 473–478. [Google Scholar] [CrossRef]
- Wang, J.; Macneil, J.D.; Kay, J.F. Chemical Analysis of Antibiotic Residues in Food; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; p. 353. [Google Scholar] [CrossRef]
- Charm, S.E.; Chi, R. Microbial receptor assay for rapid detection and identification of seven families of antimicrobial drugs in milk: Collaborative study. J. Assoc. Off. Anal. Chem. 1988, 71, 304–315. [Google Scholar] [PubMed]
- International Dairy Federation. Current situation & compilation of commercially available screening methods for the detection of inhibitors/antibiotics residues in milk. IDF Bull. 2010, 42, 164. [Google Scholar]
- Massova, I.; Mobashery, S. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother. 1998, 42, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ghuysen, J.M. The concept of the penicillin target from 1965 until today. J. Gen. Microbiol. 1977, 101, 13–33. [Google Scholar] [CrossRef]
- Navrátilová, P. Screening methods in use for the detection of veterinary drug residues in raw cow’s milk—A review. Czech J. Food Sci. 2008, 26, 393–401. [Google Scholar] [CrossRef]
- Bahadır, E.B.; Sezgintürk, M.K. Lateral flow assays: Principles, designs and labels. TrAC Trends Anal. Chem. 2016, 82, 286–306. [Google Scholar] [CrossRef]
- Banerjee, R.; Jaiswal, A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 2018, 143, 1970–1996. [Google Scholar] [CrossRef]
- Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar] [CrossRef]
- Sajid, M.; Kawde, A.N.; Daud, M. Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 2015, 19, 689–705. [Google Scholar] [CrossRef]
- Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015, 73, 47–63. [Google Scholar] [CrossRef]
- Abouzied, M.; Driksna, D.; Walsh, C.; Sarzynski, M.; Walsh, A.; Ankrapp, D.; Klein, F.; Rice, J.; Mozola, M. Validation study of the BetaStar® plus lateral flow assay for detection of beta-lactam antibiotics in milk. J. AOAC Int. 2012, 95, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Unisensor (BE). TwinSensorBT. Technical Information. Available online: www.unisensor.be (accessed on 24 May 2024).
- Christian Hansen A/S. MilkSafe TM 3BTC. Technical Information. Available online: https://www.chr-hansen.com/en/food-cultures-and-enzymes/test-and-equipment/cards/collection-cards/milksafe (accessed on 24 May 2024).
- Christian Hansen A/S. BetaStar® S Combo 50. Technical Information. Available online: www.chr-hansen.com (accessed on 24 May 2024).
- Charm Sciencies Inc. Charm MRL Beta-Lactam and Tetracycline Test for Milk (Charm Rosa, 8 Minute Test). Technical Information. Available online: https://www.charm.com/wp-content/uploads/2022/09/MRK-210-MRL-Beta-lactam-and-Tetracycline-Test.pdf (accessed on 24 May 2024).
- Kyuchukova, R. Antibiotic residues and human health hazard—Review. Bulg. J. Agric. Sci. 2020, 26, 664–668. [Google Scholar]
- Beyene, T. Veterinary Drug Residues in Food-animal Products: Its Risk Factors and Potential Effects on Public Health. J. Vet. Sci. Technol. 2016, 7, 285. [Google Scholar] [CrossRef]
- Sachi, S.; Ferdous, J.; Sikder, M.H.; Hussani, S.M.A.K. Antibiotic residues in milk: Past, present, and future. J. Adv. Vet. Anim. Res. 2019, 6, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Arsène, M.M.J.; Davares, A.K.L.; Viktorovna, P.I.; Andreevna, S.L.; Sarra, S.; Khelifi, I.; Sergueïevna, D.M. The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions. Vet. World 2022, 15, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin (Text with EEA Relevance). OJEU 2010, 15, 1–72. Available online: http://data.europa.eu/eli/reg/2010/37(1)/oj (accessed on 20 April 2024).
- Codex Alimentarius. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods CXM 2-2023. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/maximum-residue-limits/en/ (accessed on 30 October 2024).
