The Characterisation of Carbapenem-Resistant Acinetobacter baumannii and Klebsiella pneumoniae in a Teaching Hospital in Malaysia
Abstract
:1. Introduction
2. Results
2.1. Overview of CRAB Cases
2.2. Overview of CRKP Cases
2.3. Determination of Carbapenemase Genes Among CRAB and CRKP Strains
2.4. Genetic Relatedness of CRAB and CRKP Strains
2.5. Antimicrobial Susceptibility Profiles and Modified Hodge Test
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Bacterial Strain Collection and Hospital Setting
4.3. Detection of Carbapenemase Genes
4.4. Clonal Relatedness of Strains
4.5. Antimicrobial Susceptibility Testing and Modified Hodge Test
4.6. Clinical Data Collection and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, X.; Li, W.; Shi, L.; Zeng, Y.; Xia, H.; Huang, Q.; Li, J.; Li, X.; Hu, B. Epidemiological Characteristics and Antimicrobial Resistance Changes of Carbapenem-Resistant Klebsiella pneumoniae and Acinetobacter baumannii under the COVID-19 Outbreak: An Interrupted Time Series Analysis in a Large Teaching Hospital. Antibiotics 2023, 12, 431. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Misol, G.N., Jr. Malaysian Action Plan On Antimicrobial Resistance (MyAP-AMR) 2017–2021; Ministry of Health Malaysia: Putrajaya, Malaysia, 2018.
- Patel, G.; Bonomo, R.A. Status report on carbapenemases: Challenges and prospects. Expert Rev. Anti-Infect. Ther. 2011, 9, 555–570. [Google Scholar] [CrossRef]
- Logan, L.K.; Weinstein, R.A. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef]
- Tzouvelekis, L.; Markogiannakis, A.; Psichogiou, M.; Tassios, P.; Daikos, G. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 2012, 25, 682–707. [Google Scholar] [CrossRef]
- National Surveillance of Antibiotic Resistance Report 2022. Institute for Medical Research Ministry of Health, Malaysia. Available online: https://imr.nih.gov.my/images/uploads/NSAR/2022/NSAR-REPORT_2022_to-be-published.pdf (accessed on 14 March 2024).
- Infection Prevention & Control and Antimicrobial Resistance Containment Program Annual Report 2022. Institute for Medical Research Ministry of Health, Malaysia. Available online: https://myohar.moh.gov.my/reports-human-health/ (accessed on 14 March 2024).
- Woon, J.J.; Teh, C.S.J.; Chong, C.W.; Abdul Jabar, K.; Ponnampalavanar, S.; Idris, N. Molecular characterization of carbapenem-resistant Acinetobacter baumannii isolated from the intensive care unit in a tertiary teaching hospital in malaysia. Antibiotics 2021, 10, 1340. [Google Scholar] [CrossRef]
- Woon, J.J.; Ahmad Kamar, A.; Teh, C.S.J.; Idris, N.; Zhazali, R.; Saaibon, S.; Basauhra Singh, H.K.; Charanjeet Singh, J.K.G.; Kamarulzaman, A.; Ponnampalavanar, S. Molecular Epidemiological Investigation and Management of Outbreak Caused by Carbapenem-Resistant Acinetobacter baumannii in a Neonatal Intensive Care Unit. Microorganisms 2023, 11, 1073. [Google Scholar] [CrossRef]
- Piperaki, E.-T.; Tzouvelekis, L.; Miriagou, V.; Daikos, G. Carbapenem-resistant Acinetobacter baumannii: In pursuit of an effective treatment. Clin. Microbiol. Infect. 2019, 25, 951–957. [Google Scholar] [CrossRef]
- Poirel, L.; Nordmann, P. Carbapenem resistance in Acinetobacter baumannii: Mechanisms and epidemiology. Clin. Microbiol. Infect. 2006, 12, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Hwa, W.E.; Subramaniam, G.; Navaratnam, P.; Sekaran, S.D. Detection and characterization of class 1 integrons among carbapenem-resistant isolates of Acinetobacter spp. in Malaysia. J. Microbiol. Immunol. Infect. = Wei Mian Yu Gan Ran Za Zhi 2009, 42, 54–62. [Google Scholar] [PubMed]
- Hsu, L.-Y.; Apisarnthanarak, A.; Khan, E.; Suwantarat, N.; Ghafur, A.; Tambyah, P.A. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in south and southeast Asia. Clin. Microbiol. Rev. 2017, 30, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Lean, S.-S.; Suhaili, Z.; Ismail, S.; Rahman, N.I.A.; Othman, N.; Abdullah, F.H.; Jusoh, Z.; Yeo, C.C.; Thong, K.-L. Prevalence and genetic characterization of carbapenem-and polymyxin-resistant Acinetobacter baumannii isolated from a tertiary hospital in Terengganu, Malaysia. Int. Sch. Res. Not. 2014, 2014, 953417. [Google Scholar]
