Proteomic Analysis of Vibrio parahaemolyticus-Stimulated Pinctada martensii Proteins for Antimicrobial Activity, Potential Mechanisms, and Key Components
Abstract
:1. Introduction
2. Results
2.1. Effect of VP-Stimulated Infection on Pm-Aps Activity
2.2. Antimicrobial Spectrum and Antimicrobial Activity of Pm-Aps
2.3. Differential Protein Expression Screening of Pm-Aps Before and After VP-Stimulated Infection
2.4. GO Functional Annotation and Enrichment Analysis
2.5. KEGG Annotation and Enrichment Analysis
2.6. Structural Domain Analysis of DEPs
2.7. Effect of Catalase on the Activity of Pm-Aps
2.8. Effect of Different Amino Acid Substrates on H2O2 Production by Pm-Aps
3. Discussion
4. Materials and Methods
4.1. Strains and Materials
4.2. Strain Activation and Suspension Preparation
4.3. VP Stimulates Infection
4.4. Antimicrobial Protein Extraction from Gill Tissue
4.5. Effect of VP-Stimulated Infection on the Antimicrobial Activity of Pm-Aps
4.6. Determination of Antimicrobial Spectrum and Antimicrobial Activity of Pm-Aps
4.7. Proteomic Analysis
4.7.1. Sample Pre-Treatment
4.7.2. Liquid Chromatography–Mass Spectrometry/Mass Spectrometry (LC–MS/MS)
4.7.3. Protein Identification and Quantification
4.7.4. Bioinformatics Analysis
4.8. Determination of the Effect of Catalase on the Antimicrobial Activity of Pm-Aps
4.9. The Effect of Different Amino Acid Substrates on H2O2 Production by Pm-Aps
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Motta, J.-P.; Wallace, J.L.; Buret, A.G.; Deraison, C.; Vergnolle, N. Gastrointestinal biofilms in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 314–334. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Q.; Liu, Z.X.; Lin, Z.X.; Lu, M.C.; Fu, Y.; Liu, G.Q.; Yu, B. The effect of Staphylococcus aureus on innate and adaptive immunity and potential immunotherapy for S. aureus-induced osteomyelitis. Front. Immunol. 2023, 14, 1219895. [Google Scholar] [CrossRef] [PubMed]
- Vijayaram, S.; Chou, C.C.; Razafindralambo, H.; Ghafarifarsani, H.; Divsalar, E.; Van Doan, H. Bacillus sp. as potential probiotics for use in tilapia fish farming aquaculture—A review. Ann. Anim. Sci. 2024, 24, 995–1006. [Google Scholar] [CrossRef]
- Wu, R.A.; Feng, J.; Yue, M.; Liu, D.; Ding, T. Overuse of food-grade disinfectants threatens a global spread of antimicrobial-resistant bacteria. Crit. Rev. Food Sci. Nutr. 2024, 64, 6870–6879. [Google Scholar] [CrossRef]
- Fathurrahman, R.N.; Rukayadi, Y.; Fatimah, U.Z.A.U.; Jinap, S.; Abdul-Mutalib, N.A.; Sanny, M. The performance of food safety management system in relation to the microbiological safety of salmon nigiri sushi: A multiple case study in a Japanese chain restaurant. Food Control 2021, 127, 108111. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, X.; Wu, Y.; Xie, C.; Chen, X.; Wang, J.; Shen, H. The Extraction of Antimicrobial Peptide of Tenebrio molitor Induced by E.coli and the Determination of Its Antibacterial Activity. J. Shihezi Univ. (Nat. Sci.) 2014, 4, 444–448. [Google Scholar]
- Liu, J.; Liu, G.; Cao, Y.; Du, H.; Liu, T.; Liu, M.; Li, P.; He, Y.; Wang, G.; Yu, Q.; et al. BNC-rSS, a bivalent subunit nanovaccine affords the cross-protection against Streptococcus agalactiae and Streptococcus iniae infection in tilapia. Int. J. Biol. Macromol. 2023, 253, 126670. [Google Scholar] [CrossRef]