- IDF. Detecting antibiotics residues in milk—Guidance on the application of screening and confirmatory methods in integrated dairy chain management. IDF Bull 2014, 474, 7–24. [Google Scholar]
- Codex Alimentarius. Guidelines for the Design and Implementation of National Regulatory Food Safety Assurance Programme Associated with the Use of Veterinary Drugs in Food Producing Animals CAC/GL 71-2009 Adopted 2009. Revision 2012, 2014. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/guidelines/en/ (accessed on 30 October 2024).
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin. OJEU 2004, 139, 55–205. Available online: http://data.europa.eu/eli/reg/2004/853/oj (accessed on 20 April 2024).
Test Organism | Agar Medium/pH | Incubation Temperature [°C]/Time [h] | Sensitivity |
---|---|---|---|
Bacillus stearothermophilus var. calidolactis C 953 | Plate count agar (Difco)/8.0 | 55/6 | Β-lactam antibiotics, tylosin, rifamycin |
Bacillus cereus var. mycoides ATCC 11778 | Standard II Nähragar (Merck) + supplements/6.0 | 30/* | tetracyclines |
Bacillus subtilis BGA (Merck art. 10649) | Plate count agar (Difco)/8.0 | 30/* | aminoglycosides |
Bacillus subtilis BGA (sulfa plate) | Mueller Hinton agar (Oxoid)+ supplements/7.0 | 37/* | sulfonamides, dapsone, trimethoprim, bacquiloprim |
Micrococcus luteus ATCC 9341 | Mueller Hinton agar (Merck)+ supplements/8.0 | 30/* | macrolides, rifamycin |
Escherichia coli ATCC 11303 | Plate count agar/6.0 | 30/* | quinolones, colistin |
Staphylococcus epidermidis ATCC 12228 | Plate count agar/6.0 | 30/* | novobiocin, rifamycin |
Test Organism | Agar Medium/pH | Incubation Temperature [°C]/Time [h] | Sensitivity |
---|---|---|---|
Bacillus stearothermophilus var. calidolactis ATCC 10149 | DST medium/7.4 | 55 °C/12–15 h | sulfonamides and ß–lactam antibiotics |
Bacillus subtilis BGA DSMZ 618 | Antibiotic medium II. Difco/7.2 | 30 °C/18 h | aminoglycosides |
Bacillus cereus ATCC 11778 | Test agar Merck/6.0 | 30 °C/18 h | tetracyclines |
Kocuria varians ATCC 9341 | Test agar Merck/8.0 | 37 °C/24 h | makrolides and ß–laktam antibiotics |
Escherichia coli ATCC 11303 | Test agar Merck/8.0 | 37 °C/18 h | chinolones |
Antibiotic | MRL-EU [µg/kg] | Delvotest® T | Delvotest® SP-NT | ||
---|---|---|---|---|---|
Plates | Ampoules | Plates | Ampoules | ||
Amoxicillin | 4 | 4 | 4 | 3 | 2 |
Ampicillin | 4 | 3 | 4 | 2 | 2 |
Penicillin G | 4 | 1 | 1 | 2 | 2 |
Cloxacillin | 30 | 5 | 6 | 12 | 12 |
Cephalexin | 100 | 20 | 20 | 45 | 45 |
Cefalonium | 20 | 10 | 8 | 10 | 10 |
Cephapirin | 60 | 5 | 6 | 2 | 2 |
Ceftiofur | 100 | 20 | 20 | 20 | 20 |
Cefoperazone | 50 | 40 | 40 | 30 | 30 |
Cefquinome | 20 | 40 | 40 | 75 | 65 |
Oxytetracycline | 100 | 80 | 100 | 250 | 300 |
Tetracycline | 100 | 75 | 70 | 270 | 300 |
Sulfadiazine | 100 | 50 | 40 | 50 | 65 |
Tylosin | 50 | 35 | 35 | 40 | 35 |
Tilmicosin | 50 | 60 | 60 | 30 | 30 |