- Biglari, S.; Alfizah, H.; Ramliza, R.; Rahman, M.M. Molecular characterization of carbapenemase and cephalosporinase genes among clinical isolates of Acinetobacter baumannii in a tertiary medical centre in Malaysia. J. Med. Microbiol. 2015, 64, 53–58. [Google Scholar] [CrossRef]
- Rahman, N.I.; Ismail, S.; Alattraqchi, A.G.; Cleary, D.W.; Clarke, S.C.; Yeo, C.C. Acinetobacter spp. infections in Malaysia: A review of antimicrobial resistance trends, mechanisms and epidemiology. Front. Microbiol. 2017, 8, 2479. [Google Scholar]
- Donald, H.M.; Scaife, W.; Amyes, S.G.; Young, H.-K. Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob. Agents Chemother. 2000, 44, 196–199. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, K.; Zhang, J.; Guo, Y.; Fan, X.; Wang, Y.; Mensah, S.D.; Zhang, X. Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in ICU of the eastern Heilongjiang Province, China. BMC Infect. Dis. 2019, 19, 452. [Google Scholar]
- Kohlenberg, A.; Brümmer, S.; Higgins, P.G.; Sohr, D.; Piening, B.C.; de Grahl, C.; Halle, E.; Rüden, H.; Seifert, H. Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in a German university medical centre. J. Med. Microbiol. 2009, 58, 1499–1507. [Google Scholar] [CrossRef]
- Doi, Y.; Murray, G.L.; Peleg, A.Y. Acinetobacter baumannii: Evolution of antimicrobial resistance—Treatment options. Semin. Respir. Crit. Care Med. 2015, 36, 85–98. [Google Scholar]
- Mendes, R.E.; Bell, J.M.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Emergence and widespread dissemination of OXA-23,-24/40 and-58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations: Report from the SENTRY Surveillance Program. J. Antimicrob. Chemother. 2009, 63, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Deshpande, L.M.; Mathai, D.; Bell, J.M.; Jones, R.N.; Mendes, R.E. Early dissemination of NDM-1-and OXA-181-producing Enterobacteriaceae in Indian hospitals: Report from the SENTRY Antimicrobial Surveillance Program, 2006–2007. Antimicrob. Agents Chemother. 2011, 55, 1274–1278. [Google Scholar] [CrossRef]
- Walther-Rasmussen, J.; Høiby, N. OXA-type carbapenemases. J. Antimicrob. Chemother. 2006, 57, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, P.; Naas, T.; Wybo, I.; Bauraing, C.; Soetens, O.; Piérard, D.; Nordmann, P.; Glupczynski, Y. Outbreak of infection by carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-58 in Belgium. J. Clin. Microbiol. 2006, 44, 4189–4192. [Google Scholar] [CrossRef] [PubMed]
- Lean, S.-S.; Yeo, C.C.; Suhaili, Z.; Thong, K.-L. Whole-genome analysis of an extensively drug-resistant clinical isolate of Acinetobacter baumannii AC12: Insights into the mechanisms of resistance of an ST195 clone from Malaysia. Int. J. Antimicrob. Agents 2015, 45, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Lean, S.-S.; Yeo, C.C.; Suhaili, Z.; Thong, K.-L. Comparative genomics of two ST 195 carbapenem-resistant Acinetobacter baumannii with different susceptibility to polymyxin revealed underlying resistance mechanism. Front. Microbiol. 2016, 6, 1445. [Google Scholar] [CrossRef]
- Wareth, G.; Linde, J.; Nguyen, N.H.; Nguyen, T.N.; Sprague, L.D.; Pletz, M.W.; Neubauer, H. WGS-based analysis of carbapenem-resistant Acinetobacter baumannii in Vietnam and molecular characterization of antimicrobial determinants and MLST in Southeast Asia. Antibiotics 2021, 10, 563. [Google Scholar] [CrossRef]
- Iovleva, A.; Mustapha, M.M.; Griffith, M.P.; Komarow, L.; Luterbach, C.; Evans, D.R.; Cober, E.; Richter, S.S.; Rydell, K.; Arias, C.A. Carbapenem-resistant Acinetobacter baumannii in US hospitals: Diversification of circulating lineages and antimicrobial resistance. mBio 2022, 13, e02759-21. [Google Scholar] [CrossRef]
- Viehman, J.A.; Nguyen, M.H.; Doi, Y. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs 2014, 74, 1315–1333. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Available online: https://www.idsociety.org/practice-guideline/amr-guidance/ (accessed on 18 August 2024).
- UMMC On-Line Antibiotic Guideline. Available online: https://farmasi.ummc.edu.my/ummc-on-line-antibiotic-guideline (accessed on 16 January 2024).
