Prevalence of Antimicrobial Resistance Among the WHO’s AWaRe Classified Antibiotics Used to Treat Urinary Tract Infections in Diabetic Women
Abstract
:1. Introduction
2. Results
2.1. Cohort Baseline Characteristics
2.2. AMR Prevalence in the Reported Antibiograms (Antimicrobial Susceptibility Profiles)
2.3. AMR Rate Across Top 5 Most Prescribed Antibiotics
2.4. The Effect of Diabetes on AMR
3. Discussion
4. Materials and Methods
4.1. Study Design and Data Collection
4.2. Exposure and Outcomes
4.3. Statistical Analysis
4.4. Ethics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czajkowski, K.; Broś-Konopielko, M.; Teliga-Czajkowska, J. Urinary tract infection in women. Prz Menopauzalny 2021, 20, 40–47. [Google Scholar] [CrossRef]
- Yang, X.; Chen, H.; Zheng, Y.; Qu, S.; Wang, H.; Yi, F. Disease burden and long-term trends of urinary tract infections: A worldwide report. Front. Public Health 2022, 10, 888205. [Google Scholar] [CrossRef] [PubMed]
- Nikibakhsh, A. Clinical Management of Complicated Urinary Tract Infections; IntechOpen: London, UK, 2011; p. 306. [Google Scholar]
- Ackerson, B.K.; Tartof, S.Y.; Chen, L.H.; Contreras, R.; Reyes, I.A.C.; Ku, J.H.; Pellegrini, M.; Schmidt, J.E.; Bruxvoort, K.J. Risk Factors for Recurrent Urinary Tract Infections Among Women in a Large Integrated Health Care Organization in the United States. J. Infect. Dis. 2024, 230, e1101–e1111. [Google Scholar] [CrossRef]
- Raya, S.; Belbase, A.; Dhakal, L.; Govinda Prajapati, K.; Baidya, R.; Kishor Bimali, N. In-Vitro Biofilm Formation and Antimicrobial Resistance of Escherichia coli in Diabetic and Nondiabetic Patients. BioMed Res. Int. 2019, 2019, 1474578. [Google Scholar] [CrossRef] [PubMed]
- Akash, M.S.H.; Rehman, K.; Fiayyaz, F.; Sabir, S.; Khurshid, M. Diabetes-associated infections: Development of antimicrobial resistance and possible treatment strategies. Arch. Microbiol. 2020, 202, 953–965. [Google Scholar] [CrossRef]
- Nitzan, O.; Elias, M.; Chazan, B.; Saliba, W. Urinary tract infections in patients with type 2 diabetes mellitus: Review of prevalence, diagnosis, and management. Diabetes Metab. Syndr. Obes. 2015, 8, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Aswani, S.M.; Chandrashekar, U.; Shivashankara, K.; Pruthvi, B. Clinical profile of urinary tract infections in diabetics and non-diabetics. Australas. Med. J. 2014, 7, 29–34. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimocrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 24 May 2024).
- Bertagnolio, S.; Dobreva, Z.; Centner, C.M.; Olaru, I.D.; Donà, D.; Burzo, S.; Huttner, B.D.; Chaillon, A.; Gebreselassie, N.; Wi, T.; et al. WHO global research priorities for antimicrobial resistance in human health. Lancet Microbe 2024, 5, 100902. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance, C. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Carrillo-Larco, R.M.; Anza-Ramirez, C.; Saal-Zapata, G.; Villarreal-Zegarra, D.; Zafra-Tanaka, J.H.; Ugarte-Gil, C.; Bernabe-Ortiz, A. Type 2 diabetes mellitus and antibiotic-resistant infections: A systematic review and meta-analysis. J. Epidemiol. Community Health 2022, 76, 75–84. [Google Scholar] [CrossRef]
- Costelloe, C.; Metcalfe, C.; Lovering, A.; Mant, D.; Hay, A.D. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: Systematic review and meta-analysis. BMJ 2010, 340, c2096. [Google Scholar] [CrossRef]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef]
- Lishman, H.; Costelloe, C.; Hopkins, S.; Johnson, A.P.; Hope, R.; Guy, R.; Muller-Pebody, B.; Holmes, A.; Aylin, P. Exploring the relationship between primary care antibiotic prescribing for urinary tract infections, Escherichia coli bacteraemia incidence and antimicrobial resistance: An ecological study. Int. J. Antimicrob. Agents 2018, 52, 790–798. [Google Scholar] [CrossRef]
- WHO. 2021 AWaRe Classification. Available online: https://www.who.int/publications/i/item/2021-aware-classification (accessed on 13 April 2024).