Kanamycin | 150 | 1.310 | 1.010 | 1.700 | 1.700 |
Neomycin | 1.500 | 110 | 60 | 190 | 115 |
DH Streptomycin | 200 | 800 | 500 | 700 | 700 |
Framycetin Sulp | 1.500 | 110 | >150 | 120 | 120 |
Trimethoprim | 50 | 130 | 110 | 160 | 160 |
Antimicrobial Agents | MRL-EU [µg/kg] | Charm Blue Yellow II Test | Charm CowSide II Test | Eclipse 50 | Eclipse FARM & COMET8 | Eclipse FARM-4G & COMET4 | Copan Milk Test |
---|---|---|---|---|---|---|---|
β-lactams | |||||||
Amoxicillin | 4 | 2–3 | 3–4 | 4 | 4 | 3 | 2–4 |
Ampicillin | 4 | 2–3 | 3–4 | 4 | 4 | 3 | <2 |
Cephalexin | 100 | 60–100 | 75–100 | 60 | 50 | 50 | >45 |
Cefapirin | 60 | 4–6 | 8–10 | 8 | 10 | 5 | 2.5–5 |
Cefalonium | 20 | 10–15 | 15–20 | 20 | 20 | 5 | - |
Ceftiofur | 100 | 50–100 * | 50–100 | 100 | 50 | 25 | 50–100 |
Cefazolin | 50 | 6–10 | 6–10 | 35 | 50 | - | 5–10 |
Cefoperazone | 50 | 20–30 | 20–30 | 50 | 50 | 25 | 25–50 |
Cefquinome | 20 | 40–60 | 40–60 | 150 | - | 20–40 | 30–100 |
Cloxacillin | 30 | 10–20 | 10–25 | 30 | 30 | 25 | 10–15 |
Oxacillin | 30 | 8–10 | 5–10 | 20 | 15 | 15 | 5–10 |
Penicillin G | 4 | 1–2 | 2–3 | 3–4 | 3 | 2 | 1–2 |
Tetracyclines | |||||||
Doxycycline | 0 | 25–75 | 25–75 | 100 | - | 100 | 150 |
Chlortetracycline | 100 | 150–200 | 200–300 | - | 150 | 100 | 250–500 |
Oxytetracycline | 100 | 75–100 | 75–100 | 100–150 | 100 | 100 | 250–500 |
Tetracycline | 100 | 75–100 | 50–100 | 100–150 | 100 | 100–125 | 250–500 |
Sulfonamides | |||||||
Sulfadiazine | 100 | 80–100 | 40–60 | 100 | 50 | 50 | 50–100 |
Sulfamethazine | 100 | 75–125 | 75–125 | 150 | 100 | 100–125 | 100–200 |
Sulfamethoxazole | 100 | - | - | 100 | - | - | <50 |
Sulfapyridine | 100 | 75–125 | - | - | - | - | - |
Sulfathiazole | 100 | 25–75 | - | 100 | 50 | 75 | 50–100 |
Macrolides | |||||||
Erythromycin | 40 | 100–150 | 75–100 | 200 | 120 | 80–100 | >200 |
Tylosin | 50 | 20–30 | 20–30 | 50 | 25 | 40 | 50–100 |
Tilmicosin | 50 | 25–35 | 25–35 | 100 | 50 | - | 75–100 |
Spiramycin | 200 | 400–500 | 300–400 | >400 | - | - | >2000 |
Aminoglycosides | |||||||
Dihydrostreptomycin | 200 | - | - | 800 | 500 | 800 | <1000 |
Gentamycin | 100 | 75–100 | 75–150 | 400 | 50 | 150 | 100–500 |
Neomycin | 1500 | 75–150 | 100–150 | 1500 | 200 | 500 | 500–2000 |
Kanamycin | 150 | - | - | >2000 | - | - | - |
Spectinomycin | 200 | - | - | 2500 | - | - | >300 |
Streptomycin | 200 | - | - | >2000 | 500 | 1.200 | <1000 |
Lincosamides | |||||||
Lincomycin | 150 | 100–150 | 75–150 | 300 | 150 | 150–200 | 150 |
others | |||||||
Trimethoprim | 50 | 200–300 | 200–300 | - | - | - | 100–150 |
Dapsone | 5 | 1–2 | 1–2 | - | 5 | 5 | 2–4 |
Test | Group of Antibiotics | Type of Reaction | Time per Analysis |
---|---|---|---|
Charm II (Streptomycin Type) Aminoglycoside Test | streptomycin-type aminoglycoside drugs | rapid microbial receptor assay | 18 min |
Charm II Beta-lactam (Sequential) Test | beta-lactams | rapid microbial receptor assay | 12 min |
