An In Vitro Evaluation of Robin’s Pincushion Extract as a Novel Bioactive-Based Antistaphylococcal Agent—Comparison to Rosehip and Black Rosehip
Abstract
:1. Introduction
2. Results
2.1. The Phytochemical Composition and In Vitro Antioxidant Activity
2.2. The HPLC Analyses of Polyphenolics
2.3. Anti-Inflammatory and Antihyperglycemic Activities
2.4. Antimicrobial Assessment—Determination of Inhibition Zones and Minimal Inhibitory Concentrations
2.5. Pharmacodinamic Potential—Time-Kill Kinetics Study of Antimicrobial Effect
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Sample Preparation and Extraction
4.3. HPLC Analysis
4.4. Determination of Phytochemical Composition
4.5. Determination of Antioxidant Activity
4.6. Determination of Anti-Inflammatory and Antihyperglycemic Activity
4.7. Antimicrobial Potential
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pirintsos, S.; Panagiotopoulos, A.; Bariotakis, M.; Daskalakis, V.; Lionis, C.; Sourvinos, G.; Karakasiliotis, I.; Kampa, M.; Castanas, E. From traditional ethnopharmacology to modern natural drug discovery: A methodology discussion and specific examples. Molecules 2022, 27, 4060. [Google Scholar] [CrossRef] [PubMed]
- Janaćković, P.; Gavrilović, M.; Miletić, M.; Radulović, M.; Kolašinac, S.; Stevanović, Z.D. Small regions as key sources of traditional knowledge: A quantitative ethnobotanical survey in the central Balkans. J. Ethnobiol. Ethnomed. 2022, 18, 70. [Google Scholar] [CrossRef] [PubMed]
- Jarić, S.; Mačkukanović-Jocić, M.; Đurđević, L.; Mitrović, M.; Kostić, O.; Karadžić, B.; Pavlović, P. An ethnobotanical survey of traditionally used plants on Suva planina mountain (south-eastern Serbia). J. Ethnopharmacol. 2015, 175, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Jarić, S.; Popović, Z.; Mačukanović-Jocić, M.; Đurđević, L.; Mijatović, M.; Karadžić, B.; Mitrović, M.; Pavlović, P. An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). J. Ethnopharmacol. 2007, 111, 160–175. [Google Scholar] [CrossRef]
- Matejić, J.; Stefanović, N.; Ivković, M.; Živanović, N.; Marin, P.; Džamić, A. Traditional uses of autochtonus medicinal and ritual plants and other remedies for health in Eastern and South-Eastern Serbia. J. Ethnopharmacol. 2020, 261, 113186. [Google Scholar] [CrossRef]
- Šavikin, K.; Zdunić, G.; Menković, N.; Živković, J.; Ćujić, N.; Tereščenko, M.; Bigović, D. Ethnobotanical study on traditional use of medicinal plants in South-Western Serbia, Zlatibor district. J. Ethnopharmacol. 2013, 146, 803–810. [Google Scholar] [CrossRef]
- Živković, J.; Ilić, M.; Šavikin, K.; Zdunić, G.; Ilić, A.; Stojković, D. Traditional use of medicinal plants in south-eastern Serbia (Pčinja district): Ethnopharmacological investigation on the current status and comparison with half a century old data. Front. Pharmacol. 2020, 11, 1020. [Google Scholar] [CrossRef]
- Živković, J.; Ilić, M.; Zdunić, G.; Jovanović-Lješković, N.; Menković, N.; Šavikin, K. Traditional use of medicinal plants in Jablanica district (South-Eastern Serbia): Ethnobotanical survey and comparison with scientific data. Genet. Resour. Crop Evol. 2021, 68, 1655–1674. [Google Scholar] [CrossRef]
- Zlatković, B.; Bogosavljević, S.; Radivojević, A.; Pavlović, M. Traditional use of the native medicinal plant resource of Mt. Rtanj (Eastern Serbia): Ethnobotanical evaluation and comarison. J. Ethnopharmacol. 2014, 151, 704–713. [Google Scholar] [CrossRef]
- Roman, I.; Stănilă, A.; Stănilă, S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania. Chem. Cent. J. 2013, 7, 73. [Google Scholar] [CrossRef]
- Marković, M.; Pljevljakušić, D.; Nikolić, B.; Rakonjac, L. Application of dog rose (Rosa canina L.) in ethnomedicine of the Pirot County. Pirot. Zb. 2020, 45, 1–16. [Google Scholar] [CrossRef]