- WHO. AWaRe Classification of Antibiotics for Evaluation and Monitoring of Use. Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2023.04 (accessed on 14 October 2024).
- Abdelsalam Elshenawy, R.; Umaru, N.; Aslanpour, Z. WHO AWaRe classification for antibiotic stewardship: Tackling antimicrobial resistance—A descriptive study from an English NHS Foundation Trust prior to and during the COVID-19 pandemic. Front. Microbiol. 2023, 14, 1298858. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef] [PubMed]
- Kanjilal, S.; Oberst, M.; Boominathan, S.; Zhou, H.; Hooper, D.C.; Sontag, D. A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated urinary tract infection. Sci. Transl. Med. 2020, 12, eaay5067. [Google Scholar] [CrossRef]
- Oberst, M.; Boominathan, S.; Zhou, H.; Kanjilal, S.; Sontag, D. AMR-UTI: Antimicrobial Resistance in Urinary Tract Infections. Physionet 2020. [Google Scholar] [CrossRef]
- Park, S.H.; Choi, S.M.; Lee, D.G.; Cho, S.Y.; Lee, H.J.; Choi, J.K.; Choi, J.H.; Yoo, J.H. Impact of extended-spectrum β-lactamase production on treatment outcomes of acute pyelonephritis caused by escherichia coli in patients without health care-associated risk factors. Antimicrob. Agents Chemother. 2015, 59, 1962–1968. [Google Scholar] [CrossRef]
- Wu, Y.H.; Chen, P.L.; Hung, Y.P.; Ko, W.C. Risk factors and clinical impact of levofloxacin or cefazolin nonsusceptibility or ESBL production among uropathogens in adults with community-onset urinary tract infections. J. Microbiol. Immunol. Infect. 2014, 47, 197–203. [Google Scholar] [CrossRef]
- Vinken, J.E.M.; Mol, H.E.; Verheij, T.J.M.; van Delft, S.; Kolader, M.; Ekkelenkamp, M.B.; Rutten, G.; Broekhuizen, B.D.L. Antimicrobial resistance in women with urinary tract infection in primary care: No relation with type 2 diabetes mellitus. Prim. Care Diabetes 2018, 12, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Jee, Y.; Carlson, J.; Rafai, E.; Musonda, K.; Huong, T.T.G.; Daza, P.; Sattayawuthipong, W.; Yoon, T. Antimicrobial resistance: A threat to global health. Lancet Infect. Dis. 2018, 18, 939–940. [Google Scholar] [CrossRef] [PubMed]
- Christensen, I.; Haug, J.B.; Berild, D.; Bjørnholt, J.V.; Skodvin, B.; Jelsness-Jørgensen, L.P. Factors Affecting Antibiotic Prescription among Hospital Physicians in a Low-Antimicrobial-Resistance Country: A Qualitative Study. Antibiotics 2022, 11, 98. [Google Scholar] [CrossRef]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, A.W. Control of hospital acquired infections and antimicrobial resistance in Europe: The way to go. Wien. Med. Wochenschr. 2019, 169, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Knox, K.L.; Holmes, A.H. Regulation of antimicrobial prescribing practices—A strategy for controlling nosocomial antimicrobial resistance. Int. J. Infect. Dis. 2002, 6, S8–S13. [Google Scholar] [CrossRef] [PubMed]
