Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health
Abstract
:1. Introduction
2. MOF Materials as Antimicrobial Agents: Applications in Human Health
3. MMs Based on Silicon and Titanium Derivates as Antimicrobial Agents
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef]
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Li, Y.; Xia, X.; Hou, W.; Lv, H.; Liu, J.; Li, X. How Effective are Metal Nanotherapeutic Platforms Against Bacterial Infections? A Comprehensive Review of Literature. Int. J. Nanomed. 2023, 18, 1109–1128. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, T.; Pan, X. Metal–Organic-Framework-Based Materials for Antimicrobial Applications. ACS Nano 2021, 15, 3808–3848. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, E.; González, B.; Lozano, D.; Doadrio, A.L.; Colilla, M.; Izquierdo-Barba, I. Nanoantibiotics Based in Mesoporous Silica Nanoparticles: New Formulations for Bacterial Infection Treatment. Pharmaceutics 2021, 13, 2033. [Google Scholar] [CrossRef] [PubMed]
- Soler-Illia, G.J.A.A.; Angelomé, P.C.; Fuertes, M.C.; Grosso, D.; Boissiere, C. Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale 2012, 4, 2549. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Atefyekta, S.; Ercan, B.; Karlsson, J.; Taylor, E.; Chung, S.; Webster, T. Antimicrobial performance of mesoporous titania thin films: Role of pore size, hydrophobicity, and antibiotic release. Int. J. Nanomed. 2016, 11, 977–990. [Google Scholar] [CrossRef] [PubMed]
- Pettinari, C.; Pettinari, R.; Di Nicola, C.; Tombesi, A.; Scuri, S.; Marchetti, F. Antimicrobial MOFs. Coord. Chem. Rev. 2021, 446, 214121. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Nur Hasan, M.; Bagchi, D.; Altass, H.M.; Morad, M.; Althagafi, I.I.; Hameed, A.M.; Sayqal, A.; Khder, A.E.R.S.; Asghar, B.H.; et al. Nano-MOFs as targeted drug delivery agents to combat antibiotic-resistant bacterial infections. R. Soc. Open Sci. 2020, 7, 200959. [Google Scholar] [CrossRef]
- Yan, L.; Gopal, A.; Kashif, S.; Hazelton, P.; Lan, M.; Zhang, W.; Chen, X. Metal organic frameworks for antibacterial applications. Chem. Eng. J. 2022, 435, 134975. [Google Scholar] [CrossRef]
- Fujita, D.; Suzuki, K.; Sato, S.; Yagi-Utsumi, M.; Yamaguchi, Y.; Mizuno, N.; Kumasaka, T.; Takata, M.; Noda, M.; Uchiyama, S.; et al. Protein encapsulation within synthetic molecular hosts. Nat. Commun. 2012, 3, 1093. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Chen, J.; Liu, H.; Huang, Z.; Huang, F.; Li, Q.; Xu, Y. A review on chiral metal–organic frameworks: Synthesis and asymmetric applications. Nanoscale 2022, 14, 13405–13427. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.; Zhao, X.; Webb, E.; Khan, S.U.; Wang, Y. Beyond Pristine Metal–Organic Frameworks: Preparation of Hollow MOFs and Their Composites for Catalysis, Sensing, and Adsorption Removal Applications. Molecules 2023, 28, 144–164. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Shen, N.; Al Othman, A.; Mezentsev, A.; Permyakova, A.; Yu, Z.; Lepoitevin, M.; Serre, C.; Durymanov, M. Metal-Organic Framework-Based Nanomedicines for the Treatment of Intracellular Bacterial Infections. Pharmaceutics 2023, 15, 1521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Peng, F.; Wang, D. MOFs and MOF-Derived Materials for Antibacterial Application. J. Funct. Biomater. 2022, 13, 215. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Han, Y.; Guan, R.; Liu, S.; Bi, X.; Liu, S.; Cui, W.; Zhang, T.; He, T. Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents. Front. Mater. Sci. 2023, 17, 230631. [Google Scholar] [CrossRef] [PubMed]