- Tang, Y.J.; Ali, Z.; Zou, J.; Jin, G.; Zhu, J.C.; Yang, J.; Dai, J.G. Detection methods for Pseudomonas aeruginosa: History and future perspective. RSC Adv. 2017, 7, 51789–51800. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, M.; Cheng, J.; Wan, Y.; Zhu, L.; Gao, Z.; Jiang, L. Antibiotic Alternatives: Multifunctional Ultra-Small Metal Nanoclusters for Bacterial Infectious Therapy Application. Molecules 2024, 29, 3117. [Google Scholar] [CrossRef]
- Ebrahimpour-koujan, S.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Consumption of sugar sweetened beverages and dietary fructose in relation to risk of gout and hyperuricemia: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 60, 1–10. [Google Scholar] [CrossRef]
- Ahmad, V.; Khan, M.S.; Jamal, Q.M.S.; Alzohairy, M.A.; Al Karaawi, M.A.; Siddiqui, M.U. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. Int. J. Antimicrob. Ag. 2017, 49, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta (BBA)-Biomembr. 2008, 1778, 357–375. [Google Scholar] [CrossRef] [PubMed]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef] [PubMed]
- Le, C.-F.; Fang, C.-M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother 2017, 61, e02340. [Google Scholar] [CrossRef]
- Jin, Z.; Shen, M.; Wang, L.; Wang, C.; Gao, M.; Yu, G.; Chang, Z.; Zhang, X. Antibacterial and immunoregulatory activity of an antimicrobial peptide hepcidin in loach (Misgurnus anguillicaudatus). Int. J. Biol. Macromol. 2023, 242, 124833. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; He, D.; Liu, Q.; Han, Q.; Zhang, J.; Zhang, A.M.; Song, Y. Exploration of the Antibacterial and Anti-Inflammatory Activity of a Novel Antimicrobial Peptide Brevinin-1BW. Molecules 2024, 29, 1534. [Google Scholar] [CrossRef]
- Hugo, C.J.; Hugo, A. Current trends in natural preservatives for fresh sausage products. Trends Food Sci. Technol. 2015, 45, 12–23. [Google Scholar] [CrossRef]
- Hu, J.; Li, S.; Lv, Q.; Miao, M.; Li, X.; Li, F. Characterization of the Dual Functions of LvCrustinVII from Litopenaeus vannamei as Antimicrobial Peptide and Opsonin. Mar. Drugs 2022, 20, 157. [Google Scholar] [CrossRef]
- Nakagawa, A.; Sakamoto, T.; Kanost, M.R.; Tabunoki, H. The Development of New Methods to Stimulate the Production of Antimicrobial Peptides in the Larvae of the Black Soldier Fly Hermetia illucens. Int. J. Mol. Sci. 2023, 24, 15765. [Google Scholar] [CrossRef]
- Li, L.Z.; Meng, H.M.; Gu, D.; Li, Y.; Jia, M.D. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol Res 2019, 222, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.S.; Ishizaki, S.; Nagashima, Y.; Nagai, K.; Maeyama, K.; Watabe, S. Exploration of the antibacterial proteins in pearl oyster induced by bacterial inoculation. Fish. Sci 2017, 83, 489–498. [Google Scholar] [CrossRef]
- Liang, H.Y.; Zhang, M.Z.; Shen, C.H.; He, J.J.; Lu, J.Z.; Guo, Z.J. Cloning and functional analysis of a trypsin-like serine protease from. Fish Shellfish Immun. 2022, 126, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Guo, Z.; Liang, H.; Zhang, M. Preliminary investigation of the immune activity of PmH2A-derived antimicrobial peptides from the pearl oyster Pinctada fucata martensii. Fish Shellfish Immun. 2023, 135, 108691. [Google Scholar] [CrossRef]
- Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016, 44, 279–285. [Google Scholar] [CrossRef]
- Kasai, K.; Nakano, M.; Ohishi, M.; Nakamura, T.; Miura, T. Antimicrobial properties of L-amino acid oxidase: Biochemical features and biomedical applications. Appl. Microbiol. Biotechnol. 2021, 105, 4819–4832. [Google Scholar] [CrossRef]
- Roukos, D.H.; Baltogiannis, G.G.; Katsouras, C.S.; Bechlioulis, A.; Naka, K.K.; Batsis, C.; Liakakos, T.; Michalis, L.K. Novel Next-Generation Sequencing and Networks-Based Therapeutic Targets: Realistic and More Effective Drug Design and Discovery. Curr. Pharm. Des. 2014, 20, 11–22. [Google Scholar] [CrossRef]
- Iyer, S.; Uren, R.T.; Dengler, M.A.; Shi, M.X.; Uno, E.; Adams, J.M.; Dewson, G.; Kluck, R.M. Robust autoactivation for apoptosis by BAK but not BAX highlights BAK as an important therapeutic target. Cell Death Dis. 2020, 11, 268. [Google Scholar] [CrossRef]
- Zhang, R.W.; Ren, A.H.; Wang, Z.H.; Wang, D.W. Overexpression of Calcium Activated Chloride Channel A4 Suppressed the Proliferation, Invasion and Gemcitabine Resistance of Non-Small Cell Lung Cancer Cells. J. Biomater. Tiss. Eng. 2020, 10, 435–442. [Google Scholar] [CrossRef]
- Song, J.; Zhang, J.; Shi, J.; Pan, X.; Mo, D. Breviscapine Reduces Sepsis-Induced Acute Lung Injury by Targeting CASP8 to Regulate Neutrophil Apoptosis and Inflammation. J. Inflamm. Res. 2024, 17, 5161–5176. [Google Scholar] [CrossRef]
- Liao, Y.F.; Lai, Y.Y.; Xu, H.L.; Gao, L.; Fu, X.M.; Wang, X.; Wang, Q.; Shen, J.A.; Fang, J.S.; Fang, S.H. Bushen-Yizhi formula ameliorates mitochondrial dysfunction and oxidative stress via AMPK/Sirt1 signaling pathway in D-gal-induced aging rats. Chin. Med. 2023, 18, 53. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Chen, J.N.; Chen, J.J.; Tao, J.; Wu, S.Y.; Xu, G.S.; Wang, Z.; Wei, D.H.; Yin, W.D. Trimethylamine N-oxide promotes apoE mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway. J. Cell Physiol. 2020, 235, 6582–6591. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Yang, Q.; Fan, Y.; Ran, M.; Shi, Q.; Song, Z. Characterization and expression profiles of toll-like receptor genes (TLR2 and TLR5) in immune tissues of hybrid yellow catfish under bacterial infection. Fish Shellfish Immun. 2024, 150, 109627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, D.; Shihb, D.Q.; Zhang, X.L. Atg16l1 in dendritic cells is required for antibacterial defense and autophagy in murine colitis. Iubmb. Life 2020, 72, 2686–2695. [Google Scholar] [CrossRef] [PubMed]
- Ulu, Z.O.; Bolat, Z.B.; Sahin, F. Integrated transcriptome and in vitro analysis revealed anti-proliferative effect of sodium perborate on hepatocellular carcinoma cells. J. Trace Elem. Med. Bio. 2022, 73, 127011. [Google Scholar]
- Chow, L.W.C.; Loo, W.T.Y.; Yip, A.Y.S.; Ong, E.Y.Y.; Ng, W. 23P Expression Of Beta-Iii Tubulin, Foxo 3 Protein and Deoxythymidine Kinase in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy. Ann. Oncol. 2012, 23, ii21. [Google Scholar] [CrossRef]
- Moolmuang, B.; Chaisaingmongkol, J.; Singhirunnusorn, P.; Ruchirawat, M. PLK1 inhibition leads to mitotic arrest and triggers apoptosis in cholangiocarcinoma cells. Oncol. Lett. 2024, 28, 316. [Google Scholar] [CrossRef]