- Khadse, S.N.; Ugemuge, S.; Singh, C. Impact of Antimicrobial Stewardship on Reducing Antimicrobial Resistance. Cureus 2023, 15, e49935. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Sewify, M.; Nair, S.; Warsame, S.; Murad, M.; Alhubail, A.; Behbehani, K.; Al-Refaei, F.; Tiss, A. Prevalence of Urinary Tract Infection and Antimicrobial Susceptibility among Diabetic Patients with Controlled and Uncontrolled Glycemia in Kuwait. J. Diabetes Res. 2015, 2016, 6573215. [Google Scholar] [CrossRef] [PubMed]
- Sherchan, J.B.; Dongol, A.; Humagain, S.; Joshi, A.; Rana Magar, S.; Bhandari, S. Antibiotic Susceptibility Pattern of Bacteria Causing Urinary Tract Infection. J. Nepal. Health Res. Counc. 2022, 20, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Goodman, K.E.; Cosgrove, S.E.; Pineles, L.; Magder, L.S.; Anderson, D.J.; Dodds Ashley, E.; Polk, R.E.; Quan, H.; Trick, W.E.; Woeltje, K.F.; et al. Significant Regional Differences in Antibiotic Use Across 576 US Hospitals and 11 701 326 Adult Admissions, 2016-2017. Clin. Infect. Dis. 2021, 73, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Legenza, L.; McNair, K.; Gao, S.; Lacy, J.P.; Olson, B.J.; Fritsche, T.R.; Schulz, L.T.; LaMuro, S.; Spray-Larson, F.; Siddiqui, T.; et al. A geospatial approach to identify patterns of antibiotic susceptibility at a neighborhood level in Wisconsin, United States. Sci. Rep. 2023, 13, 7122. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Zhu, M.; Jia, Y.; Wang, J.; Cai, Y. Efficacy and safety of quinolones vs. other antimicrobials for the treatment of uncomplicated urinary tract infections in adults: A systematic review and meta-analysis. Int. Urogynecol. J. 2022, 33, 1103–1123. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner Florian, M.E.; Pilatz, A.; Weidner, W.; Naber Kurt, G. Urosepsis: Overview of the Diagnostic and Treatment Challenges. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef]
- Zamoner, W.; Prado, I.R.S.; Balbi, A.L.; Ponce, D. Vancomycin dosing, monitoring and toxicity: Critical review of the clinical practice. Clin. Exp. Pharmacol. Physiol. 2019, 46, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Confederat, L.-G.; Condurache, M.-I.; Alexa, R.-E.; Dragostin, O.-M. Particularities of Urinary Tract Infections in Diabetic Patients: A Concise Review. Medicina 2023, 59, 1747. [Google Scholar] [CrossRef]
- Islam, M.J.; Bagale, K.; John, P.P.; Kurtz, Z.; Kulkarni, R. Glycosuria Alters Uropathogenic Escherichia coli Global Gene Expression and Virulence. mSphere 2022, 7, e0000422. [Google Scholar] [CrossRef] [PubMed]
- Kranz, J.; Bartoletti, R.; Bruyère, F.; Cai, T.; Geerlings, S.; Köves, B.; Schubert, S.; Pilatz, A.; Veeratterapillay, R.; Wagenlehner, F.M.E.; et al. European Association of Urology Guidelines on Urological Infections: Summary of the 2024 Guidelines. Eur. Urol. 2024, 86, 27–41. [Google Scholar] [CrossRef]