- Saaby, L.; Jäger, A.K.; Moesby, L.; Hansen, E.W.; Christensen, S.B. Isolation of immunomodulatory triterpene acids from a standardized rose hip powder (Rosa canina L.). Phytother. Res. 2010, 25, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, S.; Gascón, S.; Luquin, A.; Laguna, M.; Ancin-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Rosa canina extracts have antiproliferative and antioxidant effects on Caco-2 human colon cancer. PLoS ONE 2016, 11, e0159136. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, M.; Rashidi, A.A.; Taherian, A.A.; Vakili, Z.; Sajadian, M.S.; Ghardashi, M. Antidiabetic and antihyperlipidemic effects of ethanol extract of Rosa canina L. fruit on diabetic rats: An experimental study with histopathological evaluations. J. Evid. Based Complement. Altern. Med. 2016, 21, 25–30. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Panaite, T.D.; Saracila, M. Rosehip (Rosa canina L.) meal as a natural antioxidant on lipid and protein quality and shelf-life of polyunsaturated fatty acids enriched eggs. Antioxidants 2022, 11, 1948. [Google Scholar] [CrossRef]
- Paunović, D.; Kalušević, A.; Petrović, T.; Urošević, T.; Djinović, D.; Nedović, V.; Popović-Djordjević, J. Assessment of chemical and antioxidant properties of fresh and dried rosehip (Rosa canina L.). Not. Bot. Horti Agrobot. 2019, 47, 108–113. [Google Scholar] [CrossRef]
- Kilinc, K.; Demir, S.; Turan, I.; Mentese, A.; Orem, A.; Sonmez, M.; Aliyazicioglu, Y. Rosa canina extract has antiproliferative and proapoptotic effects on human lung and prostate cancer cells. Nutr. Cancer 2019, 72, 273–282. [Google Scholar] [CrossRef]
- Rovná., K.; Ivanišová, E.; Žiarovská, J.; Ferus, P.; Terentjeva, M.; Kowalczewski, P.Ł.; Kačániová, M. Characterization of Rosa canina fruits collected in urban areas of Slovakia. Genome size, iPBS profiles and antioxidant and antimicrobial activities. Molecules 2020, 25, 1888. [Google Scholar] [CrossRef]
- Latinović, S.; Brkljača, M.; Vujasin, M.; Kukrić, Z.; Odžaković, B. The potential bioactivity of the wild grown rosehip (Rosa canina L.) and pomegranate (Punica granatum L.). Adv. Technol. 2020, 9, 14–18. [Google Scholar] [CrossRef]
- Andersson, S.C.; Rumpunen, K.; Johansson, E.; Olsson, M.E. Carotenoid content and composition in rose hips (Rosa spp.) during ripening, determination of suitable maturity marker and implications for health promoting food products. Food Chem. 2011, 128, 689–696. [Google Scholar] [CrossRef]
- Findik, B.T.; Yildiz, H.; Akdeniz, M.; Yener, I.; Yilmaz, M.A.; Cakir, O.; Ertas, A. Phytochemical profile, enzyme inhibition, antioxidant, and antibacterial activity of Rosa pimpinellifolia L.: A comprehensive study to investigate the bioactivity of different parts (whole fruit, pulp, and seed part) of the fruit. Food Chem. 2024, 455, 139921. [Google Scholar] [CrossRef] [PubMed]
- Mayland-Quellhorst, E.; Foller, J.; Wissemann, V. Biological Flora of the British Isles: Rosa spinosissima L. J. Ecol. 2012, 100, 561–576. [Google Scholar] [CrossRef]
- Žarković, L.D.; Stanković, S.S.; Veljić, M.M.; Marin, P.D.; Džamić, A. Flower micromorphology of eight wild-growing Rosa species (Rosaceae) from Serbia. Biologia 2022, 77, 351–359. [Google Scholar] [CrossRef]
- Odabas, H.I.; Koca, I. Simultaneous separation and preliminary purification of anthocyanins from Rosa pimpinellifolia L. fruits by microwave assisted aqueous two-phase extraction. Food Bioprod. Process. 2021, 125, 170–180. [Google Scholar] [CrossRef]
- Bozhuyuk, M.R.; Ercisli, S.; Karatas, N.; Ekiert, H.; Elansary, H.O.; Szopa, A. Morphological and biochemical diversity in fruits of unsprayed Rosa canina and Rosa dumalis ecotypes found in different agroecological conditions. Sustainability 2021, 13, 8060. [Google Scholar] [CrossRef]