- Kankala, R.K.; Han, Y.-H.; Xia, H.-Y.; Wang, S.-B.; Chen, A.-Z. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J. Nanobiotechnology 2022, 20, 126. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Guo, J.; Noureddine, A.; Wang, A.; Wuttke, S.; Brinker, C.J.; Zhu, W. Sol–Gel-Based Advanced Porous Silica Materials for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 1909539. [Google Scholar] [CrossRef]
- Vallet-Regí, M.; Schüth, F.; Lozano, D.; Colilla, M.; Manzano, M. Engineering mesoporous silica nanoparticles for drug delivery: Where are we after two decades? Chem. Soc. Rev. 2022, 51, 5365–5451. [Google Scholar] [CrossRef]
- Castillo, R.R.; Vallet-Regí, M. Recent Advances Toward the Use of Mesoporous Silica Nanoparticles for the Treatment of Bacterial Infections. Int. J. Nanomed. 2021, 16, 4409–4430. [Google Scholar] [CrossRef]
- Li, B.; Liao, Y.; Su, X.; Chen, S.; Wang, X.; Shen, B.; Song, H.; Yue, P. Powering mesoporous silica nanoparticles into bioactive nanoplatforms for antibacterial therapies: Strategies and challenges. J. Nanobiotechnol. 2023, 21, 325. [Google Scholar] [CrossRef]
- Bellino, M.G.; Golbert, S.; De Marzi, M.C.; Soler-Illia, G.J.A.A.; Desimone, M.F. Controlled adhesion and proliferation of a human osteoblastic cell line by tuning the nanoporosity of titania and silica coatings. Biomater. Sci. 2013, 1, 186–189. [Google Scholar] [CrossRef]
- Pezzoni, M.; Catalano, P.N.; Pizarro, R.A.; Desimone, M.F.; Soler-Illia, G.J.A.A.; Bellino, M.G.; Costa, C.S. Antibiofilm effect of supramolecularly templated mesoporous silica coatings. Mater. Sci. Eng. C 2017, 77, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.; Geszke-Moritz, M. Mesoporous silica materials with different structures as the carriers for antimicrobial agent. Modeling of chlorhexidine adsorption and release. Appl. Surf. Sci. 2015, 356, 1327–1340. [Google Scholar] [CrossRef]
- Mazzotta, E.; De Santo, M.; Lombardo, D.; Leggio, A.; Pasqua, L. Mesoporous silicas in materials engineering: Nanodevices for bionanotechnologies. Mater. Today Bio 2022, 17, 100472. [Google Scholar] [CrossRef] [PubMed]
- Gomez, G.E.; Soler-Illia, G.J.A.A. Virtual Issue on Multifunctional Nanoporous Materials in Latin America. Chem. Mater. 2021, 33, 7569–7571. [Google Scholar] [CrossRef]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. [Google Scholar] [CrossRef]
- Rowsell, J.L.C.; Yaghi, O.M. Metal-Organic Frameworks: A new class of porous materials. Microporous Mesoporous Mater. 2004, 73, 3–14. [Google Scholar] [CrossRef]
- Mac Gillivray, L.R.; Lukehart, C.M. Metal-Organic Framework Materials; Farrusseng, D., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2014. [Google Scholar]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 974–988. [Google Scholar] [CrossRef] [PubMed]
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’keeffe, M.; Yaghi, O.M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef]
- Zhang, W.; Ye, G.; Liao, D.; Chen, X.; Lu, C.; Nezamzadeh-Ejhieh, A.; Khan, M.S.; Liu, J.; Pan, Y.; Dai, Z. Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules 2022, 27, 7166. [Google Scholar] [CrossRef]
