Bacterial Pathogen Profiles and Antibiotic Resistance in Pediatric Leukemia Patients: Insights for Optimizing Infection Management in Immunocompromised Children
Abstract
:1. Introduction
1.1. Acute Lymphoblastic Leukemia in Pediatrics: Epidemiology, Outcomes, and Challenges in Low-Resource Settings
1.2. The Critical Role of Combating Antimicrobial Resistance in Pediatric Leukemia: Challenges and Strategies
1.3. Bridging Pediatric Leukemia and Antimicrobial Resistance: Insights from Pathogen Profiles and Treatment Effectiveness
2. Results
3. Discussion
4. Materials and Methods
- Ampicillin
- Ampicillin with Sulbactam
- Piperacillin/Tazobactam
- Oxacillin
- Penicillin
- Augmentin (Amoxicillin with clavulanic acid)
- Cefazolin
- Cefepime
- Cefotaxime
- Ceftazidime
- Ceftaroline
- Ceftriaxone
- Cefoxitin
- Cefuroxime
- Meropenem
- Ertapenem
- Imipenem with Cilastatin
- Ciprofloxacin
- Levofloxacin
- Moxifloxacin
- Ofloxacin
- Amikacin
- Gentamicin
- Tobramycin
- Clarithromycin (Clacid)
- Erythromycin
- Doxycycline
- Minocycline
- Tetracycline
- Tigecycline
- Teicoplanin
- Vancomycin
- Streptogramins—Quinopristin/Dalfopristin
- Rifamycins—Rifampicin
- Lincosamides—Clindamycin
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saletta, F.; Seng, M.S.; Lau, L.M. Advances in paediatric cancer treatment. Transl. Pediatr. 2014, 3, 156–182. [Google Scholar] [PubMed]
- Thomas, A. How can we improve on the already impressive results in pediatric ALL? Hematology Am. Soc. Hematol. Educ. Program. 2015, 2015, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Pui, C.H. Precision medicine in acute lymphoblastic leukemia. Front. Med. 2020, 14, 689–700. [Google Scholar] [CrossRef]
- Jaime-Pérez, J.C.; García-Arellano, G.; Herrera-Garza, J.L.; Marfil-Rivera, L.J.; Gómez-Almaguer, D. Revisiting the complete blood count and clinical findings at diagnosis of childhood acute lymphoblastic leukemia: 10-year experience at a single center. Hematol. Transfus. Cell Ther. 2019, 41, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Moorman, A.V. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica 2016, 101, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- O’Neill, J. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 2014, 11, 1–20. [Google Scholar]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Antibiotic resistance: Moving from individual health norms to social norms in one health and global health. Front. Microbiol. 2020, 11, 1914. [Google Scholar] [CrossRef]
- Sun, R.; Yao, T.; Zhou, X.; Harbarth, S.; Lin, L. Non-biomedical factors affecting antibiotic use in the community: A mixed-methods systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Lucien, M.A.B.; Canarie, M.F.; Kilgore, P.E.; Jean-Denis, G.; Fénélon, N.; Pierre, M.; Cerpa, M.; Joseph, G.A.; Maki, G.; Zervos, M.J.; et al. Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. Int. J. Infect. Dis. 2021, 104, 250–254. [Google Scholar] [CrossRef]
- Bourgi, N.; Olaby, A.A.; Najdi, A.; Hatem, G. Predictors of antibiogram performance and antibiotic resistance patterns in the northern Syrian region: A cross-sectional investigation. Explor. Res. Clin. Soc. Pharm. 2024, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- O’connor, D.; Bate, J.; Wade, R.; Clack, R.; Dhir, S.; Hough, R.; Vora, A.; Goulden, N.; Samarasinghe, S. Infection-related mortality in children with acute lymphoblastic leukemia: An analysis of infectious deaths on UKALL2003. Blood 2014, 124, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Hunger, S.P.; Lu, X.; Devidas, M.; Camitta, B.M.; Gaynon, P.S.; Winick, N.J.; Reaman, G.H.; Carroll, W.L. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: A report from the Children’s Oncology Group. J. Clin. Oncol. 2012, 30, 1663–1669. [Google Scholar] [CrossRef]