- Weinberg, S.; Villedieu, A.; Bagdasarian, N.; Karah, N.; Teare, L.; Elamin, W. Control and management of multidrug resistant Acinetobacter baumannii: A review of the evidence and proposal of novel approaches. Infect. Prev. Pract. 2020, 2, 100077. [Google Scholar] [CrossRef]
- Cıkman, A.; Ceylan, M.R.; Parlak, M.; Karahocagil, M.K.; Berktaş, M. Evaluation of colistin-ampicillin/sulbactam combination efficacy in imipenem-resistant Acinetobacter baumannii strains. Mikrobiyoloji Bul. 2013, 47, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.; Lucenteforte, E.; Pea, F.; Soriano, A.; Tavoschi, L.; Steele, V.R.; Henriksen, A.S.; Longshaw, C.; Manissero, D.; Pecini, R. Systematic review on estimated rates of nephrotoxicity and neurotoxicity in patients treated with polymyxins. Clin. Microbiol. Infect. 2021, 27, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Lyu, C.; Zhang, Y.; Liu, X.; Wu, J.; Zhang, J. Clinical efficacy and safety of polymyxins based versus non-polymyxins based therapies in the infections caused by carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. BMC Infect. Dis. 2020, 20, 296. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke-Grauls, C.; Kerver, A.; Rommes, J.; Jansen, R.; Den Dekker, C.; Verhoef, J. Endemic Acinetobacter anitratus in a surgical intensive care unit: Mechanical ventilators as reservoir. Eur. J. Clin. Microbiol. Infect. Dis. 1988, 7, 485–489. [Google Scholar] [CrossRef]
- Chastre, J. Infections due to Acinetobacter baumannii in the ICU. Semin. Respir. Crit. Care Med. 2003, 24, 69–78. [Google Scholar] [CrossRef]
- Eze, E.C.; Chenia, H.Y.; El Zowalaty, M.E. Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect. Drug Resist. 2018, 11, 2277–2299. [Google Scholar] [CrossRef]
- Manian, F.A.; Griesenauer, S.; Senkel, D.; Setzer, J.M.; Doll, S.A.; Perry, A.M.; Wiechens, M. Isolation of Acinetobacter baumannii complex and methicillin-resistant Staphylococcus aureus from hospital rooms following terminal cleaning and disinfection: Can we do better? Infect. Control Hosp. Epidemiol. 2011, 32, 667–672. [Google Scholar] [CrossRef]
- Szychowiak, P.; Villageois-Tran, K.; Patrier, J.; Timsit, J.-F.; Ruppé, É. The role of the microbiota in the management of intensive care patients. Ann. Intensive Care 2022, 12, 3. [Google Scholar] [CrossRef]
- Cortez-Cordova, J.; Kumar, A. Activity of the efflux pump inhibitor phenylalanine-arginine β-naphthylamide against the AdeFGH pump of Acinetobacter baumannii. Int. J. Antimicrob. Agents 2011, 37, 420–424. [Google Scholar] [CrossRef]
- Sanders, C.C.; Sanders, W.E., Jr.; Goering, R.V. Effects of clindamycin on derepression of β-lactamases in Gram-negative bacteria. J. Antimicrob. Chemother. 1983, 12, 97–104. [Google Scholar] [CrossRef]
- Low, Y.-M.; Yap, P.S.-X.; Jabar, K.A.; Ponnampalavanar, S.; Karunakaran, R.; Velayuthan, R.; Chong, C.-W.; Bakar, S.A.; Yusof, M.Y.M.; Teh, C.S.-J. The emergence of carbapenem resistant Klebsiella pneumoniae in Malaysia: Correlation between microbiological trends with host characteristics and clinical factors. Antimicrob. Resist. Infect. Control 2017, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.X.; Karunakaran, R.N.; Jabar, K.A.; Ponnampalavanar, S.; Chong, C.W.; Teh, C.S.J. A retrospective study on molecular epidemiology trends of carbapenem resistant Enterobacteriaceae in a teaching hospital in Malaysia. PeerJ 2022, 10, e12830. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Q.; Sri La Sri Ponnampalavanar, S.; Chong, C.W.; Karunakaran, R.; Vellasamy, K.M.; Abdul Jabar, K.; Kong, Z.X.; Lau, M.Y.; Teh, C.S.J. Characterisation of Non-Carbapenemase-Producing Carbapenem-Resistant Klebsiella pneumoniae Based on Their Clinical and Molecular Profile in Malaysia. Antibiotics 2022, 11, 1670. [Google Scholar] [CrossRef] [PubMed]
