Antimicrobial Resistance in African Great Apes
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Impact of Human Presence on AMR in AGAs
2.2. AMR Target and Testing Strategies
Author and Year | Country | Species | AGA Tested | Location | Life Context | Sample Type | AMR Detection Method | Resistance Gene | Resistant Antibiotics | Associated Mechanism | Genetic Support |
---|---|---|---|---|---|---|---|---|---|---|---|
Janatova et al., 2014 [20] | Central African Republic | gorillas, Chimpanzee | 63 | Dzanga-Sangha, National Park | wild | faecal | Culture, disc diffusion, multiplex PCR | qnrB33, qepA, strA, strB, sul1, sul2, blaCTX-M-15, blaCTX-M variant2, blaSHV-62, blaTEM-1, intI1(aadA1), intI1(dfrA12-orf-aadA2, intI1(dfrA7), tet(A), tet(B) | vancomycin, teicoplanin, ampicillin, strep- tomycin, gentamicin, kanamycin, chlorampheni, tetracycline, erythromycin, ciprofloxacin,trimethoprim–sulfamethoxazole, linezolid, pristi-namycin and rifampicin, amoxycilin-clavulanicacid,ceftazidime, gentamicin. | Plasmid-transferase, Integron | plasmids |
Parsons et al., 2021 [11] | Tanzania | Chimpanzee, baboons, humans and domestic animals | 75 | Gombe National Park | wild | faecal | multiplex PCR | sul1; sul2; tetB | tetracycline, streptomycin, trimethoprim-sulphonamide, sulphonamides compounds, | N | N |
Baron et al., 2021 [26] | Senegal | Chimpanzee | 48 | Protected reserve | wild | faecal | Culture, disc diffusion, whole-genome sequencing of bacterial colonies | blaOXA-1, blaSHV-28, blaTEM-1B, blaSHV-11, blaSHV-1-2a, blaTEM-1, blaCTX-M-15 (ESBL gene), blaOXA-48, blaKPC-2, aph(6)-Id, aph(3′)-Ib, aac(3)-IIa (GN), aac(6′)Ib-cr (AK), qnrS1, qnrB1, sul2, dfrA14, tet(A) | Penicillinase, ESBL gene, Carbapenemase, Aminoglycoside(s), Fqa, Phenicol Sulphonamide(s), Tetracycline | N | N |
Mbehang Nguema et al., 2015 [19] | Gabon | gorillas and humans | 120 | Moukalaba-Doudou National Park | wild | faecal | Culture, disc diffusion, biochemical identification, PCR/sequencing | aadA, aadB, aph(3′), ampC, blaACT, blaSHV; cmrA, strA, strU; tetA; tetD; tetG; tetS; tetW | betalactam; aminoglycoside; tetracycline; chloramphenicol | N | N |
Mbehang Nguema et al., 2021 [7] | Gabon | Gorillas, other NHPs, other wildlife | 125 for all species | National parks Moukalaba-Doudou, Loango and Lopé | wild | fecal | Culture, disk diffusion, double disk synergy test, VITEK, MALDI-TOFF | N | amoxicillin; amoxicillin + clavulanic, aztreonam; ceftazidime; cephalexin; chloramphenicol; cefotaxime; cefoxitin; levofloxacin; nalidixic acid; piperacillin; trimethoprim/sulfamethoxazole; temocillin; ticarcillin; ticarcillin + clavulanic acid; piperacillin + tazobactam; | N | N |
Debora Weiss et al., 2018 [21] | Uganda | gorillas and other animals | N | Bwindi and Kibale Nationalpark | Wild | faecal | Culture, biochemical identification, disc diffusion, PCR/sequencing. | dfrA1, aadA1 | ampicillin; chloramphenicol; doxycycline; tetracycline; streptomycin; sulfamethoxazole-trimethoprim; cephalothin; | dihydrofolate reductase, adenyltransferase | Cassette gene |
Albrechtova et al., 2014 [17] | Ivory Coast | chimpanzee | 43 | Taı National Park | Wild | faecal | Culture, disc diffusion, double disk synergy test, multiplex PCR, MALDI-TOFF | qnrB13, oqxA, blaCMY, blaACT, blaDHA, qnrB28 | amoxycilin-clavulanicacid, ciprofloxacin, ampicillin, Ceftazidime. | Plasmid-transferase (Conjugation) | plasmids |