- Morley, G.L.; Wacogne, I.D. UK recommendations for combating antimicrobial resistance: A review of ‘antimicrobial stewardship: Systems and processes for effective antimicrobial medicine use’ (NICE guideline NG15, 2015) and related guidance. Arch. Dis. Child. Educ. Pract. Ed. 2017, 103, 46–49. [Google Scholar] [CrossRef]
- WHO. WHO Global Research Agenda for Antimicrobial Resistance in Human Research. Available online: https://www.who.int/publications/m/item/global-research-agenda-for-antimicrobial-resistance-in-human-health (accessed on 24 May 2024).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; Clinical and Labratory Standards Institure: Wayne, PA, USA, 2023; Volume CLSI Supplement M100; p. 402. [Google Scholar]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- StataCorp, L. Stata Statistical Software: Release 17 (2021); StataCorp LLC: College Station, TX, USA, 2021. [Google Scholar]
Characteristics | Categories | No Diabetes (n = 94,994) | Uncomplicated DM (n = 13,304) | Complicated DM (n = 8604) | p-Value |
---|---|---|---|---|---|
Age, Mean (SD) | 52.4 (23.3) | 68.3 (14.3) | 68.8 (13.5) | <0.001 2 | |
Age category, N (%) | |||||
Less Than 18 | 4867 (5.1%) | 10 (0.1%) | 3 (<1%) | <0.001 3 | |
18–39 | 26,507 (27.9%) | 564 (4.2%) | 280 (3.3%) | ||
40–54 | 16,185 (17.0%) | 1545 (11.6%) | 954 (11.1%) | ||
55–70 | 21,804 (23.0%) | 4756 (35.7%) | 3071 (35.7%) | ||
Above 70 | 25,631 (27.0%) | 6429 (48.3%) | 4296 (49.9%) | ||
Race, N (%) | |||||
Other | 26,677 (28.1%) | 3823 (28.7%) | 2635 (30.6%) | <0.001 3 | |
White | 68,317 (71.9%) | 9481 (71.3%) | 5969 (69.4%) | ||
Comorbidity, N (%) | |||||
Metabolic syndrome | 6807 (7.2%) | 1244 (9.4%) | 586 (6.8%) | <0.001 3 | |
Anemia | 3628 (3.8%) | 853 (6.4%) | 1011 (11.8%) | ||
Renal Disease | 8771 (9.2%) | 3155 (23.7%) | 4158 (48.3%) | ||
Depression | 14,144 (14.9%) | 2668 (20.1%) | 2299 (26.7%) | ||
Obesity | 6545 (6.9%) | 2456 (18.5%) | 2265 (26.3%) | ||
Congestive heart failure | 9758 (10.3%) | 3746 (28.2%) | 3735 (43.4%) | ||
Hypertension | 32,033 (33.7%) | 10,300 (77.4%) | 7627 (88.6%) | ||
Other Comorbidities 1 | 42,324 (44.6%) | 9523 (71.6%) | 6664 (77.5%) | ||
Procedures, N (%) | |||||
Central venous catheter | 7372 (7.8%) | 1830 (13.8%) | 1662 (19.3%) | <0.001 3 | |
Surgery | 62,554 (65.9%) | 11,223 (84.4%) | 7586 (88.2%) | ||
Mechanical Ventilation | 6462 (6.8%) | 2055 (15.4%) | 1573 (18.3%) | ||
Hemodialysis | 732 (0.8%) | 225 (1.7%) | 559 (6.5%) | ||
Total peripheral nutrition | 1021 (1.1%) | 193 (1.5%) | 94 (1.1%) | ||
Hospital Ward, N (%) | |||||
Emergency room | 17,939 (18.9%) | 3608 (27.1%) | 2569 (29.9%) | <0.001 3 | |
Intensive care unit | 3659 (3.9%) | 891 (6.7%) | 583 (6.8%) | ||
In-Patient | 18,036 (19.0%) | 4272 (32.1%) | 2867 (33.3%) | ||
Out-Patient | 56,212 (59.2%) | 4761 (35.8%) | 2776 (32.3%) |
Top Prescribed Antibiotics 1 | 1st Group (Use%) (Resistance%) | 2nd Group (Use%) (Resistance%) | 3rd Group (Use%) (Resistance%) | 4th Group (Use%) (Resistance%) | 5th Group (Use%) (Resistance%) |
---|---|---|---|---|---|