- Lau, M.Y.; Teng, F.E.; Chua, K.H.; Ponnampalavanar, S.; Chong, C.W.; Abdul Jabar, K.; Teh, C.S.J. Molecular characterization of carbapenem resistant Klebsiella pneumoniae in Malaysia hospital. Pathogens 2021, 10, 279. [Google Scholar] [CrossRef]
- Khan, A.U.; Maryam, L.; Zarrilli, R. Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): A threat to public health. BMC Microbiol. 2017, 17, 101. [Google Scholar] [CrossRef]
- Chaalal, N.; Touati, A.; Bakour, S.; Aissa, M.A.; Sotto, A.; Lavigne, J.-P.; Pantel, A. Spread of OXA-48 and NDM-1-producing Klebsiella pneumoniae ST48 and ST101 in chicken meat in Western Algeria. Microb. Drug Resist. 2021, 27, 492–500. [Google Scholar] [CrossRef]
- Ghanbarinasab, F.; Haeili, M.; Ghanati, S.N.; Moghimi, M. High prevalence of OXA-48-like and NDM carbapenemases among carbapenem resistant Klebsiella pneumoniae of clinical origin from Iran. Iran. J. Microbiol. 2023, 15, 609. [Google Scholar] [CrossRef]
- Abbasi, E.; Ghaznavi-Rad, E. High frequency of NDM-1 and OXA-48 carbapenemase genes among Klebsiella pneumoniae isolates in central Iran. BMC Microbiol. 2023, 23, 98. [Google Scholar] [CrossRef]
- Cerón, S.; Salem-Bango, Z.; Contreras, D.A.; Ranson, E.L.; Yang, S. Clinical and genomic characterization of carbapenem-resistant Klebsiella pneumoniae with concurrent production of NDM and OXA-48-like Carbapenemases in Southern California, 2016–2022. Microorganisms 2023, 11, 1717. [Google Scholar] [CrossRef]
- Yan, J.; Pu, S.; Jia, X.; Xu, X.; Yang, S.; Shi, J.; Sun, S.; Zhang, L. Multidrug resistance mechanisms of carbapenem resistant Klebsiella pneumoniae strains isolated in Chongqing, China. Ann. Lab. Med. 2017, 37, 398–407. [Google Scholar] [CrossRef]
- Hamzan, N.I.; Chan, Y.Y.; Abdul Rahman, R.; Hasan, H.; Abdul Rahman, Z. Detection of blaIMP4 and blaNDM1 harboring Klebsiella pneumoniae isolates in a university hospital in Malaysia. Emerg. Health Threat. J. 2015, 8, 26011. [Google Scholar] [CrossRef] [PubMed]
- Prayag, P.S.; Patwardhan, S.A.; Panchakshari, S.; Sambasivam, R.; Dhupad, S.; Soman, R.N.; Prayag, A.P. Ceftazidime-avibactam with or without Aztreonam vs Polymyxin-based combination therapy for carbapenem-resistant enterobacteriaceae: A retrospective analysis. Indian J. Crit. Care Med. 2023, 27, 444. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Daikos, G.L.; Tiseo, G.; Bassoulis, D.; Giordano, C.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Barnini, S.; Sani, S. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase–producing Enterobacterales. Clin. Infect. Dis. 2021, 72, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Ture, Z.; Güner, R.; Alp, E. Antimicrobial stewardship in the intensive care unit. J. Intensive Med. 2023, 3, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qin, R.-R.; Huang, L.; Sun, L.-Y. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection and mortality of Klebsiella pneumoniae infection. Chin. Med. J. 2018, 131, 56–62. [Google Scholar] [CrossRef]
- Di Domenico, E.G.; Cavallo, I.; Sivori, F.; Marchesi, F.; Prignano, G.; Pimpinelli, F.; Sperduti, I.; Pelagalli, L.; Di Salvo, F.; Celesti, I. Biofilm production by carbapenem-resistant Klebsiella pneumoniae significantly increases the risk of death in oncological patients. Front. Cell. Infect. Microbiol. 2020, 10, 561741. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Woodford, N.; Ellington, M.J.; Coelho, J.M.; Turton, J.F.; Ward, M.E.; Brown, S.; Amyes, S.G.; Livermore, D.M. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2006, 27, 351–353. [Google Scholar] [CrossRef]