Schaumburg et al., 2012 [18] | Ivory Coast, Gabon | chimpanzee, gorillas, red end black colobus | 31 and monkeys | Taï National Parc, | Wild | nasal swabs | Culture, biochemical identification, VITEK, PCR/sequencing. | blaZ | betalactamase | N | N |
Frieder Schaumburg et al., 2012 [27] | Zambia, Uganda | chimpanzee | 62 | sanctuary | captive | nasal swabs | Culture, biochemical identification, VITEK, PCR/sequencing. | BlaZ, mecA | Penicillin methicillin | N | N |
Mbehang Nguema, Okubo, et al., 2015 [28] | Gabon | gorillas | 27 | Moukalaba-Doudou National Park | Wild | faecal | Culture, disc diffusion, PCR/sequencing. | tetB | ampicillin, cefazolin, cefotaxime, streptomycin, tetracycline, ciprofloxacin, colistin, chloramphenicol and trimethoprim | N | N |
Campbell et al., 2020 [24] | Republic of the Congo. | chimpanzee, gorillas and humans. | 160 for all species | Nouabalé-Ndoki National Park | Wild and captive | fecal | functional metagenomics, shotgun metagenomic sequencing | AAC(3)-VIIa, FmrO | N | acetyltransferas, methylation of the ribosome | N |
George et al., 2021 [43] | Nigeria, | chimpanzee | 15 | Boki Afi Wildlife Sanctuary | Wildlife Sanctuary | fecal | shotgun metagenomic sequencing | CfxA3, cfxA6, ANT(6)-Ia, aph(3’)-III, tet(32), tet(40),tet(O), tet(Q), tet(O/32/O), tetW, erm(B), erm(F) | Aminoglycoside, macrolide, Tetracycline, beta-Lactamase | adenyltransferases, phosphotransferases, ribosomal protection | plasmids |
Rwego I.B. et al., 2008. [22] | Uganda | Humans, Mountain Gorillas, Livestock | 66 | Bwindi National Park | ecotourism, research, and wild | Rectal Swabs fecal | Culture, biochemical identification, disc-diffusion, PCR | N | Ampicillin, Cephalothin, Chloramphenicol, Doxycycline, Nalidixic acid, Streptomycin, Trimethoprim-sulfaxazole, and Tetracycline | N | N |
Goldberg T.L. et al., 2006 [23] | Uganda | Humans chimpanzee | 23 | Kibale National Park | research tourism | Rectal Swabs fecal | Culture, biochemical identification, disc diffusion, PCR | N | ampicilline, cloramphenicol, ciprofloxacin, gentamicin, neomycin, sulfisoxazole; streptomycin, tetracycline, trimethoprim, | N | N |
Benavides et al., 2012 [5] | Gabon | Humans, chimpanzee, other wildlife, lifestock | 119 | Lope National Park | Wild | Feces | Culture, disc diffusion | N | Ampicillin; Tetracycline; chloramphenicol; doxycycline; rifampin; streptomycin; and sulfamethoxazole. | N | N |
Bager S.L., et al., 2022 [25] | Uganda | chimpanzee | 86 | Budongo Forest andNgamba Island | Wild and and captive | fecal | Culture, biochemical identification, disc diffusion, whole-genome sequencing of bacterial colonies | blaCTX-M-15, blaTEM-1B, blaTEM-1C, blaSHV-11, blaSHV-12, blaOXA-1, blaLEN24, strA, strB, aadA1, aadA2, aadA5, aac(3)iia, aac(6’)ib-cr, oxqA, oxqB, qnrS1, fosA, dfrA12, dfrA17 mph(A), catA2, sul1, sul2 | Beta-blactams, aminoglycosides, fluoroquinolones, fosfomycins, macrolide-lincosamide-streptogramin, B, phenicols, sulfonamides cefpodoxime, ceftazidime, aztreonam, cefotaxime, ceftriaxone | N | N |
Antibiotic Familiy | AMR Gene | Gene Detected by Antibiotic Family (%) | Host (African NHPs) | Ref. |
---|---|---|---|---|
Betalactams | blaCTXM-15, | 36.2 | Gorillas and Chimpanzee | [20,25,26] |
blaCTX-Mvariant2 | Gorillas, Chimpanzee | [20] | ||
blaTEM-1, | Gorillas and Chimpanzee | [20,25,26] | ||
blaTEM-1B | Chimpanzee | [25,26] | ||
blaTEM-1C | Chimpanzee | [25] | ||
blaACT | Gorillas, Chimpanzee | [17,19] | ||
blaSHV | Gorillas | [19] | ||
blaSHV-11 | Chimpanzee | [25,26] | ||
