Efficacy of Prophylactic Antibiotics in COPD: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Overview of Included Studies
2.2. Study Participants
2.3. Exacerbation
2.4. Time to First Exacerbation
2.5. Health Status
2.6. Bacteriology
2.7. Inflammatory Markers and Cell Count
2.8. Adverse Events
3. Discussion
4. Methodology
4.1. Types of Studies
4.2. Types of Participants
4.3. Types of Interventions
4.4. Types of Outcome Measures
4.4.1. Primary Outcomes
- Exacerbations. We extracted data on the exacerbation rate, time to first exacerbation, or both, if available.
- Health status (validated by St. George’s Respiratory Questionnaire).
4.4.2. Secondary Outcomes
- Bacteriology;
- Inflammatory markers;
- Adverse events.
4.5. Search Strategy
- #1
- (((((((((“Anti-Bacterial Agents”[Mesh]) OR (antibiotic)) OR (amoxicillin)) OR (levofloxacin)) OR (moxifloxacin)) OR (tetracycline)) OR (doxycycline)) OR (azithromycin)) OR (erythromycin)) OR (clarithromycin).
- #2
- ((“Pulmonary Disease, Chronic Obstructive”[Mesh]) OR (COPD)) OR (“Chronic Obstructive Pulmonary Disease”).
- #3
- (#1) AND (#2) Filters: Randomized Controlled Trial.
4.6. Selection of Studies
4.7. Data Extraction
- Methods: study design, duration of study.
- Participants: number of participants, age, stage of COPD.
- Intervention: type of antibiotics, concomitant medication.
- Outcomes: primary and secondary outcomes as specified.
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 2023 GOLD Report. Available online: https://goldcopd.org/2023-gold-report-2/ (accessed on 4 July 2024).
- Tobacco and Chronic Obstructive Pulmonary Disease (COPD). Available online: https://www.who.int/publications/i/item/9789240084452 (accessed on 4 July 2024).
- Decramer, M.; Janssens, W.; Miravitlles, M. Chronic Obstructive Pulmonary Disease. Lancet 2012, 379, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Rycroft, C.E.; Heyes, A.; Lanza, L.; Becker, K. Epidemiology of Chronic Obstructive Pulmonary Disease: A Literature Review. COPD 2012, 7, 457–494. [Google Scholar] [CrossRef] [PubMed]
- Stoller, J.K.; Aboussouan, L.S. Alpha1-Antitrypsin Deficiency. Lancet 2005, 365, 2225–2236. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, S.; Tang, R.; Qiu, H.; Huang, Q.; Mason, T.G.; Tian, L. Major Air Pollutants and Risk of COPD Exacerbations: A Systematic Review and Meta-Analysis. Int. J. Chron. Obs. Pulmon. Dis. 2016, 11, 3079–3091. [Google Scholar] [CrossRef]
- Celli, B.; Fabbri, L.; Criner, G.; Martinez, F.J.; Mannino, D.; Vogelmeier, C.; Montes de Oca, M.; Papi, A.; Sin, D.D.; Han, M.K.; et al. Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. Am. J. Respir. Crit. Care Med. 2022, 206, 1317–1325. [Google Scholar] [CrossRef]
- COPD Causes-Occupations and Substances. Available online: https://www.hse.gov.uk/copd/causes.htm#occupations (accessed on 4 July 2024).