- Mao, F.; Su, Y.; Sun, X.; Li, B.; Liu, P.F. Cu(I) Metal–Organic Framework Composites with AgCl/Ag Nanoparticles for Irradiation-Enhanced Antibacterial Activity against E. coli. ACS Omega 2023, 8, 2733–2739. [Google Scholar] [CrossRef]
- Godoy, A.A.; Bernini, M.C.; Funes, M.D.; Sortino, M.; Collins, S.E.; Narda, G.E. ROS-generating rare-earth coordination networks for photodynamic inactivation of Candida albicans. Dalt. Trans. 2021, 50, 5853–5864. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Zhao, L.; Song, G.; Li, J.; Wang, Z.; Han, Y.; Wang, Z. Application of a Mixed-Ligand Metal–Organic Framework in Photocatalytic CO2 Reduction, Antibacterial Activity and Dye Adsorption. Molecules 2023, 28, 5204. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tao, Y.; Qi, K.; Chen, Z.; Qiu, Y.; Guo, X. Integrated MOF-74 Coatings on Magnesium for Corrosion Control, Cytocompatibility, and Antibacterial Properties. Inorg. Chem. 2023, 62, 10269–10278. [Google Scholar] [CrossRef] [PubMed]
- Motakef-Kazemi, N.; Ataei, F.; Dorranian, D. Laser ablation produced graphene/MOF-5 nanocomposite: Antibacterial properties. J. Theor. Appl. Phys. 2023, 17, 172309. [Google Scholar] [CrossRef]
- Duncan, M.J.; Wheatley, P.S.; Coghill, E.M.; Vornholt, S.M.; Warrender, S.J.; Megson, I.L.; Morris, R.E. Antibacterial efficacy from NO-releasing MOF–polymer films. Mater. Adv. 2020, 1, 2509–2519. [Google Scholar] [CrossRef]
- Shetu, S.A.; Sanchez-Palestino, L.M.; Rivera, G.; Bandyopadhyay, D. Medicinal bismuth: Bismuth-organic frameworks as pharmaceutically privileged compounds. Tetrahedron 2022, 129, 133117. [Google Scholar] [CrossRef]
- Gomez, G.E.; D’vries, R.F.; Lionello, D.F.; Aguirre-Díaz, L.M.; Spinosa, M.; Costa, C.S.; Fuertes, M.C.; Pizarro, R.A.; Kaczmarek, A.M.; Ellena, J.; et al. Exploring physical and chemical properties in new multifunctional indium-, bismuth-, and zinc-based 1D and 2D coordination polymers. Dalt. Trans. 2018, 47, 1808–1818. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, Z.; Lan, X.; Tang, F.K.; Cheng, T.; Sun, H.; Cham-Fai Leung, K.; Li, X.; Jin, L. Rapid synthesis of bismuth-organic frameworks as selective antimicrobial materials against microbial biofilms. Mater. Today Bio 2023, 18, 100507. [Google Scholar] [CrossRef] [PubMed]
- Gupta, I.; Farinas, E.T.; Mitra, S. Development of carbon nanotube-metal organic framework (MOF) hybrid antiviral microfiltration membrane. Sep. Purif. Technol. 2023, 315, 123766. [Google Scholar] [CrossRef]
- Lee, D.N.; Gwon, K.; Kim, Y.; Cho, H.; Lee, S. Immobilization of antibacterial copper metal-organic framework containing glutarate and 1,2-bis(4-pyridyl)ethylene ligands on polydimethylsiloxane and its low cytotoxicity. J. Ind. Eng. Chem. 2021, 102, 135–145. [Google Scholar] [CrossRef]
- Bhat, Z.U.H.; Hanif, S.; Rafi, Z.; Alam, M.J.; Ahmad, M.; Shakir, M. New mixed-ligand Zn(II)-based MOF as a nanocarrier platform for improved antibacterial activity of clinically approved drug levofloxacin. New J. Chem. 2023, 47, 7416–7424. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y. Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16, 1906846. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Xu, W.; Ren, X.; Wang, Y.; Dong, B.; Wang, L. Microporous Frameworks as Promising Platforms for Antibacterial Strategies Against Oral Diseases. Front. Bioeng. Biotechnol. 2020, 8, 628. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, J.; Wei, Y.; Zhang, J.; Tao, C. Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. Nano Res. 2022, 15, 6220–6242. [Google Scholar] [CrossRef]