blaSHV-12 | Chimpanzee | [25] | ||
blaSHV-28 | Gorillas, Chimpanzee | [26] | ||
blaSHV-62, | Chimpanzee | [20] | ||
blaLEN24 | Chimpanzee | [25] | ||
blaSHV-1-2a | Chimpanzee | [26] | ||
blaOXA-1 | Chimpanzee | [25,26] | ||
blaOXA-48 | Chimpanzee | [26] | ||
blaKPC-2 | Chimpanzee | [26] | ||
blaCMY | Chimpanzee | [17] | ||
blaDHA | Chimpanzee | [17] | ||
blaZ | Chimpanzee and Gorillas | [18,27] | ||
CfxA3 | Chimpanzee | [43] | ||
cfxA6 | Chimpanzee | [43] | ||
AmpC | Gorillas | [19] | ||
mecA | Chimpanzee, | [27] | ||
Aminoside | strA | 21.90 | Gorillas, Chimpanzee | [20,25] |
strB | Gorillas, Chimpanzee | [20,25] | ||
strU | Gorillas | [20] | ||
aadA | Gorillas | [20] | ||
aadA1 | Gorillas, Chimpanzee, | [20,25] | ||
aadA2 | Gorillas, Chimpanzee | [20,25] | ||
aadA5 | Chimpanzee | [25] | ||
aadB | Gorillas | [20] | ||
ANT(6)-Ia | Chimpanzee | [20] | ||
aac(3)-IIa | Chimpanzee | [25,26] | ||
sulfamide | AAC(3)-vIIa | 4.8 | Chimpanzee | [26] |
aac(6′)Ib-cr | Chimpanzee | [25,26] | ||
aph(3′) | Gorillas | [19] | ||
aph(3′)-III | Chimpanzee | [26] | ||
aph(6)-Id | Chimpanzee | [20] | ||
aph(3″)-Ib | Chimpanzee | [20] | ||
FmrO | Gorillas, Chimpanzee | [20] | ||
sul1 | Gorillas, Chimpanzee | [11,20] | ||
sul2 | Gorillas, Chimpanzee | [11,20,26] | ||
Trimethoprim | dfrA7 | 5.7 | Gorillas, Chimpanzee | [20] |
dfrA12 | Gorillas, Chimpanzee | [20,25] | ||
dfrA14 | Gorillas, Chimpanzee | [21,26] | ||
dfrA17 | Chimpanzee | [25] | ||
fluoroquinolones | qnrB1 | 9.5 | Gorillas, Chimpanzee | [20] |
qnrB13 | Gorillas, Chimpanzee | [17] | ||
qnrB28 | Gorillas, Chimpanzee | [17] | ||
qnrB33 | Chimpanzee | [26] | ||
qnrS1 | Chimpanzee | [25,26] | ||
qepA | Chimpanzee | [20] | ||
oqxA | Gorilllas, Chimpanzee | [17,25] | ||
oxqB | Chimpanzee | [25] | ||
fosfomycin | fosA | 1.0 | Chimpanzee | [25] |
Tetracycline | tet(A) | 15.2 | Gorillas, Chimpanzee | [19,20,26] |
tet(B) | Gorillas, Chimpanzee | [11,20,28] | ||
tetD | Gorillas | [19] | ||
tetG | Gorillas | [19] | ||
tetS | Gorillas | [19] | ||
tet(32) | Chimpanzee | [43] | ||
tet(40) | Chimpanzee | [43] | ||
tet(O) | Chimpanzee | [43] | ||
tet(Q) | Chimpanzee | [43] | ||
tet(O/32/O) | Chimpanzee | [43] | ||
tetW | Gorillas, Chimpanzee | [19,43] | ||
phenicols | cmrA | 2.0 | Gorillas | [19] |
catA2 | Chimpanzee | [25] | ||
macrolide | erm(B) | 2.9 | Chimpanzee | [43] |
erm(F) | Chimpanzee | [43] | ||
mph(A) | Chimpanzee | [25] |
2.3. Frequency and Distribution of AMR in African Great Apes
2.4. Spread and Evolution of AMR
3. Materials and Methods
3.1. Literature Search Strategy
3.2. Inclusion and Exclusion Criteria
3.3. Data Extraction
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willmann, M.; Peter, S. Translational metagenomics and the human resistome: Confronting the menace of the new millennium. J. Mol. Med. 2017, 95, 41–51. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Varma, J.K.; Oppong-Otoo, J.; Ondoa, P.; Perovic, O.; Park, B.J.; Laxminarayan, R.; Peeling, R.W.; Schultsz, C.; Li, H.; Ihekweazu, C.; et al. Africa Centres for Disease Control and Prevention’s framework for antimicrobial resistance control in Africa. Afr. J. Lab. Med. 2018, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Shankar, P. Book review: Tackling drug-resistant infections globally. Arch. Pharm. Pract. 2016, 7, 110. [Google Scholar] [CrossRef]