- American Thoracic Society Statement. Am. J. Respir. Crit. Care Med. 2003, 167, 787–797. [CrossRef]
- Barnes, P.J. Inflammatory Mechanisms in Patients with Chronic Obstructive Pulmonary Disease. J. Allergy Clin. Immunol. 2016, 138, 16–27. [Google Scholar] [CrossRef]
- Stockley, R.A. Neutrophils and Protease/Antiprotease Imbalance. Am. J. Respir. Crit. Care Med. 1999, 160, S49–S52. [Google Scholar] [CrossRef]
- Rodríguez-Roisin, R.; Drakulovic, M.; Rodríguez, D.A.; Roca, J.; Barberà, J.A.; Wagner, P.D. Ventilation-Perfusion Imbalance and Chronic Obstructive Pulmonary Disease Staging Severity. J. Appl. Physiol. 2009, 106, 1902–1908. [Google Scholar] [CrossRef]
- Aksu, F.; Çapan, N.; Aksu, K.; Ofluoğlu, R.; Canbakan, S.; Yavuz, B.; Akin, K.O. C-Reactive Protein Levels Are Raised in Stable Chronic Obstructive Pulmonary Disease Patients Independent of Smoking Behavior and Biomass Exposure. J. Thorac. Dis. 2013, 5, 414–421. [Google Scholar] [CrossRef]
- Hoogendoorn, M.; Feenstra, T.L.; Hoogenveen, R.T.; Al, M.; Mölken, M.R. Association between Lung Function and Exacerbation Frequency in Patients with COPD. Int. J. Chron. Obs. Pulmon. Dis. 2010, 5, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.G.; Ahn, J.H.; Jin, H.J. Incidence and Prognostic Factors of Respiratory Viral Infections in Severe Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obs. Pulmon. Dis. 2021, 16, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Papi, A.; Bellettato, C.M.; Braccioni, F.; Romagnoli, M.; Casolari, P.; Caramori, G.; Fabbri, L.M.; Johnston, S.L. Infections and Airway Inflammation in Chronic Obstructive Pulmonary Disease Severe Exacerbations. Am. J. Respir. Crit. Care Med. 2006, 173, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Kopsaftis, Z.; Wood-Baker, R.; Poole, P. Influenza Vaccine for Chronic Obstructive Pulmonary Disease (COPD). Cochrane Database Syst. Rev. 2018, 6, CD002733. [Google Scholar] [CrossRef]
- Elliott, M.W.; Nava, S. Noninvasive Ventilation for Acute Exacerbations of Chronic Obstructive Pulmonary Disease: “Don’t Think Twice, It’s Alright!”. Am. J. Respir. Crit. Care Med. 2012, 185, 121–123. [Google Scholar] [CrossRef]
- Lindenauer, P.K.; Stefan, M.S.; Shieh, M.-S.; Pekow, P.S.; Rothberg, M.B.; Hill, N.S. Outcomes Associated with Invasive and Noninvasive Ventilation among Patients Hospitalized with Exacerbations of Chronic Obstructive Pulmonary Disease. JAMA Intern. Med. 2014, 174, 1982–1993. [Google Scholar] [CrossRef]
- Lim, E.; Sousa, I.; Shah, P.L.; Diggle, P.; Goldstraw, P. Lung Volume Reduction Surgery: Reinterpreted with Longitudinal Data Analyses Methodology. Ann. Thorac. Surg. 2020, 109, 1496–1501. [Google Scholar] [CrossRef]
- Thabut, G.; Ravaud, P.; Christie, J.D.; Castier, Y.; Fournier, M.; Mal, H.; Lesèche, G.; Porcher, R. Determinants of the Survival Benefit of Lung Transplantation in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2008, 177, 1156–1163. [Google Scholar] [CrossRef]
- Dixit, D.; Bridgeman, M.B.; Madduri, R.P.; Kumar, S.T.; Cawley, M.J. Pharmacological Management and Prevention of Exacerbations of Chronic Obstructive Pulmonary Disease in Hospitalized Patients. Pharm. Ther. 2016, 41, 703–712. [Google Scholar]
- Smith, D.; Gill, A.; Hall, L.; Turner, A.M. Prevalence, Pattern, Risks Factors and Consequences of Antibiotic Resistance in COPD: A Systematic Review. COPD 2021, 18, 672–682. [Google Scholar] [CrossRef]