- Han, D.; Liu, X.; Wu, S. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem. Soc. Rev. 2022, 51, 7138–7169. [Google Scholar] [CrossRef]
- Desai, A.V.; Vornholt, S.M.; Major, L.L.; Ettlinger, R.; Jansen, C.; Rainer, D.N.; de Rome, R.; So, V.; Wheatley, P.S.; Edward, A.K.; et al. Surface-Functionalized Metal–Organic Frameworks for Binding Coronavirus Proteins. ACS Appl. Mater. Interfaces 2023, 15, 9058–9065. [Google Scholar] [CrossRef]
- Sava Gallis, D.F.; Butler, K.S.; Agola, J.O.; Pearce, C.J.; McBride, A.A. Antibacterial Countermeasures via Metal–Organic Framework-Supported Sustained Therapeutic Release. ACS Appl. Mater. Interfaces 2019, 11, 7782–7791. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, P.; Zhang, L.; Wang, Z.; Wang, F.; Dong, K.; Liu, Z.; Ren, J.; Qu, X. Silver-Infused Porphyrinic Metal–Organic Framework: Surface-Adaptive, On-Demand Nanoplatform for Synergistic Bacteria Killing and Wound Disinfection. Adv. Funct. Mater. 2019, 29, 1808594. [Google Scholar] [CrossRef]
- Shakya, S.; He, Y.; Ren, X.; Guo, T.; Maharjan, A.; Luo, T.; Wang, T.; Dhakhwa, R.; Regmi, B.; Li, H.; et al. Ultrafine Silver Nanoparticles Embedded in Cyclodextrin Metal-Organic Frameworks with GRGDS Functionalization to Promote Antibacterial and Wound Healing Application. Small 2019, 15, 1901065. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, J.; Sun, L.; Zhang, H.; Guo, Y.; Qu, J.; Jiang, W.; Chen, W.; Ji, J.; Yang, Y.; et al. Synergistic Chemotherapy and Photodynamic Therapy of Endophthalmitis Mediated by Zeolitic Imidazolate Framework-Based Drug Delivery Systems. Small 2019, 15, 1903880. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Akhbari, K. Cu-BTC metal–organic framework as a biocompatible nanoporous carrier for chlorhexidine antibacterial agent. JBIC J. Biol. Inorg. Chem. 2022, 27, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Gizer, S.G.; Sahiner, N. The effect of sulphur on the antibacterial properties of succinic acid-Cu(II) and mercaptosuccinic acid-Cu(II) MOFs. Inorganica Chim. Acta 2021, 528, 120611. [Google Scholar] [CrossRef]
- Balasamy, R.J.; Ravinayagam, V.; Alomari, M.; Ansari, M.A.; Almofty, S.A.; Rehman, S.; Dafalla, H.; Rubavathi Marimuthu, P.; Akhtar, S.; Al Hamad, M. Cisplatin delivery, anticancer and antibacterial properties of Fe/SBA-16/ZIF-8 nanocomposite. RSC Adv. 2019, 9, 42395–42408. [Google Scholar] [CrossRef] [PubMed]
- Quaresma, S.; André, V.; Antunes, A.M.M.; Vilela, S.M.F.; Amariei, G.; Arenas-Vivo, A.; Rosal, R.; Horcajada, P.; Duarte, M.T. Novel AntibacterialAzelaic Acid BioMOFs. Cryst. Growth Des. 2020, 20, 370–382. [Google Scholar] [CrossRef]
- Guo, C.; Cheng, F.; Liang, G.; Zhang, S.; Duan, S.; Fu, Y.; Marchetti, F.; Zhang, Z.; Du, M. Multimodal Antibacterial Platform Constructed by the Schottky Junction of Curcumin-Based Bio Metal–Organic Frameworks and Ti3C2Tx MXene Nanosheets for Efficient Wound Healing. Adv. Nanobiomed. Res. 2022, 2, 2200064. [Google Scholar] [CrossRef]
- Pinto, R.V.; Wang, S.; Tavares, S.R.; Pires, J.; Antunes, F.; Vimont, A.; Clet, G.; Daturi, M.; Maurin, G.; Serre, C.; et al. Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti-MOF. Angew. Chem. Int. Ed. 2020, 59, 5135–5143. [Google Scholar] [CrossRef]