Charm II Novobiocin Test | novobiocin | rapid microbial receptor assay | 7 min |
Charm II Sulfa Drug Test | sulfonamide and disulfone drugs | rapid microbial receptor assay | 12 min |
Charm II Tetracycline Test | tetracycline drugs | rapid microbial receptor assay | 12 min |
Test | Manufacturer | Sensitivity | Interpretation Method |
---|---|---|---|
MilkSafeTM Fast 2BC | Christian Hansen Holding A/S, Hoersholm, Denmark | beta-lactams including cephalexin | Visually, electronic reader |
MilkSafeTM Fast 3BTC | Christian Hansen Holding A/S, Hoersholm, Denmark | beta-lactams including cephalexin and tetracyclines | Visually, electronic reader |
MilkSafeTM Fast 3BTS | Christian Hansen Holding A/S, Hoersholm, Denmark | beta-lactams, tetracyclines and sulfonamides | Visually, electronic reader |
Charm MRL Beta-lactam and Tetracycline Test for Milk | Charm Sciences, Inc., Lawrence, KS, USA | 14 beta-lactams and 3 tetracyclines | Charm EZ system |
Charm MRL Beta-lactam 1-Minute Test for Milk | Charm Sciences, Inc., Lawrence, KS, USA | beta-lactams | Charm EZ system |
Charm MRL Beta-lactam 3 min Test for Milk | Charm Sciences, Inc., Lawrence, KS, USA | 14 common beta-lactams | Charm EZ system |
Charm MRL Beta-lactam Test for Milk | Charm Sciences, Inc., Lawrence, KS, USA | 14 primary beta-lactams | Charm EZ reader |
Charm Neomycin, Streptomycin and Gentamicin Test for milk | Charm Sciences, Inc., Lawrence, KS, USA | neomycin, streptomycin gentamicin, kanamycin, dihydrostreptomycin | Rosa Reader, Charm EZ system |
Charm QUAD1 Test for milk | Charm Sciences, Inc., Lawrence, KS, USA | beta-lactams, quinolones, sulfonamides, tetracyclines | Charm EZ system |
Charm QUAD2 Test | Charm Sciences, Inc., Lawrence, KS, USA | macrolides | Charm EZ system |
Beta-lactams+ Tetracyclines BT Combo Test Kit | Ring Biotechnology Co., Ltd., Beijing, China | beta-lactams, tetracyclines | Visually |
CCBTS 5in1 Rapid Test Kit | Ring Biotechnology Co., Ltd., Beijing, China | ceftiofur, cephalexin, beta-lactams, tetracyclines, sulfonamides | Visually |
BTSC 4in1 QuaTest | Ring Biotechnology Co., Ltd., Beijing, China | beta-lactams, tetracyclines, streptomycin, chloramphenicol | Visually |
QuinoSensor Milk | Unisensor S.A., Seraing, Belgium | quinolones | Visually, ReadSensor |
TwinSensorBT | Unisensor S.A., Seraing, Belgium | beta-lactams, tetracyclines | Visually, Read Sensor |
4 Sensor BSCT | Unisensor S.A., Seraing, Belgium | beta-lactams, tetracyclines, chloramphenicol, streptomycin | Visually, ReadSensor |
4 Sensor BSTQ | Unisensor S.A., Seraing, Belgium | beta-lactams, sulfonamides, tetracyclines, quinolones | Visually, ReadSensor |
4 Aminosensor Milk | Unisensor S.A., Seraing, Belgium | neomycin b, kanamycin a streptomycin, gentamycin | Visually, ReadSensor |
BetaXpress | Unisensor S.A., Seraing, Belgium | beta-lactams | Visually, ReadSensor |