- Cen, M.; Ouyang, W.; Lin, X.; Du, X.; Hu, H.; Lu, H.; Zhang, W.; Xia, J.; Qin, X.; Xu, F. FBXO6 regulates the antiviral immune responses via mediating alveolar macrophages survival. J. Med. Virol. 2023, 95, e28203. [Google Scholar] [CrossRef]
- Gao, E.M.; Turathum, B.; Wang, L.; Zhang, D.; Liu, Y.B.; Tang, R.X.; Chian, R.C. The Differential Metabolomes in Cumulus and Mural Granulosa Cells from Human Preovulatory Follicles. Reprod. Sci. 2022, 29, 1343–1356. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.-Q.; Tang, Y.-X.; Li, Y.; Zhang, L.; Xu, F.-F.; Fu, X.-L.; Ye, K.; Ma, J.-Q.; Guo, S.-M.; et al. Oncoprotein LAMTOR5-mediated CHOP silence via DNA hypermethylation and miR-182/miR-769 in promotion of liver cancer growth. Acta. Pharmacol. Sin. 2024. [Google Scholar] [CrossRef]
- Harrath, A.H.; Jalouli, M.; Oueslati, M.H.; Farah, M.A.; Feriani, A.; Aldahmash, W.; Aldawood, N.; Al-Anazi, K.; Falodah, F.; Swelum, A.; et al. The flavonoid, kaempferol-3-O-apiofuranosyl-7-O-rhamnopyranosyl, as a potential therapeutic agent for breast cancer with a promoting effect on ovarian function. Phytother. Res. 2021, 35, 6170–6180. [Google Scholar] [CrossRef] [PubMed]
- Pugazhendhi, A.; Dhanarani, S.; Shankar, C.; Prakash, P.; Ranganathan, K.; Saratale, R.G.; Thamaraiselvi, K. Electrophoretic pattern of glutathione S-transferase (GST) in antibiotic resistance Gram-positive bacteria from poultry litter. Microb. Pathog. 2017, 110, 285–290. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Li, W.-Z.; Zhang, S.; Hu, B.; Li, Y.-X.; Li, H.-D.; Tang, H.-H.; Li, Q.-W.; Guan, Y.-Y.; Liu, L.-X.; et al. SNX10 mediates alcohol-induced liver injury and steatosis by regulating the activation of chaperone-mediated autophagy. J. Hepatol. 2018, 69, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Ando, Y.; Ichikawa, H.; Tsuneyama, K.; Hijikata, T. Serum/glucose starvation strikingly reduces heterogeneous nuclear ribonucleoprotein A1 protein and its target, cyclin D1. Febs. J. 2023, 290, 4126–4144. [Google Scholar] [CrossRef]
- Mak, T.N.; Brüggemann, H. Vimentin in Bacterial Infections. Cells 2016, 5, 18. [Google Scholar] [CrossRef]
- Cao, L.; Fang, H.; Yan, D.; Wu, X.M.; Zhang, J.; Chang, M.X. CD44a functions as a regulator of p53 signaling, apoptosis and autophagy in the antibacterial immune response. Commun. Biol. 2022, 5, 889. [Google Scholar] [CrossRef]
- Hao, Y.Q.; Guo, H.M.; Hong, Y.C.; Fan, X.; Su, Y.M.; Yang, X.S.; Ren, G.X. Lunasin peptide promotes lysosome-mitochondrial mediated apoptosis and mitotic termination in MDA-MB-231 cells. Food Sci. Hum. Wellness 2022, 11, 1598–1606. [Google Scholar] [CrossRef]
- Mosca, L.; Pagano, C.; Tranchese, R.V.; Grillo, R.; Cadoni, F.; Navarra, G.; Coppola, L.; Pagano, M.; Mele, L.; Cacciapuoti, G.; et al. Antitumoral Activity of the Universal Methyl Donor S-Adenosylmethionine in Glioblastoma Cells. Molecules 2024, 29, 1708. [Google Scholar] [CrossRef]
- Huo, C.L.; Wang, B.; Zhang, X.W.; Sun, Z.G. Skimmianine attenuates liver ischemia/reperfusion injury by regulating PI3K-AKT signaling pathway-mediated inflammation, apoptosis and oxidative stress. Sci. Rep. 2023, 13, 18232. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Zhang, D.; Jiao, Y.L.; Zhao, Q.H.; Liu, Y.; Shi, W.Y.; Bao, Y.Z. Salvia miltiorrhiza polysaccharides alleviate florfenicol-induced inflammation and oxidative stress in chick livers by regulating phagosome signaling pathway. Ecotox Env. Safe 2023, 249, 114428. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef] [PubMed]