- Benavides, J.A.; Godreuil, S.; Bodenham, R.; Ratiarison, S.; Devos, C.; Petretto, M.-O.; Raymond, M.; Escobar-Páramo, P. No Evidence for Transmission of Antibiotic-Resistant Escherichia coli Strains from Humans to Wild Western Lowland Gorillas in Lopé National Park, Gabon. Appl. Environ. Microbiol. 2012, 78, 4281–4287. [Google Scholar] [CrossRef]
- Larsen, J.; Raisen, C.L.; Ba, X.; Sadgrove, N.J.; Padilla-González, G.F.; Simmonds, M.S.J.; Loncaric, I.; Kerschner, H.; Apfalter, P.; Hartl, R.; et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022, 602, 135–141. [Google Scholar] [CrossRef]
- Nguema, P.P.M.; Onanga, R.; Atome, G.R.N.; Tewa, J.J.; Mabika, A.M.; Nzambe, J.U.M.; Mbeang, J.C.O.; Essono, P.Y.B.; Bretagnolle, F.; Godreuil, S. High level of intrinsic phenotypic antimicrobial resistance in enterobacteria from terrestrial wildlife in Gabonese national parks. PLoS ONE 2021, 16, e0257994. [Google Scholar] [CrossRef]
- Bachiri, T.; Lalaoui, R.; Bakour, S.; Allouache, M.; Belkebla, N.; Rolain, J.M.; Touati, A. First Report of the Plasmid-Mediated Colistin Resistance Genemcr-1 in Escherichia coli ST405 Isolated from Wildlife in Bejaia, Algeria. Microb. Drug Resist. 2018, 24, 890–895. [Google Scholar] [CrossRef]
- Dolejska, M.; Papagiannitsis, C.C. Plasmid-mediated resistance is going wild. Plasmid 2018, 99, 99–111. [Google Scholar] [CrossRef]
- Allen, H.K.; Stanton, T.B. Altered Egos: Antibiotic Effects on Food Animal Microbiomes. Annu. Rev. Microbiol. 2014, 68, 297–315. [Google Scholar] [CrossRef]
- Parsons, M.B.; Travis, D.A.; Lonsdorf, E.V.; Lipende, I.; Elchoufi, D.; Gilagiza, B.; Collins, A.; Kamenya, S.; Tauxe, R.V.; Gillespie, T.R. Antimicrobial Resistance Creates Threat to Chimpanzee Health and Conservation in the Wild. Pathogens 2021, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Calvignac-Spencer, S.; Leendertz, S.; Gillespie, T.; Leendertz, F. Wild great apes as sentinels and sources of infectious disease. Clin. Microbiol. Infect. 2012, 18, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.B.; Vangay, P.; Huang, H.; Ward, T.; Hillmann, B.M.; Al-Ghalith, G.A.; Travis, D.A.; Long, H.T.; Van Tuan, B.; Van Minh, V.; et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. USA 2016, 113, 10376–10381. [Google Scholar] [CrossRef] [PubMed]
- Kühl, H.S.; Sop, T.; Williamson, E.A.; Mundry, R.; Brugière, D.; Campbell, G.; Cohen, H.; Danquah, E.; Ginn, L.; Herbinger, I.; et al. The Critically Endangered western chimpanzee declines by 80%. Am. J. Primatol. 2017, 79, 22681. [Google Scholar] [CrossRef] [PubMed]
- Pusey, A.E.; Pintea, L.; Wilson, M.L.; Kamenya, S.; Goodall, J. The Contribution of Long-Term Research at Gombe National Park to Chimpanzee Conservation. Conserv. Biol. 2007, 21, 623–634. [Google Scholar] [CrossRef] [PubMed]
- McLennan, M.R.; Hockings, K.J. Wild chimpanzees show group differences in selection of agricultural crops. Sci. Rep. 2014, 4, srep05956. [Google Scholar] [CrossRef]
- Albrechtova, K.; Papousek, I.; De Nys, H.; Pauly, M.; Anoh, E.; Mossoun, A.; Dolejska, M.; Masarikova, M.; Metzger, S.; Couacy-Hymann, E.; et al. Low Rates of Antimicrobial-Resistant Enterobacteriaceae in Wildlife in Taï National Park, Côte d’Ivoire, Surrounded by Villages with High Prevalence of Multiresistant ESBL-Producing Escherichia coli in People and Domestic Animals. PLoS ONE 2014, 9, e113548. [Google Scholar] [CrossRef]
- Schaumburg, F.; Alabi, A.S.; Köck, R.; Mellmann, A.; Kremsner, P.G.; Boesch, C.; Becker, K.; Leendertz, F.H.; Peters, G. Highly divergent Staphylococcus aureus isolates from African non-human primates. Environ. Microbiol. Rep. 2011, 4, 141–146. [Google Scholar] [CrossRef]