1 (n = 24,234) | Ciprofloxacin (25.2%) (6.4%) | TMP-SMX (19.0%) (7.4%) | Nitrofurantoin (13.7%) (7.1%) | Cefazolin (10.1%) (23.4%) | Levofloxacin (7.0%) (7.0%) |
2 (n = 12,471) | Ciprofloxacin (42.9%) (17.3%) | TMP-SMX (29.2%) (16.6%) | Nitrofurantoin (24.8%) (15.3%) | Vancomycin (17.8%) (1.9%) | Levofloxacin (17.6%) (19.1%) |
3 (n = 6874) | Ciprofloxacin (50.9%) (29.8%) | Vancomycin (39.7%) (5.4%) | TMP-SMX (32.0%) (23.3%) | Levofloxacin (31.4%) (34.0%) | Nitrofurantoin (25.6%) (24.0%) |
4 (n = 4422) | Vancomycin (66.4%) (11.7%) | Ciprofloxacin (51.9%) (41.9%) | Levofloxacin (43.6%) (47.9%) | Cefepime (37.9%) (6.5%) | Ceftriaxone (34.5%) (13.3%) |
5 or more (n = 6285) | Vancomycin (87.4%) (26.2%) | Ciprofloxacin (67.4%) (60.9%) | Levofloxacin (60.5%) (69.3%) | Cefepime (60.0%) (14.9%) | Ceftriaxone (51.7%) (24.5%) |
Exposure | AMR Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Diabetes Status: | |||
No diabetes | 1 | ||
Uncomplicated diabetes | 1.14 | 1.08–1.21 | <0.001 |
Complicated diabetes | 1.54 | 1.45–1.64 | <0.001 |
Type of Care | |||
Outpatient | 1 | ||
Hospitalized | 0.48 | 0.47–0.50 | <0.001 |
Number of antibiotics prescribed | |||
No antibiotics used | 1 | ||
1 Antibiotic | 13.60 | 12.90–14.34 | <0.001 |
2 Antibiotics | 30.98 | 29.21–32.85 | <0.001 |
3 Antibiotics | 57.25 | 53.44–61.33 | <0.001 |
4 Antibiotics | 106.83 | 98.26–116.16 | <0.001 |
5 or more antibiotics | 277.39 | 253.79–303.17 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdan, A.; AbuHaweeleh, M.N.; Al-Qassem, L.; Kashkoul, A.; Alremawi, I.; Hussain, U.; Khan, S.; ElBadway, M.M.S.; Chivese, T.; Farooqui, H.H.; et al. Prevalence of Antimicrobial Resistance Among the WHO’s AWaRe Classified Antibiotics Used to Treat Urinary Tract Infections in Diabetic Women. Antibiotics 2024, 13, 1218. https://doi.org/10.3390/antibiotics13121218
Hamdan A, AbuHaweeleh MN, Al-Qassem L, Kashkoul A, Alremawi I, Hussain U, Khan S, ElBadway MMS, Chivese T, Farooqui HH, et al. Prevalence of Antimicrobial Resistance Among the WHO’s AWaRe Classified Antibiotics Used to Treat Urinary Tract Infections in Diabetic Women. Antibiotics. 2024; 13(12):1218. https://doi.org/10.3390/antibiotics13121218
Chicago/Turabian StyleHamdan, Ahmad, Mohannad N. AbuHaweeleh, Leena Al-Qassem, Amira Kashkoul, Izzaldin Alremawi, Umna Hussain, Sara Khan, Menatalla M. S. ElBadway, Tawanda Chivese, Habib H. Farooqui, and et al. 2024. "Prevalence of Antimicrobial Resistance Among the WHO’s AWaRe Classified Antibiotics Used to Treat Urinary Tract Infections in Diabetic Women" Antibiotics 13, no. 12: 1218. https://doi.org/10.3390/antibiotics13121218
APA StyleHamdan, A., AbuHaweeleh, M. N., Al-Qassem, L., Kashkoul, A., Alremawi, I., Hussain, U., Khan, S., ElBadway, M. M. S., Chivese, T., Farooqui, H. H., & Zughaier, S. M. (2024). Prevalence of Antimicrobial Resistance Among the WHO’s AWaRe Classified Antibiotics Used to Treat Urinary Tract Infections in Diabetic Women. Antibiotics, 13(12), 1218. https://doi.org/10.3390/antibiotics13121218