- Senda, K.; Arakawa, Y.; Ichiyama, S.; Nakashima, K.; Ito, H.; Ohsuka, S.; Shimokata, K.; Kato, N.; Ohta, M. PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams. J. Clin. Microbiol. 1996, 34, 2909–2913. [Google Scholar] [CrossRef]
- Lauretti, L.; Riccio, M.L.; Mazzariol, A.; Cornaglia, G.; Amicosante, G.; Fontana, R.; Rossolini, G.M. Cloning and characterization of bla VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 1999, 43, 1584–1590. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L.; Carrër, A.; Toleman, M.A.; Walsh, T.R. How to detect NDM-1 producers. J. Clin. Microbiol. 2011, 49, 718–721. [Google Scholar] [CrossRef]
- Naas, T.; Cuzon, G.; Villegas, M.-V.; Lartigue, M.-F.; Quinn, J.P.; Nordmann, P. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob. Agents Chemother. 2008, 52, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Héritier, C.; Tolün, V.; Nordmann, P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.; Bray, J.; Maiden, M. Open-access bacterial population genomics: BIGSdb software, the PubMLST. org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Diancourt, L.; Passet, V.; Verhoef, J.; Grimont, P.A.; Brisse, S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef]
- Bartual, S.G.; Seifert, H.; Hippler, C.; Luzon, M.A.D.; Wisplinghoff, H.; Rodríguez-Valera, F. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J. Clin. Microbiol. 2005, 43, 4382–4390. [Google Scholar] [CrossRef]
- Hall, B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013, 30, 1229–1235. [Google Scholar] [CrossRef]
- Feil, E.J.; Li, B.C.; Aanensen, D.M.; Hanage, W.P.; Spratt, B.G. eBURST: Inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 2004, 186, 1518–1530. [Google Scholar] [CrossRef]
- Ribeiro-Gonçalves, B.; Francisco, A.P.; Vaz, C.; Ramirez, M.; Carriço, J.A. PHYLOViZ Online: Web-based tool for visualization, phylogenetic inference, analysis and sharing of minimum spanning trees. Nucleic Acids Res. 2016, 44, W246–W251. [Google Scholar] [CrossRef]
- Leekha, S.; Terrell, C.L.; Edson, R.S. General principles of antimicrobial therapy. Mayo Clin. Proc. 2011, 86, 156–167. [Google Scholar] [CrossRef]
- McGregor, J.C.; Rich, S.E.; Harris, A.D.; Perencevich, E.N.; Osih, R.; Lodise, T.P., Jr.; Miller, R.R.; Furuno, J.P. A systematic review of the methods used to assess the association between appropriate antibiotic therapy and mortality in bacteremic patients. Clin. Infect. Dis. 2007, 45, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Dani, A. Colonization and infection. Cent. Eur. J. Urol. 2014, 67, 86. [Google Scholar]
- Friedman, N.D.; Kaye, K.S.; Stout, J.E.; McGarry, S.A.; Trivette, S.L.; Briggs, J.P.; Lamm, W.; Clark, C.; MacFarquhar, J.; Walton, A.L. Health care–associated bloodstream infections in adults: A reason to change the accepted definition of community-acquired infections. Ann. Intern. Med. 2002, 137, 791–797. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388. [Google Scholar]
- Girmenia, C.; Rossolini, G.; Piciocchi, A.; Bertaina, A.; Pisapia, G.; Pastore, D.; Sica, S.; Severino, A.; Cudillo, L.; Ciceri, F. Infections by carbapenem-resistant Klebsiella pneumoniae in SCT recipients: A nationwide retrospective survey from Italy. Bone Marrow Transpl. 2015, 50, 282–288. [Google Scholar] [CrossRef]
Risk Factors | In-Hospital Mortality CRAB | Chi Square (p Value) | In-Hospital Mortality CRKP | Chi Square (p Value) | ||
---|---|---|---|---|---|---|
No (n = 48) | Yes (n = 42) | No (n = 45) | Yes (n = 18) | |||
Gender | 1 | 0.027 * | ||||
Female | 16 (53.3%) | 14 (46.7%) | 21 (87.5%) | 3 (22.5%) | ||
Male | 32 (53.3%) | 28 (46.7%) | 24 (61.5%) | 15 (38.5%) | ||
Ethnic | 0.106 | 0.645 | ||||
Malay | 9 (37.5%) | 15 (62.5%) | 16 (64.0%) | 9 (36.0%) | ||
Chinese | 16 (61.5%) | 10 (39.5%) | 17 (81.0%) | 4 (19.0%) | ||