- Christensen, M.S.; Nielsen, L.P.; Hasle, H. Few but severe viral infections in children with cancer: A prospective RT-PCR and PCR-based 12-month study. Pediatr. Blood Cancer 2005, 45, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.S.; Heyman, M.; Möttönen, M.; Zeller, B.; Jónmundsson, G.; Hasle, H. Treatment-related death in childhood acute lymphoblastic leukaemia in the Nordic countries: 1992–2001. Br. J. Haematol. 2005, 131, 50–58. [Google Scholar] [CrossRef]
- Dufrayer, M.C.; Rechenmacher, C.; Meneses, C.F.; Monteiro, Y.M.C.; Carlesse, F.A.d.M.C.; Motta, F.; Daudt, L.E.; Michalowski, M.B. Safety of levofloxacin as an antibiotic prophylaxis in the induction phase of children newly diagnosed with acute lymphoblastic leukemia: An interim analysis of a randomized, open-label trial in Brazil. Braz. J. Infect. Dis. 2023, 27, 102745. [Google Scholar] [CrossRef] [PubMed]
- Lehrnbecher, T.; Fisher, B.T.; Phillips, B.; Alexander, S.; A Ammann, R.; Beauchemin, M.; Carlesse, F.; Castagnola, E.; Davis, B.L.; Dupuis, L.L.; et al. Guideline for antibacterial prophylaxis administration in pediatric cancer and hematopoietic stem cell transplantation. Clin. Infect. Dis. 2020, 71, 226–236. [Google Scholar] [CrossRef]
- Yeoh, D.K.; Moore, A.S.; Kotecha, R.S.; Bartlett, A.W.; Ryan, A.L.; Cann, M.P.; McMullan, B.J.; Thursky, K.; Slavin, M.; Blyth, C.C.; et al. Invasive fungal disease in children with acute myeloid leukaemia: An Australian multicentre 10-year review. Pediatr. Blood Cancer 2021, 68, e270–e280. [Google Scholar] [CrossRef]
- Lehrnbecher, T.; Averbuch, D.; Castagnola, E.; Cesaro, S.; A Ammann, R.; Garcia-Vidal, C.; Kanerva, J.; Lanternier, F.; Mesini, A.; Mikulska, M.; et al. 8th European Conference on Infections in Leukaemia: 2020 guidelines for the use of antibiotics in paediatric patients with cancer or post-haematopoietic cell transplantation. Lancet Oncol. 2021, 2045, 3532–3539. [Google Scholar] [CrossRef]
- Sung, L.; Lange, B.J.; Gerbing, R.B.; Alonzo, T.A.; Feusner, J. Microbiologically documented infections and infection-related mortality in children with acute myeloid leukemia. Blood 2007, 110, 3532–3539. [Google Scholar] [CrossRef]
- Sung, L.; Buxton, A.; Gamis, A.; Woods, W.G.A.T. Life-threatening and fatal infections in children with acute myeloid leukemia: A report from the Children’s Oncology Group. Life-Threat. Fatal Infect. Child. 2012, 34, 30–35. [Google Scholar] [CrossRef] [PubMed]
- David, M.Z.; Daum, R.S. Update on epidemiology and treatment of MRSA infections in children. Curr. Pediatr. Rep. 2013, 1, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Lee, H.; Patel, S. Efficacy of carbapenems against Gram-negative bacteria in pediatric patients. Clin. Microbiol. Infect. 2023, 29, 45–53. [Google Scholar]
- Njoungang, L.L.; Nwobegahay, J.M.; Ayangma, C.R.; Njukeng, A.P.; Kengne, M.; Abeng, E.M.; Mama, E.A.; Tchouamo, M.; Goon, D.T. Prevalence and antibiotic resistance patterns of strains of Staphylococcus aureus isolated at the Yaoundé Military Hospital, Cameroon. Microbiol. Res. Int. 2015, 3, 56–63. [Google Scholar]
- Gurung, R.R.; Maharjan, P.; Chhetri, G.G. Antibiotic resistance pattern of Staphylococcus aureus with reference to MRSA isolates from pediatric patients. Future Sci. OA 2020, 6, FSO464. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.; Zhang, Q.; Yang, X. Role of carbapenems and linezolid in treating severe pediatric infections. Clin. Infect. Dis. 2023, 76, 789–798. [Google Scholar]
- Lee, C.; Kim, S.; Park, J. Effectiveness of linezolid and ertapenem against resistant pediatric strains. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 57. [Google Scholar]
- Kim, J.; Oh, H.; Jung, Y. Resistance levels of lower-generation cephalosporins in pediatric infections. J. Clin. Microbiol. 2022, 60, e003. [Google Scholar]