- Nguema, P.P.M.; Tsuchida, S.; Ushida, K. Bacteria culturing and isolation under field conditions of Moukalaba-Doudou National Park, Gabon, and preliminary survey on bacteria carrying antibiotic resistance genes. Tropics 2015, 23, 165–174. [Google Scholar] [CrossRef]
- Janatova, M.; Albrechtova, K.; Petrzelkova, K.J.; Dolejska, M.; Papousek, I.; Masarikova, M.; Cizek, A.; Todd, A.; Shutt, K.; Kalousova, B.; et al. Antimicrobial-resistant Enterobacteriaceae from humans and wildlife in Dzanga-Sangha Protected Area, Central African Republic. Veter- Microbiol. 2014, 171, 422–431. [Google Scholar] [CrossRef]
- Weiss, D.; Wallace, R.M.; Rwego, I.B.; Gillespie, T.R.; Chapman, C.A.; Singer, R.S.; Goldberg, T.L. Antibiotic-Resistant Escherichia coli and Class 1 Integrons in Humans, Domestic Animals, and Wild Primates in Rural Uganda. Appl. Environ. Microbiol. 2018, 84, e01632-18. [Google Scholar] [CrossRef] [PubMed]
- Rwego, I.B.; Isabirye-Basuta, G.; Gillespie, T.R.; Goldberg, T.L. Gastrointestinal Bacterial Transmission among Humans, Mountain Gorillas, and Livestock in Bwindi Impenetrable National Park, Uganda. Conserv. Biol. 2008, 22, 1600–1607. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, T.L.; Gillespie, T.R.; Rwego, I.B.; Wheeler, E.; Estoff, E.L.; Chapman, C.A. Patterns of gastrointestinal bacterial exchange between chimpanzees and humans involved in research and tourism in western Uganda. Biol. Conserv. 2007, 135, 511–517. [Google Scholar] [CrossRef]
- Campbell, T.P.; Sun, X.; Patel, V.H.; Sanz, C.; Morgan, D.; Dantas, G. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 2020, 14, 1584–1599. [Google Scholar] [CrossRef] [PubMed]
- Bager, S.L.; Kakaala, I.; Kudirkiene, E.; Byarugaba, D.K.; Olsen, J.E. Genomic characterization of multidrug-resistant extended-spectrum β-lactamase–producing escherichia coli and klebsiella pneumoniae from chimpanzees (pan troglodytes) from wild and sanctuary locations in uganda. J. Wildl. Dis. 2022, 58, 269–278. [Google Scholar] [CrossRef]
- Baron, S.A.; Mediannikov, O.; Abdallah, R.; Kuete Yimagou, E.; Medkour, H.; Dubourg, G.; Elamire, Y.; Afouda, P.; Ngom, I.I.; Angelakis, E.; et al. Multidrug-Resistant Klebsiella pneumoniae Clones from Wild chimpanzees and termites in Senegal. Antimicrob. Agents Chemother. 2021, 65, 10–128. [Google Scholar] [CrossRef]
- Schaumburg, F.; Mugisha, L.; Peck, B.; Becker, K.; Gillespie, T.R.; Peters, G.; Leendertz, F.H. Drug-Resistant Human Staphylococcus Aureus in Sanctuary Apes Pose a Threat to Endangered Wild Ape Populations. Am. J. Primatol. 2012, 74, 1071–1075. [Google Scholar] [CrossRef]
- Nguema, P.P.M.; Okubo, T.; Tsuchida, S.; Fujita, S.; Yamagiwa, J.; Tamura, Y.; Ushida, K. Isolation of multiple drug-resistant enteric bacteria from feces of wild Western Lowland Gorilla (Gorilla gorilla gorilla) in Gabon. J. Veter-Med. Sci. 2015, 77, 619–623. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215 (Suppl. 1), S28–S36. [Google Scholar] [CrossRef]
- Pitout, J.D.D. Infections with Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Changing epidemiology and drug treatment choices. Drugs 2010, 70, 313–333. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.; Laupland, K.B. Extended-spectrum β-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Izv. Vyss. Uchebnykh Zaved. Seriya Teknol. Tekst. Promyshlennosti 2008, 8, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Livermore, D.M. Infections caused by Gram-positive bacteria: A review of the global challenge. J. Infect. 2009, 59 (Suppl. 1), S4–S16. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. R. Soc. B Biol. Sci. 2009, 276, 2521–2530. [Google Scholar] [CrossRef] [PubMed]