India | 17 (51.5%) | 16 (48.5%) | 9 (69.2%) | 4 (30.8%) | ||
Others | 6 (85.7%) | 1 (14.3%) | 3 (75.0%) | 1 (25.0%) | ||
ICU admission | 26 (49.1%) | 27 (50.9%) | 0.330 | 31 (64.6%) | 17 (35.4%) | 0.047 *a |
Infection acquire model | 0.021 * | 0.292 | ||||
CAI | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
HAI | 23 (44.2%) | 29 (55.8%) | 8 (57.1%) | 6 (42.9%) | ||
HAC | 25 (69.4%) | 11 (30.6%) | 36 (76.6%) | 11 (23.4%) | ||
HCAI | 0 (0%) | 2 (100%) | 1 (50%) | 1 (50%) | ||
Invasive device | ||||||
Indwelling urinary catheter | 41 (50.6%) | 40 (49.4%) | 0.166 a | 32 (65.3%) | 17 (34.7%) | 0.051 a |
Mechanical ventilator | 33 (47.1%) | 37 (52.9%) | 0.028 * | 32 (64.0%) | 18 (36.0%) | 0.013 *a |
Tracheostomy | 13 (54.2%) | 11 (45.8%) | 0.924 | 10 (71.4%) | 4 (28.6%) | 1.000 a |
Central veneous catheter | 35 (49.3%) | 36 (50.7%) | 0.138 | 26 (59.1%) | 18 (40.9%) | <0.001 *a |
Art line | 26 (49.1%) | 27 (50.9%) | 0.330 | 28 (65.1%) | 15 (34.9%) | 0.104 |
Peripheral veneous line | 40 (52.6%) | 36 (47.4%) | 0.756 | 40 (71.4%) | 16 (28.6%) | 1.000 |
NG tube | 36 (50.0%) | 36 (50.0%) | 0.205 | 27 (60.0%) | 18 (40.0%) | 0.001 *a |
Stoma | 4 (57.1%) | 3 (42.9%) | 1.000 a | 4 (80.0%) | 1 (20.0%) | 1.000 a |
Specimen sources | 0.048 * | 0.197 | ||||
Respiratory | 30 (46.2%) | 35 (53.8%) | 7 (77.8%) | 2 (22.2%) | ||
Urinary | 2 (100%) | 0 (0%) | 4 (100%) | 0 (0%) | ||
Blood | 1 (25.0%) | 3 (75.0%) | 5 (83.3%) | 1 (16.7%) | ||
Skin and soft tissue | 14 (77.8%) | 4 (22.2%) | 5 (100%) | 0 (0%) | ||
Rectal swabs | 0 (0%) | 0 (0%) | 23 (63.9%) | 13 (36.1%) | ||
Others | 1 (100%) | 0 (0%) | 1 (33.3%) | 2 (66.7%) | ||
Previous hospitalisation | ||||||
>1 year | 2 (100%) | 0 (0%) | 0.497 a | 2 (66.7%) | 1 (33.3%) | 1.000 a |
6–12 months | 5 (55.6%) | 4 (44.4%) | 1.000 a | 4 (100%) | 0 (0%) | 0.317 a |
3–6 months | 2 (33.3%) | 4 (66.7%) | 0.412 a | 4 (100%) | 0 (0%) | 0.317 a |
<3 months | 26 (61.9%) | 16 (38.1%) | 0.127 | 27 (71.1%) | 11 (28.9%) | 0.935 |
none | 13 (48.1%) | 14 (51.9%) | 0.519 | 8 (61.5%) | 5 (38.5%) | 0.492 a |
Previous contact to health care facilities | 29 (53.7%) | 25 (46.3%) | 0.931 | 34 (72.3%) | 13 (27.7%) | 0.760 a |
Comorbidity | ||||||
CKD | 19 (45.2%) | 23 (54.8%) | 0.150 | 23 (67.6%) | 11 (32.4%) | 0.472 |
DM | 22 (47.8%) | 24 (52.2%) | 0.284 | 19 (61.3%) | 12 (38.7%) | 0.080 |
CVD | 8 (36.4%) | 14 (63.6%) | 0.066 | 9 (56.3%) | 7 (43.8%) | 0.198 a |
Malignancy | 14 (63.6%) | 8 (36.4%) | 0.265 | 7 (100%) | 0 (0%) | 0.177 a |
HPT | 20 (46.5%) | 23 (53.5%) | 0.215 | 24 (64.9%) | 13 (35.1%) | 0.169 |
Previous antibiotic exposure in last 90 days | 48 (54.5%) | 40 (45.5%) | 0.215 a | 43 (70.5%) | 18 (29.5%) | 1.000 a |
Conventional Penicillin | 8 (72.7%) | 3 (27.3%) | 0.169 | 3 (75.0%) | 1 (25.0%) | 1.000 a |
Cloaxacillin | 5 (55.6%) | 4 (44.4%) | 1.000 a | 9 (81.8%) | 2 (18.2%) | 0.489 a |
Augmentin/Unasyn | 17 (44.7%) | 21 (55.3%) | 0.162 | 20 (76.9%) | 6 (23.1%) | 0.418 |
Piperacillin-tazobactam | 31 (52.5%) | 28 (47.5%) | 0.836 | 22 (66.7%) | 11 (33.3%) | 0.380 |
Aminoglycoside | 6 (60.0%) | 4 (40%) | 0.745 a | 3 (75.0%) | 1 (25.0%) | 1.000 a |
Vancomycin | 23 (60.5%) | 15 (39.5%) | 0.242 | 9 (52.9%) | 8 (47.1%) | 0.063 a |
1st-generation cephalosporin | 0 (0%) | 1 (100%) | 0.467 a | 4 (100%) | 0 (0%) | 0.317 a |
2nd-generation cephalosporin | 9 (56.3%) | 7 (43.7%) | 0.796 | 7 (87.5%) | 1 (12.5%) | 0.421 a |
3rd-generation cephalosporin | 17 (63.0%) | 10 (37.0%) | 0.231 | 16 (72.7%) | 6 (27.3%) | 0.867 |
4th-generation cephalosporin | 5 (50.0%) | 5 (50.0%) | 1.000 a | 6 (60.0%) | 4 (40.0%) | 0.452 a |
5th-generation cephalosporin | 1 (100%) | 0 (0%) | 1.000 a | - | - | - |
Clindamycin | 8 (88.9%) | 1 (11.1%) | 0.033 a | 2 (100%) | 0 (0%) | 1.000 a |
Metronidazole | 10 (55.6%) | 8 (44.4%) | 0.833 | 5 (71.4%) | 2 (28.6%) | 1.000 a |