- Steinert, M.; Ramming, I.; Bergmann, S. Impact of Von Willebrand Factor on Bacterial Pathogenesis. Front. Med. 2020, 7, 543. [Google Scholar] [CrossRef] [PubMed]
- Lucarelli, R.; Gorrochotegui-Escalante, N.; Taddeo, J.; Buttaro, B.; Beld, J.; Tam, V. Eicosanoid-Activated PPARα Inhibits NFκB-Dependent Bacterial Clearance During Post-Influenza Superinfection. Front. Cell. Infect. Microbiol. 2022, 12, 881462. [Google Scholar] [CrossRef] [PubMed]
- Grinchenko, A.; Buriak, I.; Kumeiko, V. Invertebrate C1q Domain-Containing Proteins: Molecular Structure, Functional Properties and Biomedical Potential. Mar. Drugs 2023, 21, 570. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.L.; Gao, Y.Q.; Jin, S.B.; Li, A.X.; Li, R.J. L-amino acid oxidase as an enzyme related to innate immune defense in marine animals:research progress. J. Dalian Ocean Univ. 2017, 32, 625–630. [Google Scholar]
- Hamad, G.M.; Abushaala, N.M.; Soltan, O.I.A.; Abdel-Hameed, S.M.; Magdy, R.M.E.; Ahmed, E.M.H.; Elshaer, S.E.; Kamar, A.M.; Hashem, R.M.A.; Elghazaly, E.M.; et al. Prevalence and antibacterial effect of natural extracts against Vibrio parahaemolyticus and its application on Tilapia Fillets. LWT-Food Sci. Technol. 2024, 209, 116812. [Google Scholar] [CrossRef]
- Li, M.R.; Zhou, R.A.; Wang, Y.Y.; Lu, Y.; Chu, X.L.; Dong, C.M. Heterologous expression of frog antimicrobial peptide Odorranain-C1 in Pichia pastoris: Biological characteristics and its application in food preservation. J. Biotechnol 2024, 390, 50–61. [Google Scholar] [CrossRef]
- He, R.; Chen, H.; Wu, H.; Liu, J.; Chen, W.; Zhang, M.; Chen, W.; Zhong, Q. Proteomics reveals energy limitation and amino acid consumption as antibacterial mechanism of linalool against Shigella sonnei and its application in fresh beef preservation. Food Chem. X 2023, 19, 100837. [Google Scholar] [CrossRef]
- Piras, C.; De Fazio, R.; Di Francesco, A.; Oppedisano, F.; Spina, A.A.; Cunsolo, V.; Roncada, P.; Cramer, R.; Britti, D. Detection of Antimicrobial Proteins/Peptides and Bacterial Proteins Involved in Antimicrobial Resistance in Raw Cow’s Milk from Different Breeds. Antibiotics 2024, 13, 838. [Google Scholar] [CrossRef]
- Grabek-Lejko, D.; Hyrchel, T. The Antibacterial Properties of Polish Honey against Streptococcus mutans—A Causative Agent of Dental Caries. Antibiotics 2023, 12, 1640. [Google Scholar] [CrossRef]
- Osés, S.M.; Rodríguez, C.; Valencia, O.; Fernández-Muiño, M.A.; Sancho, M.T. Relationships among Hydrogen Peroxide Concentration, Catalase, Glucose Oxidase, and Antimicrobial Activities of Honeys. Foods 2024, 13, 1344. [Google Scholar] [CrossRef]
Strain | Diameter (mm) | IT |
---|---|---|
Vibrio parahaemolyticus (VP) | 11.51 ± 0.54 | 16 |
Listeria monocytogenes (LM) | 7.40 ± 0.10 | 8 |
Staphylococcus aureus (SA) | 7.50 ± 0.10 | 8 |
Bacillus cereus (BC) | 5.43 ± 0.05 | 4 |
Escherichia coli (EC) | 4.23 ± 0.05 | 4 |
Pseudomonas aeruginosa (PA) | 5.30 ± 0.10 | 4 |
Streptococcus agalactiae (SE) | 6.37 ± 0.11 | 4 |
Streptococcus iniae (SI) | 5.20 ± 0.10 | 4 |