- Gogarten, J.F.; Düx, A.; Gräßle, T.; Lumbu, C.P.; Markert, S.; Patrono, L.V.; Pléh, K.A.; Singa, F.N.; Tanga, C.T.F.; Tombolomako, T.B.; et al. An ounce of prevention is better: Monitoring wildlife health as a tool for pandemic prevention. Embo Rep. 2024, 25, 2819–2831. [Google Scholar] [CrossRef]
- Gruen, L.; Fultz, A.; Pruetz, J. Ethical Issues in African Great Ape Field Studies. ILAR J. 2013, 54, 24–32. [Google Scholar] [CrossRef]
- David, M.Z.; Daum, R.S. Community-Associated Methicillin-Resistant Staphylococcus aureus: Epidemiology and Clinical Consequences of an Emerging Epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef]
- Chambers, H.F.; DeLeo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef]
- Karesh, W.B.; Noble, E. The Bushmeat Trade: Increased Opportunities for Transmission of Zoonotic Disease. Medicine 2007, 76, 15–21. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Daszak, P.; Kilpatrick, A.M.; Burke, D.S. Bushmeat Hunting, Deforestation, and Prediction of Zoonotic Disease. Emerg. Infect. Dis. 2005, 11, 1822–1827. [Google Scholar] [CrossRef]
- Fa, J.E.; Seymour, S.; Dupain, J.; Amin, R.; Albrechtsen, L.; Macdonald, D. Getting to grips with the magnitude of exploitation: Bushmeat in the Cross–Sanaga rivers region, Nigeria and Cameroon. Biol. Conserv. 2006, 129, 497–510. [Google Scholar] [CrossRef]
- Aguirre, A.A.; Catherina, R.; Frye, H.; Shelley, L. Illicit Wildlife Trade, Wet Markets, and COVID-19: Preventing Future Pandemics. World Med. Health Policy 2020, 12, 256–265. [Google Scholar] [CrossRef] [PubMed]
- George, U.; Arowolo, O.; Olayinka, O.A.; Ifeorah, I.M.; Faleye, T.O.; Oluremi, B.; Oragwa, A.O.; Omoruyi, E.C.; Udoh, E.E.; Osasona, O.G.; et al. Faecal Antibiotic Resistome of Nigerian Chimpanzees from a Wildlife Sanctuary in Cross-River State, Nigeria. Vet. Sci. Res. Rev. 2021, 7, 35–41. [Google Scholar]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [PubMed]
- Ellington, M.; Ekelund, O.; Aarestrup, F.; Canton, R.; Doumith, M.; Giske, C.; Grundman, H.; Hasman, H.; Holden, M.; Hopkins, K.; et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST Subcommittee. Clin. Microbiol. Infect. 2017, 23, 2–22. [Google Scholar] [CrossRef]
- Schwarz, S.; Shen, J.; Kadlec, K.; Wang, Y.; Michael, G.B.; Feßler, A.T.; Vester, B. Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a027037. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Zapun, A.; Contreras-Martel, C.; Vernet, T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol. Rev. 2008, 32, 361–385. [Google Scholar] [CrossRef]
- Tekele, S.G.; Teklu, D.S.; Tullu, K.D.; Birru, S.K.; Legese, M.H. Extended-spectrum Beta-lactamase and AmpC beta-lactamases producing gram negative bacilli isolated from clinical specimens at International Clinical Laboratories, Addis Ababa, Ethiopia. PLoS ONE 2020, 15, e0241984. [Google Scholar] [CrossRef]
- Faure, S. Transfert d’un Gène de Résistance aux beta-Lactamines blaCTX-M-9 entre Salmonella et les Entérobactéries de la Flore Intestinale Humaine: Influence d’un Traitement Antibiotique, Université Rennes 1, May 2009. Available online: https://tel.archives-ouvertes.fr/tel-00449376 (accessed on 6 April 2022).