Polymyxin B | 1 (20.0%) | 4 (80.0%) | 0.181 a | 4 (66.7%) | 2 (33.3%) | 1.000 a |
Meropenem | 20 (44.4%) | 25 (55.6%) | 0.091 | 21 (72.4%) | 8 (27.6%) | 0.873 |
Macrolides | 6 (46.2%) | 7 (53.8%) | 0.575 | 7 (100%) | 0 (0%) | 0.177 a |
Fluoroquinolones | 2 (40.0%) | 3 (60.0%) | 0.661 a | 2 (100%) | 0 (0%) | 1.000 a |
Bactrim | 2 (40.0%) | 3 (60.0%) | 0.661 a | 2 (50.0%) | 2 (50.0%) | 0.571 a |
Monoinfection | 6 (40.0%) | 9 (60.0%) | 0.257 | 10 (76.9%) | 3 (23.1%) | 0.741 a |
Carbapenemase genes | ||||||
OXA-23 | 47 (53.4%) | 41 (46.6%) | 1.000 a | - | - | - |
OXA-51 | 47 (52.8%) | 42 (47.2%) | 1.000 a | - | - | - |
OXA-58 | 1 (50.0%) | 1 (50.0) | 1.000 a | - | - | - |
OXA-48 | 3 (75.0%) | 1 (25.0%) | 1.000 a | |||
NDM | 31 (72.1%) | 12 (27.9%) | 0.864 | |||
No carbapenemase | 12 (75.0%) | 4 (25.0%) | 1.000 a | |||
Empiric antibiotics (Patients received treatmemt: CRAB = 47; CRKP = 15) | 21 (44.7%) | 26 (55.3%) | 0.685 a | 9 (60.0%) | 6 (40.0%) | 0.438 a |
Appropriate treatment (CRAB = 3; CRKP = 3) | 1 (33.3%) | 2 (66.7%) | 1.000 a | 1 (33.3%) | 2 (66.7%) | 0.525 a |
Polymyxin B monotherapy | 1 (50.0%) | 1 (50.0%) | 1.000 a | - | - | - |
Polymyxin B and Meropenem therapy | 0 (0.0%) | 1 (100.0%) | 1.000 a | 1 (100.0%) | 0 (0.0%) | 1.000 a |
Meropenem | - | - | - | 0 (0.0%) | 2 (100.0%) | 0.143 a |
Inappropriate treatment | 20 (45.5%) | 24 (54.5%) | 1.000 a | 8 (66.7%) | 4 (33.3%) | 0.525 a |
Definitive Treatment (Patients received treatment: CRAB = 40; CRKP = 14) | 19 (47.5%) | 21 (52.5%) | 0.218 | 9 (64.3%) | 5 (35.7%) | 0.175 a |
Appropriate treatment (CRAB = 36; CRKP = 10) | 18 (50.0%) | 18 (50.0%) | 0.607 a | 6 (60.0%) | 4 (40.0%) | 1.000 a |
Polymyxin B monotherapy | 2 (40.0%) | 3 (60.0%) | 1.000 a | 1 (100.0%) | 0 (0.0%) | 1.000 a |
Polymyxin B and Unasyn therapy | 10 (43.5%) | 8 (44.4%) | 0.356 | - | - | - |
Polymyxin B and Meropenem therapy | 2 (22.2%) | 7 (77.8%) | 0.133 a | 5 (62.5%) | 3 (37.5%) | 1.000 a |
Polymyxin B and other therapy | 2 (100.0%) | 0 (0.0%) | 0.219 a | - | - | - |
Ciprofloxacin | 1 (100.0%) | 0 (0.0%) | 0.475 a | - | - | - |
Ceftazidime | 1 (100.0%) | 0 (0.0%) | 0.475 a | - | - | - |
Meropenem | - | - | - | 0 (0.0%) | 1 (100.0%) | 1.000 a |
Inappropriate treatment | 1 (25.0%) | 3 (75.0%) | 0.607 a | 3 (75.0%) | 1 (25.0%) | 1.000 a |
Risk Factors | CRAB (Total Infected Patients = 54) | Odd Ratio (95% CI) | CRKP (Total Infected Patients = 16) | Odd Ratio (95% CI) | ||
---|---|---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | |||
Gender | 1.000 | 0.027 | 0.073 [0.015] | 3.86 (0.88–16.93) [8.75 (1.53–50.11)] | ||
Age | 0.020 | 0.026 | 0.10 (0.01–0.76) | 0.036 | 0.088 | 1.04 (0.99–1.08) |
Ethnic | 0.083 | 0.062 | 0.60 (0.35–1.03) | 0.582 | ||
ICU admission | 0.336 | 0.032 | 0.160 | 5.10 (0.52–49.59) | ||
Infection acquire model | 0.155 | 0.356 | ||||
Invasive device Indwelling urinary catheter | 0.124 | 0.045 | 0.121 | 5.48 (0.57–52.77) | ||
Mechanical ventilator | 0.028 | 0.007 | 5.16 (1.56–17.09) | 0.001 | [0.997] | [5.92 (0–Inf)] |
Tracheostomy | 0.925 | 1.000 | ||||
Central veneous catheter | 0.141 | 0.001 | [0.997] | [4.80 (0–Inf)] | ||
Art line | 0.335 | 0.107 | ||||
Peripheral veneous line | 0.759 | 1.000 | ||||
NG tube | 0.209 | 0.001 | [0.996] | 6.71 [(0–Inf)] | ||
Stoma | 0.835 | 0.665 | ||||
Previous hospitalisation | ||||||
<3 months | 0.130 | 0.936 | ||||
none | 0.524 | 0.384 | ||||
Previous contact to health care facilities | 0.932 | 0.788 | ||||
Comorbidity | ||||||
CKD | 0.153 | 0.480 | ||||
DM | 0.290 | 0.082 | ||||
CVD | 0.068 | 0.124 | ||||
Malignancy | 0.270 | 0.078 | [0.997] | [5.92 (0–Inf)] | ||
HPT | 0.219 | 0.174 | ||||
Dyslipidemia | - | 0.185 | ||||
Previous antibiotic exposure in last 90 days | ||||||