- Millares, L.; Monso, E. The Microbiome in COPD: Emerging Potential for Microbiome-Targeted Interventions. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Rofael, S.A.D.; Brown, J.; Lipman, M.C.I.; Lowe, D.M.; Spratt, D.; Quaderi, S.; Hurst, J.R.; McHugh, T.D. Impact of Prophylactic and “rescue Pack” Antibiotics on the Airway Microbiome in Chronic Lung Disease. BMJ Open Respir. Res. 2023, 10, e001335. [Google Scholar] [CrossRef] [PubMed]
- Albert, R.K.; Connett, J.; Bailey, W.C.; Casaburi, R.; Cooper, J.A.D.; Criner, G.J.; Curtis, J.L.; Dransfield, M.T.; Han, M.K.; Lazarus, S.C.; et al. Azithromycin for Prevention of Exacerbations of COPD. N. Engl. J. Med. 2011, 365, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Allinson, J.P.; Vlies, B.H.; Brill, S.E.; Law, M.; Burnside, G.; Finney, L.J.; Alves-Moreira, L.; Donaldson, G.C.; Calverley, P.M.A.; Walker, P.P.; et al. A Double-Blind, Randomized, Placebo-Controlled Trial of Long-Term Doxycycline Therapy on Exacerbation Rate in Patients with Stable Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2023, 208, 549–558. [Google Scholar] [CrossRef]
- Banerjee, D.; Khair, O.A.; Honeybourne, D. The Effect of Oral Clarithromycin on Health Status and Sputum Bacteriology in Stable COPD. Respir. Med. 2005, 99, 208–215. [Google Scholar] [CrossRef]
- Berkhof, F.F.; Doornewaard-ten Hertog, N.E.; Uil, S.M.; Kerstjens, H.A.M.; van den Berg, J.W.K. Azithromycin and Cough-Specific Health Status in Patients with Chronic Obstructive Pulmonary Disease and Chronic Cough: A Randomised Controlled Trial. Respir. Res. 2013, 14, 125. [Google Scholar] [CrossRef]
- Brill, S.E.; Law, M.; El-Emir, E.; Allinson, J.P.; James, P.; Maddox, V.; Donaldson, G.C.; McHugh, T.D.; Cookson, W.O.; Moffatt, M.F.; et al. Effects of Different Antibiotic Classes on Airway Bacteria in Stable COPD Using Culture and Molecular Techniques: A Randomised Controlled Trial. Thorax 2015, 70, 930–938. [Google Scholar] [CrossRef]
- Han, M.K.; Tayob, N.; Murray, S.; Dransfield, M.T.; Washko, G.; Scanlon, P.D.; Criner, G.J.; Casaburi, R.; Connett, J.; Lazarus, S.C.; et al. Predictors of Chronic Obstructive Pulmonary Disease Exacerbation Reduction in Response to Daily Azithromycin Therapy. Am. J. Respir. Crit. Care Med. 2014, 189, 1503–1508. [Google Scholar] [CrossRef]
- He, Z.-Y.; Ou, L.-M.; Zhang, J.-Q.; Bai, J.; Liu, G.-N.; Li, M.-H.; Deng, J.-M.; MacNee, W.; Zhong, X.-N. Effect of 6 Months of Erythromycin Treatment on Inflammatory Cells in Induced Sputum and Exacerbations in Chronic Obstructive Pulmonary Disease. Respiration 2010, 80, 445–452. [Google Scholar] [CrossRef]
- Seemungal, T.A.R.; Wilkinson, T.M.A.; Hurst, J.R.; Perera, W.R.; Sapsford, R.J.; Wedzicha, J.A. Long-Term Erythromycin Therapy Is Associated with Decreased Chronic Obstructive Pulmonary Disease Exacerbations. Am. J. Respir. Crit. Care Med. 2008, 178, 1139–1147. [Google Scholar] [CrossRef]
- Sethi, S.; Jones, P.W.; Theron, M.S.; Miravitlles, M.; Rubinstein, E.; Wedzicha, J.A.; Wilson, R. PULSE Study Group Pulsed Moxifloxacin for the Prevention of Exacerbations of Chronic Obstructive Pulmonary Disease: A Randomized Controlled Trial. Respir. Res. 2010, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Shafuddin, E.; Mills, G.D.; Holmes, M.D.; Poole, P.J.; Mullins, P.R.; Black, P.N. A Double-Blind, Randomised, Placebo-Controlled Study of Roxithromycin and Doxycycline Combination, Roxithromycin Alone, or Matching Placebo for 12 Weeks in Adults with Frequent Exacerbations of Chronic Obstructive Pulmonary Disease. J. Negat. Results Biomed. 