- Patel, S.; Rauf, A.; Khan, H. The relevance of folkloric usage of plant galls as medicines: Finding the scientific rationale. Biomed. Pharmacother. 2018, 97, 240–247. [Google Scholar] [CrossRef]
- Coruh, S.; Ercisli, S. Interactions between galling insects and plant total phenolic contents in Rosa canina L. Sci. Res. Essays 2010, 5, 1935–1937. [Google Scholar]
- Laszlo, Z.; Tothmeresz, B. Parasitoids of the bedeguar gall (Diplolepis rosae): Effect of host scale on density and prevalence. Acta Zool. Acad. Sci. Hung. 2011, 57, 219–232. [Google Scholar]
- Mete, O.; Mergen, O. The community members associated with rose gall wasp Diplolepis fructuum (Rübsaamen, 1895) (Hymenoptera: Cynipidae) in Tokat Province of Turkey. Turk. J. Zool. 2016, 40, 411–416. [Google Scholar] [CrossRef]
- Todorov, I.; Boyadzhiev, P.; Antov, M.; Stojanova, A. Correction to: Interrupted hibernation of the gall-inducer affects its parasitoids—A case study on some gall communities of Diplolepis rosae (Hymenoptera: Cynipidae) in Bulgaria. Biologia 2022, 77, 3157. [Google Scholar] [CrossRef]
- Sardón-Gutiérrez, S.; Gil-Tapetado, D.; Gómez, J.; Nieves-Aldrey, J.L. Ecological niche modelling of species of the rose gall wasp Diplolepis (Hymenoptera: Cynipidae) on the Iberian Peninsula. Eur. J. Entomol. 2021, 118, 31–45. [Google Scholar] [CrossRef]
- Kozuharova, E.; Benbassat, N.; Napier, J. New records of the remedial properties of vascular plants, some traditionally accepted as medicinal plants and some less familiar to ethnobotanists. Phytol. Balc. 2012, 18, 323–332. [Google Scholar]
- Agelet, A.; Valles, J. Studies on pharmacological ethnobotany in the region of Pallars (Pyrinees, Catalonia, Iberian Peninsula). Part II. New or very rare uses of previously known medicinal plants. J. Ethnopharmacol. 2003, 84, 211–227. [Google Scholar] [CrossRef] [PubMed]
- Koczka, N.; Stefanovits-Bányai, É.; Ombódi, A. Total polyphenol content and antioxidant capacity of rosehips of some Rosa species. Medicines 2018, 5, 84. [Google Scholar] [CrossRef]
- Ercisli, S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem. 2007, 104, 1379–1384. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Ghiasian, M.; Faradmal, J.; Dastan, D. Quantitative and qualitative analyses of the constituents of the hydroalcoholic extract of Quercus infectoria gall from Kermanshah and evaluation of its antioxidant and antibacterial activities. J. Rep. Pharm. Sci. 2021, 10, 287–293. [Google Scholar] [CrossRef]
- Azmaz, M.; Kilncarslan Aksoy, O.; Katilmıs, Y.; Mammadov, R. Investigation of the antioxidant activity and phenolic compounds of Andricus quercustozae gall and host plant (Quercus infectoria). Int. J. Second. Metab. 2020, 7, 77–87. [Google Scholar] [CrossRef]
- Mihaylova, D.; Georgieva, L.; Pavlov, A. Antioxidant activity and bioactive compounds of Rosa canina L. herbal preparations. Sci. Bull. Ser. F Biotechnol. 2015, 19, 160–165. [Google Scholar]
- Basyigit, B.; Sağlam, H.; Köroğlu, K.; Karaaslan, M. Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall. J. Food Process. Preserv. 2020, 00, e14692. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, G.; Zhang, C.; Wang, N.; Feng, Y. Gallic acid and diabetes mellitus: Its association with oxidative stress. Molecules 2021, 26, 7115. [Google Scholar] [CrossRef]
- Kang, I.; Buckner, T.; Shay, N.F.; Gu, L.; Chung, S. Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: Evidence and mechanisms. Adv Nutr. 2016, 7, 961–972. [Google Scholar] [CrossRef]
- Thiers B (2022 and Continuously Updated). Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium. Available online: http://sweetgum.nybg.org/ih (accessed on 15 April 2022).