Conventional Penicillin | 0.173 | - | ||||
Cloaxacillin | 0.890 | 0.409 | ||||
Augmentin/Unasyn | 0.170 | 0.427 | ||||
Piperacillin-tazobactam | 0.838 | 0.388 | ||||
Aminoglycoside | 0.658 | - | ||||
Vancomycin | 0.247 | 0.049 | ||||
2nd-generation cephalosporin | 0.799 | 0.289 | ||||
3rd-generation cephalosporin | 0.235 | 0.870 | ||||
4th-generation cephalosporin | 0.825 | 0.391 | ||||
Clindamycin | 0.024 | 0.016 | 0.07 (0.007–0.60) | - | ||
Metronidazole | 0.835 | 1.000 | ||||
Polymyxin B | - | 0.790 | ||||
Meropenem | 0.093 | 0.875 | ||||
Macrolides | 0.580 | 0.078 | [0.998] | [3.89 (0–Inf)] | ||
Monoinfection | 0.262 | 0.629 | ||||
Carbapenemase genes | ||||||
OXA-23 | 0.925 | - | ||||
OXA-51 | 0.352 | - | ||||
OXA-58 | 0.925 | - | ||||
OXA-48 | - | 0.873 | ||||
NDM | - | 0.867 | ||||
No carbapenemase | - | 0.930 | ||||
Empiric antibiotics (Total infected patients: CRAB = 54; CRKP = 16) | ||||||
Appropriate treatment | 0.380 | 0.133 | ||||
Definitive Treatment (Total infected patients: CRAB = 54; CRKP = 16) | ||||||
Appropriate treatment | 0.535 | 0.131 | ||||
Polymyxin B monotherapy | 0.180 | 0.396 | ||||
Polymyxin B and Unasyn therapy | 0.382 | - | ||||
Polymyxin B and Meropenem therapy | 0.744 | 0.642 | ||||
Polymyxin B and other therapy | 0.833 | - |
Antibiotics | CRAB (n = 84) | CRKP (n = 62) |
---|---|---|
Amoxicillin-clavulanate (AMC) | - | 62 (100.00%) |
Ampicillin (AMP) | - | 62 (100.00%) |
Amikacin (AN) | 70 (83.33%) | 9 (14.52%) |
Ceftazidime (CAZ) | 82 (97.62%) | 61 (98.39%) |
Ciprofloxacin (CIP) | 75 (89.29%) | 51 (82.26%) |
Ceftriaxone (CRO) | 82 (97.62%) | 61 (98.39%) |
Cefotaxime (CTX) | 83 (98.81%) | 61 (98.39%) |
Cefuroxime (CXM) | - | 61 (98.39%) |
Cefuroxime Axetil (CXMA) | - | 26 (41.94%) |
Ertapenem (ETP) | 66 (78.57%) | 59 (95.16%) |
Cefepime (FEP) | 84 (100.00%) | 28 (45.16%) |
Cefoxitin (FOX) | - | 26 (41.94%) |
Gentamicin (GM) | 71 (84.52%) | 13 (20.97%) |
Imipenem (IPM) | 84 (100.00%) | 47 (75.81%) |
Meropenem (MEM) | 84 (100.00%) | 50 (80.65%) |
Ampicillin-sulbactam (SAM) | 84 (100.00%) | 62 (100.00%) |
Trimethoprim-sulfamethoxazole (SXT) | 54 (64.29%) | 46 (74.19%) |
Piperacillin-tazobactam (TZP) | 84 (100.00%) | 62 (100.00%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, M.Y.; Ponnampalavanar, S.; Chong, C.W.; Dwiyanto, J.; Lee, Y.Q.; Woon, J.J.; Kong, Z.X.; Jasni, A.S.; Lee, M.C.C.; Obaidellah, U.H.; et al. The Characterisation of Carbapenem-Resistant Acinetobacter baumannii and Klebsiella pneumoniae in a Teaching Hospital in Malaysia. Antibiotics 2024, 13, 1107. https://doi.org/10.3390/antibiotics13111107
Lau MY, Ponnampalavanar S, Chong CW, Dwiyanto J, Lee YQ, Woon JJ, Kong ZX, Jasni AS, Lee MCC, Obaidellah UH, et al. The Characterisation of Carbapenem-Resistant Acinetobacter baumannii and Klebsiella pneumoniae in a Teaching Hospital in Malaysia. Antibiotics. 2024; 13(11):1107. https://doi.org/10.3390/antibiotics13111107
Chicago/Turabian StyleLau, Min Yi, Sasheela Ponnampalavanar, Chun Wie Chong, Jacky Dwiyanto, Yee Qing Lee, Jia Jie Woon, Zhi Xian Kong, Azmiza Syawani Jasni, Michelle Chin Chin Lee, Unaizah Hanum Obaidellah, and et al. 2024. "The Characterisation of Carbapenem-Resistant Acinetobacter baumannii and Klebsiella pneumoniae in a Teaching Hospital in Malaysia" Antibiotics 13, no. 11: 1107. https://doi.org/10.3390/antibiotics13111107
APA StyleLau, M. Y., Ponnampalavanar, S., Chong, C. W., Dwiyanto, J., Lee, Y. Q., Woon, J. J., Kong, Z. X., Jasni, A. S., Lee, M. C. C., Obaidellah, U. H., & Teh, C. S. J. (2024). The Characterisation of Carbapenem-Resistant Acinetobacter baumannii and Klebsiella pneumoniae in a Teaching Hospital in Malaysia. Antibiotics, 13(11), 1107. https://doi.org/10.3390/antibiotics13111107