CapSensor Milk | Unisensor S.A., Seraing, Belgium | chloramphenicol | Visually, ReadSensor |
Betastar® 4D Rapid Test | Neogen Corporation, Lansing, USA | beta-lactams, tetracyclines, chloramphenicol, streptomycin | Reader Accusan Pro |
Antimicrobial Agents | TwinSensorBT KIT020 | Charm MRLBLTET Test (8 min Test) | BetaStar® S Combo 50 | MilksafeTM Fast 3 BTC | MRL (EU) |
---|---|---|---|---|---|
Penicillin G | 2–3 | 2–3 | 1.5 | 1 | 4 |
Ampicillin | 3–4 | 2.5–4.0 | 3 | 3 | 4 |
Amoxicillin | 3–4 | 2.5–4.0 | 2 | 3 | 4 |
Oxacilin | 12–18 | - | 6 | 7 | 30 |
Cloxacillin | 6–8 | 25–35 | 5 | 6 | 30 |
Dicloxacillin | 6–8 | 20–30 | 4 | 5 | 30 |
Nafcillin | 30–50 | - | 20 | 30 | 30 |
Cephapirin | 6–8 | 4–8 | 20 | 18 | 60 |
Cephalonium | 3–5 | 3–5 | 2 | 1 | 20 |
Cefazolin | 18–22 | 8–16 | 90 | 100 | 50 |
Ceftiofur and metabolite | 10–15 | 10–20 | 30 | 35 | 100 |
Cefoperazone | 3–4 | 3–5 | 3 | 2 | 50 |
Cefalexin | >750 | 15–30 | 3000 | 18 | 100 |
Cefacetril | 30–40 | 6–12 | 60 | 60 | 125 |
Cefquinome | 20–30 | 20–30 | 16 | 16 | 20 |
Tetracycline | 80–100 | 10–30 | 45 | 35 | 100 |
Chlortetracycline | 30–40 | 50–100 | 80 | 70 | 100 |
Doxycycline | 10–15 | - | 50 | 30 | 0 |
Oxytetracycline | 50–60 | 50–100 | 50 | 25 | 100 |
Antibiotics | EU MRL [µg/kg] | Codex MRL [µg/kg] |
---|---|---|
Amoxicilin | 4 | 4 |
Ampicillin | 4 | - |
Benzylpenicillin | 4 | 4 |
Ceftiofur | 100 | 100 |
Chlortetracycline, Oxytetracycline, Tetracycline | 100 | 100 |
Colistin | 50 | 50 |
Dihydrostreptomycin/Streptomycin | 200 | 200 |
Danofloxacin | 30 | - |
Erythromycin | 40 | - |
Flumequin | 50 | - |
Lincomycin | 150 | 150 |
Monensin | 2 | 2 |
Neomycin | 1500 | 1500 |
Pirlimycin | 100 | 100 |
Spectinomycin | 200 | 200 |
Spiramycin | 200 | 200 |
Sulfadimidine | 100 | 25 |
Tylosin | 50 | 100 |
Gentamicin | 100 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navrátilová, P.; Vorlová, L.; Dluhošová, S.; Bartáková, K.; Hanuš, O.; Samková, E. Screening Methods for Antimicrobial Residues in the Dairy Chain—The Past and the Present. Antibiotics 2024, 13, 1098. https://doi.org/10.3390/antibiotics13111098
Navrátilová P, Vorlová L, Dluhošová S, Bartáková K, Hanuš O, Samková E. Screening Methods for Antimicrobial Residues in the Dairy Chain—The Past and the Present. Antibiotics. 2024; 13(11):1098. https://doi.org/10.3390/antibiotics13111098
Chicago/Turabian StyleNavrátilová, Pavlína, Lenka Vorlová, Sandra Dluhošová, Klára Bartáková, Oto Hanuš, and Eva Samková. 2024. "Screening Methods for Antimicrobial Residues in the Dairy Chain—The Past and the Present" Antibiotics 13, no. 11: 1098. https://doi.org/10.3390/antibiotics13111098
APA StyleNavrátilová, P., Vorlová, L., Dluhošová, S., Bartáková, K., Hanuš, O., & Samková, E. (2024). Screening Methods for Antimicrobial Residues in the Dairy Chain—The Past and the Present. Antibiotics, 13(11), 1098. https://doi.org/10.3390/antibiotics13111098