- Šovljanski, O.; Saveljić, A.; Aćimović, M.; Šeregelj, V.; Pezo, L.; Tomić, A.; Cetković, G.; Tešević, V. Biological profiling of essential oils and hydrolates of Ocimum basilicum var. genovese and var. minimum originated from Serbia. Processes 2022, 10, 1893. [Google Scholar] [CrossRef]
- Šovljanski, O.; Šeregelj, V.; Pezo, L.; Tumbas Šaponjac, V.; Vulić, J.; Cvanić, T.; Markov, S.; Ćetković, G.; Čanadanović-Brunet, J. Horned melon pulp, peel, and seed: New insight into phytochemical and biological properties. Antioxidants 2022, 11, 825. [Google Scholar] [CrossRef] [PubMed]
- Tumbas-Šaponjac, V.; Šeregelj, V.; Ćetković, G.; Čanadanovic-Brunet, J.; Đilas, S. Optimization of the composition of the powdered cereal sprouts mixtures. Acta Period. Technol. 2016, 47, 95–103. [Google Scholar] [CrossRef]
- Šovljanski, O.; Saveljić, A.; Tomić, A.; Travičić, V.; Lončar, B.; Cvetković, D.; Velićanski, A.; Pezo, L.; Ćetković, G.; Markov, S.; et al. Carotenoid-producing yeasts: Selection of the best-performing strain and the total carotenoid extraction procedure. Processes 2022, 10, 1699. [Google Scholar] [CrossRef]
- Ranitović, A.; Šovljanski, O.; Aćimović, M.; Pezo, L.; Tomić, A.; Travičić, V.; Saveljić, A.; Cvetković, D.; Ćetković, G.; Vulić, J.; et al. Biological potential of alternative kombucha beverages fermented on essential oil distillation by-products. Fermentation 2022, 8, 625. [Google Scholar] [CrossRef]
- Tomić, A.; Šovljanski, O.; Nikolić, V.; Pezo, L.; Aćimović, M.; Cvetković, M.; Stanojev, J.; Kuzmanović, N.; Markov, S. Screening of Antifungal Activity of Essential Oils in Controlling Biocontamination of Historical Papers in Archives. Antibiotics 2023, 12, 103. [Google Scholar] [CrossRef]
- Aćimović, M.; Šovljanski, O.; Šeregelj, V.; Pezo, L.; Zheljazkov, V.D.; Ljujić, J.; Tomić, A.; Cetković, G.; Čanadanović-Brunet, J.; Miljković, A.; et al. Chemical composition, antioxidant, and antimicrobial activity of Dracocephalum moldavica L. essential oil and hydrolate. Plants 2022, 11, 941. [Google Scholar] [CrossRef]
Units | Robin’s Pincushion | Rosehip | Black Rosehip | Standard | ||
---|---|---|---|---|---|---|
Phytochemical composition | TPh | mg GAE/g | 186.37 ± 12.21 a | 9.65 ± 0.28 b | 7.24 ± 0.18 b | / |
TCar | μg β-car/g | 44.10 ± 0.99 b | 62.24 ± 0.40 a | 8.10 ± 0.74 c | / | |
Antioxidant activity | DPPH | mM TEAC/100 g | 152.07 ± 5.19 a | 21.89 ± 0.87 b | 3.22 ± 0.13 c | 0.14 ± 0.01 d |
ABTS | 636.67 ± 19.32 a | 70.17 ± 2.05 b | 13.55 ± 0.45 c | 1.06 ± 0.04 d | ||