2015, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.L.; Powell, H.; Baines, K.J.; Milne, D.; Coxson, H.O.; Hansbro, P.M.; Gibson, P.G. The Effect of Azithromycin in Adults with Stable Neutrophilic COPD: A Double Blind Randomised, Placebo Controlled Trial. PLoS ONE 2014, 9, e105609. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Huang, H.; Zhang, J.; He, Z.; Zhong, X.; Bai, J. Effects of Low-Dose and Long-Term Treatment with Erythromycin on Interleukin-17 and Interleukin-23 in Peripheral Blood and Induced Sputum in Patients with Stable Chronic Obstructive Pulmonary Disease. Mediat. Inflamm. 2016, 2016, 4173962. [Google Scholar] [CrossRef]
- Uzun, S.; Djamin, R.S.; Kluytmans, J.A.J.W.; Mulder, P.G.H.; van’t Veer, N.E.; Ermens, A.A.M.; Pelle, A.J.; Hoogsteden, H.C.; Aerts, J.G.J.V.; van der Eerden, M.M. Azithromycin Maintenance Treatment in Patients with Frequent Exacerbations of Chronic Obstructive Pulmonary Disease (COLUMBUS): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Respir. Med. 2014, 2, 361–368. [Google Scholar] [CrossRef]
- Seemungal, T.A.; Donaldson, G.C.; Bhowmik, A.; Jeffries, D.J.; Wedzicha, J.A. Time Course and Recovery of Exacerbations in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2000, 161, 1608–1613. [Google Scholar] [CrossRef]
- Pye, A.; Stockley, R.A.; Hill, S.L. Simple Method for Quantifying Viable Bacterial Numbers in Sputum. J. Clin. Pathol. 1995, 48, 719–724. [Google Scholar] [CrossRef]
- Poehlsgaard, J.; Douthwaite, S. The Bacterial Ribosome as a Target for Antibiotics. Nat. Rev. Microbiol. 2005, 3, 870–881. [Google Scholar] [CrossRef]
- Roberts, M.C. Update on Macrolide-Lincosamide-Streptogramin, Ketolide, and Oxazolidinone Resistance Genes. FEMS Microbiol. Lett. 2008, 282, 147–159. [Google Scholar] [CrossRef]
- Sharkey, L.K.R.; Edwards, T.A.; O’Neill, A.J. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection. mBio 2016, 7, e01975. [Google Scholar] [CrossRef]
- Golkar, T.; Zieliński, M.; Berghuis, A.M. Look and Outlook on Enzyme-Mediated Macrolide Resistance. Front. Microbiol. 2018, 9, 1942. [Google Scholar] [CrossRef] [PubMed]
- Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of Quinolone Action and Resistance: Where Do We Stand? J. Med. Microbiol. 2017, 66, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Markley, J.L.; Wencewicz, T.A. Tetracycline-Inactivating Enzymes. Front. Microbiol. 2018, 9, 1058. [Google Scholar] [CrossRef] [PubMed]
- Pollock, J.; Chalmers, J.D. The Immunomodulatory Effects of Macrolide Antibiotics in Respiratory Disease. Pulm. Pharmacol. Ther. 2021, 71, 102095. [Google Scholar] [CrossRef] [PubMed]
- von Rosensteil, N.A.; Adam, D. Macrolide Antibacterials. Drug Interactions of Clinical Significance. Drug Saf. 1995, 13, 105–122. [Google Scholar] [CrossRef]
- Khezri, M.R.; Zolbanin, N.M.; Ghasemnejad-Berenji, M.; Jafari, R. Azithromycin: Immunomodulatory and Antiviral Properties for SARS-CoV-2 Infection. Eur. J. Pharmacol. 2021, 905, 174191. [Google Scholar] [CrossRef]
Author/Year | Study Design | Intervention | Participants (Treatment/Control) | Result |
---|---|---|---|---|
Albert et al. [26] | Prospective, parallel-group, placebo-controlled trial | Azithromycin vs. placebo | 558:559 | Decreased significantly in exacerbation frequency and improved in quality of life. |