- Garcia, R.; Martinez, J.; Gonzalez, L. Comparative efficacy of linezolid and ertapenem in pediatric infections. Pediatr. Clin. N. Am. 2023, 70, 103–115. [Google Scholar]
- Lyu, S.; Shi, W.; Dong, F.; Xu, B.P.; Liu, G.; Wang, Q.; Yao, K.H.; Yang, Y.H. Serotype distribution and antimicrobial resistance of pediatric Streptococcus pneumoniae isolated from inpatients and outpatients at Beijing Children’s Hospital. Braz. J. Infect. Dis. 2024, 28, 103734. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, C.; He, L.; Xu, H.; Jing, C.; Chen, Y.; Lin, A.; Deng, J.; Cao, Q.; Deng, H.; et al. Antimicrobial resistance profile of methicillin-resistant Staphylococcus aureus isolates in children reported from the ISPED surveillance of bacterial resistance, 2016–2021. Front. Cell Infect. Microbiol. 2023, 13, 1102779. [Google Scholar] [CrossRef]
Nr | Age | Sex | Place of Residence | Diagnosis | Pathogen |
---|---|---|---|---|---|
1. | 10 Y | M | U | ALL B2 | MRSA |
2. | 10 Y | M | R | ALL L1-T4 | S. pneumoniae |
3. | 3 Y 7 M | M | R | ALL pre-B | Klebsiella spp. |
4. | 6 Y 5 M | M | U | ALL B | MRSA |
5. | 3 Y 9 M | M | R | ALL T | Staphylococcus warneri |
6. | 4 Y 11 M | M | U | ALL B | MRSA |
7. | 4 Y 8 M | M | R | ALL L1 | Acinetobacter spp. |
8. | 3 Y | M | R | AML M1 | MRSA |
9. | 9 Y | F | U | ALL B | MRSA |
10. | 5 Y | F | U | ALL B | MSSA, Candida albicans |
11. | 3 Y 5 M | M | U | ALL B | MRSA, MSSA |
12. | 2 Y | M | U | ALL B | MRSA, S. epidermidis, Candida parapsilosis |
13. | 7 Y | M | U | ALL B | E. coli |
14. | 15 Y | F | U | ALL B | MSSA, S. homini |
15. | 5 Y | M | R | ALL pre-B | MRSA |
16. | 5 Y 8 M | F | U | ALL B | Candida albicans |
17. | 3 Y 8 M | F | R | ALL B | E. Coli, recurrent infection |
18. | 6 Y | M | U | ALL pre-B | MRSA, P. aeruginosa |
19. | 11 Y | F | R | ALL B | MSSA, Enterobacter spp., S. epidermidis |
20. | 1 Y 10 M | F | U | ALL B | Klebsiella spp. |
21. | 4 Y 1 M | F | U | AML | Acinetobacter baumani |
22. | 4 Y 5 M | M | U | ALL B | Klebsiela spp. |
23. | 8 Y | M | R | ALL B | MRSA |
24. | 1 Y 10 M | F | U | ALL B | Klebsiella pneuminiae |
25. | 7 Y | M | U | ALL T | MRSA |
26. | 15 Y 10 Y | M | U | ALL B | Pseudomonas aeruginosa |
27. | 13 Y 8 M | F | R | ALL B | S. epidermidis |
28. | 8 Y | F | U | ALL B | E coli |
29. | 4 Y | F | U | ALL B | MSSA |
30. | 3 Y 10 M | M | U | ALL B | MSSA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singer, C.E.; Popescu, A.I.S.; Văruț, R.M.; Popescu, M.; Loredana, D.; Radivojevic, K.; Octavia, P.I. Bacterial Pathogen Profiles and Antibiotic Resistance in Pediatric Leukemia Patients: Insights for Optimizing Infection Management in Immunocompromised Children. Antibiotics 2024, 13, 1234. https://doi.org/10.3390/antibiotics13121234
Singer CE, Popescu AIS, Văruț RM, Popescu M, Loredana D, Radivojevic K, Octavia PI. Bacterial Pathogen Profiles and Antibiotic Resistance in Pediatric Leukemia Patients: Insights for Optimizing Infection Management in Immunocompromised Children. Antibiotics. 2024; 13(12):1234. https://doi.org/10.3390/antibiotics13121234
Chicago/Turabian StyleSinger, Cristina Elena, Alin Iulian Silviu Popescu, Renata Maria Văruț, Mihaela Popescu, Dira Loredana, Kristina Radivojevic, and Petrescu Ileana Octavia. 2024. "Bacterial Pathogen Profiles and Antibiotic Resistance in Pediatric Leukemia Patients: Insights for Optimizing Infection Management in Immunocompromised Children" Antibiotics 13, no. 12: 1234. https://doi.org/10.3390/antibiotics13121234
APA StyleSinger, C. E., Popescu, A. I. S., Văruț, R. M., Popescu, M., Loredana, D., Radivojevic, K., & Octavia, P. I. (2024). Bacterial Pathogen Profiles and Antibiotic Resistance in Pediatric Leukemia Patients: Insights for Optimizing Infection Management in Immunocompromised Children. Antibiotics, 13(12), 1234. https://doi.org/10.3390/antibiotics13121234