RP | 107.84 ± 3.56 a | 25.24 ± 1.59 b | 3.4 ± 0.04 c | 0.12 ± 0.02 d |
Phenols (mg/100 g dw) | Robin’s Pincushion | Rosehip | Black Rosehip |
---|---|---|---|
p-Hydroxybenzoic acid | 250.98 ± 0.00 a | 62.56 ± 0.01 b | 57.67 ± 0.00 b |
Gallic acid | 297.95 ± 0.01 a | nd | 16.89 ± 0.00 b |
Protocatechin acid | 677.37 ± 0.00 a | 15.96 ± 0.00 b | 32.49 ± 0.00 b |
Ellagic acid | 1066.02 ± 0.02 a | nd | 223.47 ± 0.01 b |
Syringic acid | 272.00 ± 0.00 a | nd | 19.53 ± 0.00 b |
Vanillic acid | 392.03 ± 0.00 a | 21.12 ± 0.00 b | 404.19 ± 0.01 a |
Ferulic acid | nd | 3.04 ± 0.00 a | nd |
Total phenols | 2956.35 ± 0.03 a | 102.67 ± 0.01 b | 754.23 ± 0.02 c |
Analyses | Robin’s Pincushion | Rosehip | Black Rosehip | Standard (IC50) |
---|---|---|---|---|
AIA | 29.03 ± 1.28 b | 28.54 ± 0.01 b | 46.31 ± 0.12 a | 1.14 ± 0.03 c |
AHgA | 96.30 ± 0.62 a | 31.67 ± 0.44 b | 27.84 ± 0.37 b | 0.001 ± 0.00 c |
Test Bacteria | Robin’s Pincushion | Rosehip | Black Rosehip | Antibiotic Control |
---|---|---|---|---|
Staphylococcus aureus | 29.33 ± 0.56 a | 7.00 ± 0.00 d | 10.5 ± 0.56 c | 25 ± 0.00 b |
S. saprophyticus | 24.00 ± 0.00 a | 7.00 ± 0.00 c | 14.00 ± 0.00 b | 24 ± 1.00 a |
S. sciuri | 31.00 ± 1.00 a | 7.00 ± 0.00 d | 18.00 ± 1.00 c | 28 ± 0.00 b |
S. epidermidis | 26.33 ± 0.56 a | 7.00 ± 0.00 c | 16.5 ± 0.33 b | 26 ± 0.00 a |
S. warneri | 29.00 ± 0.00 a | 7.00 ± 0.00 c | 12.00 ± 1.00 b | 28 ± 0.00 a |
Test Bacteria | Robin’s Pincushion | Rosehip | Black Rosehip |
---|---|---|---|
Staphylococcus aureus | 1.56 ± 0.00 | >50* | >50 |
S. saprophyticus | 1.56 ± 0.00 | >50 | >50 |
S. sciuri | 3.125 ± 0.00 | >50 | 25 ± 0.00 |
S. epidermidis | 12.5 ± 0.00 | >50 | 25 ± 0.00 |
S. warneri | 1.56 ± 0.00 | >50 | >50 |
Test Bacteria | 0 | 2 | 4 | 6 | 12 | 18 | 24 | 36 | 48 |
---|---|---|---|---|---|---|---|---|---|
S. aureus | 6.1 ± 0.1 | 4.9 ± 0.1 | 3.1 ± 0.2 | 2.2 ± 0.2 | 0.5 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
S. saprophyticus | 6 ± 0.0 | 4.4 ± 0.0 | 4 ± 0.3 | 3.8 ± 0.0 | 3.6 ± 0.3 | 1.3 ± 0.2 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
S. sciuri | 6 ± 0.3 | 5.7 ± 0.0 | 3.3 ± 0.2 | 1.7 ± 0.0 | 1.0 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
S. epidermidis | 6.1 ± 0.1 | 5.8 ± 0.1 | 4.6 ± 0.0 | 3.8 ± 0.0 | 2.7 ± 0.2 | 1.4 ± 0.1 | 1.0 ± 0.2 | 0.0 ± 0.0 | 0.0 ± 0.0 |
S. warneri | 5.9 ± 0.0 | 4.1 ± 0.2 | 3.5 ± 0.1 | 1.7 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Kinetic Models Parameters | Verification Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Test Bacteria | A (log CFU/mL) | k | χ2 | RMSE | MBE | MPE | r2 | Skew. | Kurt. | Mean | SD | Var. |