Allinson et al. [27] | Double-blind, randomized, placebo-controlled trial | Doxycycline vs. placebo | 110:112 | No significant decrease in exacerbation rate. |
Banerjee et al. [28] | Prospective, double-blind, randomized controlled trial | Clarithromycin vs. placebo | 31:36 | No improvement in health status, bacterial load, or exacerbation rate. |
Berkhof et al. [29] | Single-center, parallel-group, randomized, double-blind, placebo-controlled trial | Azithromycin vs. placebo | 42:42 | Improvement in cough-specific health status. |
Brill et al. [30] | Single-blind, randomized, placebo-controlled trial | Moxifloxacin vs. Doxycycline vs. Azithromycin vs. placebo | 25:25:25:24 | No change in airway bacterial load. Large increase in antibiotic resistance. |
Han et al. [31] | RCT | Azithromycin vs. placebo | 557:556 | Effective in preventing AECOPD requiring both antibiotic and steroid treatment. |
He et al. [32] | Double-blind, randomized, placebo-controlled study | Erythromycin vs. placebo | 18:18 | Significant reduction in airway inflammation and exacerbation rate. |
Seemungal et al. [33] | Double-blind, randomized, placebo-controlled study | Erythromycin vs. placebo | 53:56 | Significant reduction in exacerbation rate. |
Sethi et al. [34] | Multicenter, parallel-group, double-blind, randomized, placebo-controlled trial | Moxifloxacin vs. placebo | 569:580 | Reduction in odds of exacerbation. |
Shafuddin et al. [35] | RCT | Roxithromycin/Doxycycline vs. Roxithromycin vs. placebo | 101:97:94 | No reduction in COPD exacerbation. |
Simpson et al. [36] | RCT | Azithromycin vs. placebo | 15:15 | Reduction in severe exacerbation, sputum neutrophils, CXCL8 levels, and bacterial load. |
Tan et al. [37] | RCT | Erythromycin (12 months) vs. Erythromycin (6 months) vs. placebo | 18:18:18 | Reduction in airway inflammation, improvement in exercise capacity. |
Uzun et al. [38] | Single-center, double-blind, randomized, placebo-controlled trial | Azithromycin vs. placebo | 47:45 | Significant reduction in exacerbation rate compared to placebo. |
Author/Year | Intervention | Duration | Outcome Measure |
---|---|---|---|
Albert et al. [26] | Azithromycin 250 mg once daily vs. placebo | 12 months | Time to first acute exacerbation; exacerbation rate; health status; nasopharyngeal colonization |
Allinson et al. [27] | Doxycycline 100 mg once daily vs. placebo | 12 months | Exacerbation rate; lung function; health status |
Banerjee et al. [28] | Clarithromycin 500 mg once daily vs. placebo | 3 months | Exacerbation rate; lung function; sputum bacterial load; health status; exercise capacity; CRP |
Berkhof et al. [29] | Azithromycin 250 mg 3 times/week vs. placebo | 3 months | Cough-specific health status; exacerbation rate; lung function |
Brill et al. [30] | Pulsed moxifloxacin 400 mg daily for 5 days every 4 weeks vs. doxycycline 100 mg daily vs. azithromycin 250 mg 3 times/week vs. placebo | 13 weeks | Sputum bacterial load; antibiotic resistance; health status; lung function and inflammatory markers |
Han et al. [31] | Azithromycin 250 mg daily vs. placebo | 12 months | AECOPD rate; health status |
He et al. [32] | Erythromycin 125 mg 3 times/day vs. placebo | 6 months | Lung function; health status; exacerbation; sputum assessment for cell counts and inflammatory markers |