- Salehi, M.; Angaji, S.A.; Mosavari, N.; Ahrabi, M. SNP Scanning in MecA Gene for Methicillin-Resistant Staphylococcus aureus. Iran. J. Biotechnol. 2020, 18, 22–29. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat. 2010, 13, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Wachino, J.-I.; Doi, Y.; Arakawa, Y. Aminoglycoside Resistance: Updates with a Focus on Acquired 16S Ribosomal RNA Methyltransferases. Infect. Dis. Clin. N. Am. 2020, 34, 887–902. [Google Scholar] [CrossRef] [PubMed]
- Markley, J.L.; Wencewicz, T.A. Tetracycline-Inactivating Enzymes. Front. Microbiol. 2018, 9, 1058. [Google Scholar] [CrossRef] [PubMed]
- Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of quinolone action and resistance: Where do we stand? J. Med. Microbiol. 2017, 66, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Brolund, A.; Sundqvist, M.; Kahlmeter, G.; Grape, M. Molecular Characterisation of Trimethoprim Resistance in Escherichia coli and Klebsiella pneumoniae during a Two Year Intervention on Trimethoprim Use. PLoS ONE 2010, 5, e9233. [Google Scholar] [CrossRef]
- Mureithi, D.K.; Mitema, E.S.; Mapenay, I.M.; Ozwara, H.S.; Jung’a, J.O. Antibiotic Resistant Escherichia Coli in Feacal of Captive. Pharmacologyonline 2015, 3, 44–52. [Google Scholar]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Tetzlaff, J.M.; Brennan, S.E.; Chou, R.; McKenzie, J.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanga, C.T.F.; Makouloutou-Nzassi, P.; Mbehang Nguema, P.P.; Düx, A.; Lendzele Sevidzem, S.; Mavoungou, J.F.; Leendertz, F.H.; Mintsa-Nguema, R. Antimicrobial Resistance in African Great Apes. Antibiotics 2024, 13, 1140. https://doi.org/10.3390/antibiotics13121140
Tanga CTF, Makouloutou-Nzassi P, Mbehang Nguema PP, Düx A, Lendzele Sevidzem S, Mavoungou JF, Leendertz FH, Mintsa-Nguema R. Antimicrobial Resistance in African Great Apes. Antibiotics. 2024; 13(12):1140. https://doi.org/10.3390/antibiotics13121140
Chicago/Turabian StyleTanga, Coch Tanguy Floyde, Patrice Makouloutou-Nzassi, Pierre Philippe Mbehang Nguema, Ariane Düx, Silas Lendzele Sevidzem, Jacques François Mavoungou, Fabian H. Leendertz, and Rodrigue Mintsa-Nguema. 2024. "Antimicrobial Resistance in African Great Apes" Antibiotics 13, no. 12: 1140. https://doi.org/10.3390/antibiotics13121140
APA StyleTanga, C. T. F., Makouloutou-Nzassi, P., Mbehang Nguema, P. P., Düx, A., Lendzele Sevidzem, S., Mavoungou, J. F., Leendertz, F. H., & Mintsa-Nguema, R. (2024). Antimicrobial Resistance in African Great Apes. Antibiotics, 13(12), 1140. https://doi.org/10.3390/antibiotics13121140