S. aureus | 6.36 | 0.18 | 0.119 | 0.102 | 0.003 | −2.756 | 0.998 | 0.778 | −0.914 | 1.867 | 2.225 | 4.951 |
S. saprophyticus | 5.76 | 0.08 | 1.181 | 0.530 | 0.046 | 0.731 | 0.939 | −0.002 | −1.456 | 2.567 | 2.139 | 4.573 |
S. sciuri | 6.52 | 0.17 | 16.306 | 0.358 | −0.101 | −18.410 | 0.976 | 0.789 | −0.996 | 1.967 | 2.320 | 5.384 |
S. epidermidis | 6.36 | 0.08 | 0.438 | 0.204 | 0.021 | −1.968 | 0.992 | 0.142 | −1.459 | 2.822 | 2.236 | 5.002 |
S. warneri | 6.07 | 0.19 | 0.351 | 0.221 | 0.023 | 0.629 | 0.989 | 0.804 | −0.869 | 1.689 | 2.137 | 4.565 |
Parameter | Condition |
---|---|
Instrument | Shimadzu Prominence chromatographic system |
Column | Luna C-18 RP column, 5 μm, 250 mm × 4.6 mm with C18 guard column (4 mm × 30 mm) |
Detector | Diode Array Detector SPD-M20A |
Flow rate | 1 mL/min |
Mobile phase A | Acetonitrile |
Mobile phase B | 1% Formic acid |
Gradient profile | 0–10 min: 10–25% B; 10–20 min: 25–60% B; 20–30 min: 60–70% B; 30–40 min: return to 10% B and 5 min equilibration |
Detection wavelength | 240 nm or/and 260 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šovljanski, O.; Aćimović, M.; Cvanić, T.; Travičić, V.; Popović, A.; Vulić, J.; Ćetković, G.; Ranitović, A.; Tomić, A. An In Vitro Evaluation of Robin’s Pincushion Extract as a Novel Bioactive-Based Antistaphylococcal Agent—Comparison to Rosehip and Black Rosehip. Antibiotics 2024, 13, 1178. https://doi.org/10.3390/antibiotics13121178
Šovljanski O, Aćimović M, Cvanić T, Travičić V, Popović A, Vulić J, Ćetković G, Ranitović A, Tomić A. An In Vitro Evaluation of Robin’s Pincushion Extract as a Novel Bioactive-Based Antistaphylococcal Agent—Comparison to Rosehip and Black Rosehip. Antibiotics. 2024; 13(12):1178. https://doi.org/10.3390/antibiotics13121178
Chicago/Turabian StyleŠovljanski, Olja, Milica Aćimović, Teodora Cvanić, Vanja Travičić, Aleksandra Popović, Jelena Vulić, Gordana Ćetković, Aleksandra Ranitović, and Ana Tomić. 2024. "An In Vitro Evaluation of Robin’s Pincushion Extract as a Novel Bioactive-Based Antistaphylococcal Agent—Comparison to Rosehip and Black Rosehip" Antibiotics 13, no. 12: 1178. https://doi.org/10.3390/antibiotics13121178
APA StyleŠovljanski, O., Aćimović, M., Cvanić, T., Travičić, V., Popović, A., Vulić, J., Ćetković, G., Ranitović, A., & Tomić, A. (2024). An In Vitro Evaluation of Robin’s Pincushion Extract as a Novel Bioactive-Based Antistaphylococcal Agent—Comparison to Rosehip and Black Rosehip. Antibiotics, 13(12), 1178. https://doi.org/10.3390/antibiotics13121178