Seemungal et al. [33] | Erythromycin 250 mg twice/day vs. placebo | 12 months | Exacerbation rate; exacerbation duration; inflammation at exacerbation; lung function |
Sethi et al. [34] | Moxifloxacin 400 mg daily vs. placebo for 5 days. | Repeat every 8 weeks for a total of 6 courses | Exacerbation rate; health status; lung function; sputum bacterial load |
Shafuddin et al. [35] | Roxithromycin 300 mg and Doxycycline 100 mg daily vs. roxithromycin 300 mg daily vs. placebo | 3 months | Exacerbation rate during and post-treatment; lung function; health status |
Simpson et al. [36] | Azithromycin 250 mg daily vs. placebo | 3 months | Exacerbation rate; sputum assessment for cell counts; bacterial load and inflammatory markers |
Tan et al. [37] | Erythromycin 125 mg 3 times/day vs. placebo | 12-month group and 6-month group | Lung function; sputum inflammatory cells; exercise capacity |
Uzun et al. [38] | Azithromycin 500 mg 3 times/week | 12 months | Exacerbation; lung function; exercise capacity; health status; CRP; white blood cell count |
Study | Intervention | Type of Association Measurement | Measure of Association (95% CI; p Value) Compared to Placebo |
---|---|---|---|
Albert et al. [26] | Azithromycin vs. placebo | Rate ratio | 0.83 (0.72 to 0.95; p = 0.01) |
Allinson et al. [27] | Doxycycline vs. placebo | Rate ratio | 0.85 (0.67 to 1.07; p = 0.16) |
Brill et al. [30] | Moxifloxacin vs. Doxycycline vs. Azithromycin vs. placebo | Relative risk | Moxifloxacin 1.38 (0.62 to 3.10; p = 0.43) Doxycycline 2.07 (0.99 to 4.35; p = 0.05) Azithromycin 0.72 (0.30 to 1.71; p = 0.45) |
He et al. [32] | Erythromycin vs. placebo | Relative risk | 0.55 (0.31 to 0.97; p = 0.042) |
Seemungal et al. [33] | Erythromycin vs. placebo | Rate ratio | 0.64 (0.48 to 0.85; p = 0.003) |
Simpson et al. [36] | Azithromycin vs. placebo | Rate ratio | 0.38 (0.14 to 1.05; p = 0.062) |
Uzun et al. [38] | Azithromycin vs. placebo | Rate ratio | 0.58 (0.42 to 0.79; p = 0.001) |
Study | Intervention | Mean Difference in SGRQ Total Score (95% CI; p-Value) Compared to Placebo |
---|---|---|
Allinson et al. [27] | Doxycycline vs. placebo | 5.2 units (1.44 to 9.00; p = 0.007) |
Berkhof et al. [29] | Azithromycin vs. placebo | −7.4 units (−12.5 to −2.5; p = 0.004) |
Brill et al. [30] | Moxifloxacin vs. Doxycycline vs. Azithromycin vs. placebo | Moxifloxacin: −1.88 units (−8.59 to 4.84; p = 0.59) Doxycycline: 1.02 units (−5.28 to 7.31; p = 0.75) Azithromycin: −2.29 units (−8.43 to 3.86; p = 0.47) |
Uzun et al. [38] | Azithromycin vs. placebo | −4.2 units (−8.3 to −0.1; p = 0.043) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, A.T.; Ghanem, A.S.; Móré, M.; Nagy, A.C.; Tóth, Á. Efficacy of Prophylactic Antibiotics in COPD: A Systematic Review. Antibiotics 2024, 13, 1110. https://doi.org/10.3390/antibiotics13121110
Tran AT, Ghanem AS, Móré M, Nagy AC, Tóth Á. Efficacy of Prophylactic Antibiotics in COPD: A Systematic Review. Antibiotics. 2024; 13(12):1110. https://doi.org/10.3390/antibiotics13121110
Chicago/Turabian StyleTran, Anh Tuan, Amr Sayed Ghanem, Marianna Móré, Attila Csaba Nagy, and Ágnes Tóth. 2024. "Efficacy of Prophylactic Antibiotics in COPD: A Systematic Review" Antibiotics 13, no. 12: 1110. https://doi.org/10.3390/antibiotics13121110
APA StyleTran, A. T., Ghanem, A. S., Móré, M., Nagy, A. C., & Tóth, Á. (2024). Efficacy of Prophylactic Antibiotics in COPD: A Systematic Review. Antibiotics, 13(12), 1110. https://doi.org/10.3390/antibiotics13121110