Protein | Gene | Description | giVp/giC (FC) |
---|---|---|---|
TR14358_c0_g1_ORF | LAAO | L-amino-acid oxidase-like isoform X1 | 4.670 |
TR24434_c0_g1_ORF_1 | CHDH | alcohol dehydrogenase | 4.278 |
TR7325_c1_g1_ORF | TLR2 | toll-like receptor 4 | 4.234 |
TR38222_c0_g1_ORF | ATG16L1 | autophagy-related protein 16-1-like | 3.554 |
TR7164_c0_g1_ORF | BAK | Bcl-2 homologous antagonist/killer | 2.460 |
TR1646_c0_g1_ORF | CLCA4 | calcium-activated chloride channel regulator 1-like | 2.282 |
TR775_c1_g1_ORF | CASP8 | caspase-8 | 2.086 |
Protein | Gene | Description | giVp/giC (FC) |
---|---|---|---|
TR10572_c0_g1_ORF | MCM3 | zygotic DNA replication licensing factor mcm3 | 0.469 |
TR4065_c0_g1_ORF | MCM5 | DNA replication licensing factor mcm5-like | 0.466 |
TR73065_c0_g2_ORF | DTYMK | thymidylate kinase-like | 0.369 |
TR3406_c0_g1_ORF | PLK1 | serine/threonine-protein kinase PLK1 | 0.351 |
TR20414_c0_g1_ORF | FBXO6 | F-box only protein 44-like isoform X2 | 0.329 |
TR6309_c1_g2_ORF | LPCAT3 | lysophospholipid acyltransferase 5-like | 0.308 |
TR13088_c0_g1_ORF | GST | glutathione S-transferase theta-1 | 0.281 |
TR41412_c0_g2_ORF | LAMTOR5 | regulator complex protein LAMTOR5 homolog | 0.263 |
TR8221_c0_g1_ORF | CYP17A | steroid 17-alpha-hydroxylase/17,20 lyase-like | 0.152 |
TR19429_c0_g1_ORF | CTSA | lysosomal protective protein isoform X1 | 0.090 |
TR16486_c0_g1_ORF | RRM1 | ribonucleoside-diphosphate reductase large subunit-like | 0.015 |
Strain | Diameter (mm) | |
---|---|---|
Pm-Aps and PBS | Pm-Aps and Catalase | |
Vibrio parahaemolyticus (VP) | 10.13 ± 0.05 | - |
Listeria monocytogenes (LM) | 6.20 ± 0.10 | - |
Staphylococcus aureus (SA) | 5.83 ± 0.05 | - |
Bacillus cereus (BC) | 4.50 ± 0.10 | - |
Escherichia coli (EC) | 3.53 ± 0.05 | - |
Pseudomonas aeruginosa (PA) | 4.20 ± 0.10 | - |
Streptococcus agalactiae (SE) | 5.33 ± 0.15 | - |
Streptococcus iniae (SI) | 4.26 ± 0.05 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Shen, W.; Luo, B.; Cao, W.; Qin, X.; Gao, J.; Chen, Z.; Zheng, H.; Song, B. Proteomic Analysis of Vibrio parahaemolyticus-Stimulated Pinctada martensii Proteins for Antimicrobial Activity, Potential Mechanisms, and Key Components. Antibiotics 2024, 13, 1100. https://doi.org/10.3390/antibiotics13111100
Lin H, Shen W, Luo B, Cao W, Qin X, Gao J, Chen Z, Zheng H, Song B. Proteomic Analysis of Vibrio parahaemolyticus-Stimulated Pinctada martensii Proteins for Antimicrobial Activity, Potential Mechanisms, and Key Components. Antibiotics. 2024; 13(11):1100. https://doi.org/10.3390/antibiotics13111100
Chicago/Turabian StyleLin, Haisheng, Weiqiang Shen, Bei Luo, Wenhong Cao, Xiaoming Qin, Jialong Gao, Zhongqin Chen, Huina Zheng, and Bingbing Song. 2024. "Proteomic Analysis of Vibrio parahaemolyticus-Stimulated Pinctada martensii Proteins for Antimicrobial Activity, Potential Mechanisms, and Key Components" Antibiotics 13, no. 11: 1100. https://doi.org/10.3390/antibiotics13111100
APA StyleLin, H., Shen, W., Luo, B., Cao, W., Qin, X., Gao, J., Chen, Z., Zheng, H., & Song, B. (2024). Proteomic Analysis of Vibrio parahaemolyticus-Stimulated Pinctada martensii Proteins for Antimicrobial Activity, Potential Mechanisms, and Key Components. Antibiotics, 13(11), 1100. https://doi.org/10.3390/antibiotics13111100