- Yang, X.-Y.; Chen, L.-H.; Li, Y.; Rooke, J.C.; Sanchez, C.; Su, B.-L. Hierarchically porous materials: Synthesis strategies and structure design. Chem. Soc. Rev. 2017, 46, 481–558. [Google Scholar] [CrossRef]
- Soler-Illia, G.J.d.A.A.; Sanchez, C.; Lebeau, B.; Patarin, J.; Soler-Illia, G.J.A.A.; Sanchez, C.; Lebeau, B.P. Chemical Strategies To Design Textured Materials: From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chem. Rev. 2002, 102, 4093–4138. [Google Scholar] [CrossRef]
- Ha, C.-S.; Park, S.S. General Synthesis and Physico-Chemical Properties of Mesoporous Materials; Periodic Mesoporous Organosilicas; Springer: Singapore, 2019; pp. 15–85. [Google Scholar]
- Park, S.; Ahn, S.H.; Lee, H.J.; Chung, U.S.; Kim, J.H.; Koh, W.-G. Mesoporous TiO2 as a nanostructured substrate for cell culture and cell patterning. RSC Adv. 2013, 3, 23673. [Google Scholar] [CrossRef]
- Catalano, P.; Bellino, M.; Soler Illia, J.; Costa, C.; Pizarro, R.; Pezzoni, M. Use of a Mesoporous Oxide Film in Obtaining a Transparent and Ultra-Thin Ceramic Coating Which Inhibits the Formation of Bacterial Biofilms on the Coated Surface. WO2017191555 (A1). 2017. Available online: https://nuclea.cnea.gob.ar/items/07822e8a-d5da-4ec2-8bca-bf5664323b9d (accessed on 11 December 2023).
- Pezzoni, M.; Catalano, P.N.; Delgado, D.C.; Pizarro, R.A.; Bellino, M.G.; Costa, C.S. Antibiofilm effect of mesoporous titania coatings on Pseudomonas aeruginosa biofilms. J. Photochem. Photobiol. B Biol. 2020, 203, 111762. [Google Scholar] [CrossRef] [PubMed]
- Sviridov, A.; Mazina, S.; Ostapenko, A.; Nikolaev, A.; Timoshenko, V. Antibacterial Effect of Acoustic Cavitation Promoted by Mesoporous Silicon Nanoparticles. Int. J. Mol. Sci. 2023, 24, 1065. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Quirós, S.; Gómez-Graña, S.; Vallet-Regí, M.; Prados-Rosales, R.C.; González, B.; Luque-Garcia, J.L. Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis. Colloids Surf. B Biointerfaces 2021, 197, 111405. [Google Scholar] [CrossRef] [PubMed]
- Pongchaikul, P.; Hajidariyor, T.; Khetlai, N.; Yu, Y.-S.; Arjfuk, P.; Khemthong, P.; Wanmolee, W.; Posoknistakul, P.; Laosiripojana, N.; Wu, K.C.-W.; et al. Nanostructured N/S doped carbon dots/mesoporous silica nanoparticles and PVA composite hydrogel fabrication for antimicrobial and anti-biofilm application. Int. J. Pharm. X 2023, 6, 100209. [Google Scholar] [PubMed]
- Catalano, P.N.; Pezzoni, M.; Costa, C.; Soler-Illia, G.J.d.A.A.; Bellino, M.G.; Desimone, M.F. Optically transparent silver-loaded mesoporous thin film coating with long-lasting antibacterial activity. Microporous Mesoporous Mater. 2016, 236, 158–166. [Google Scholar] [CrossRef]
- Irene Litter, M.; Ahmad, A. Industrial Applications of Nanoparticles; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Aati, S.; Aneja, S.; Kassar, M.; Leung, R.; Nguyen, A.; Tran, S.; Shrestha, B.; Fawzy, A. Silver-loaded mesoporous silica nanoparticles enhanced the mechanical and antimicrobial properties of 3D printed denture base resin. J. Mech. Behav. Biomed. Mater. 2022, 134, 105421. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Salcedo, S.; García, A.; González-Jiménez, A.; Vallet-Regí, M. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Acta Biomater. 2023, 155, 654–666. [Google Scholar] [CrossRef]
- Abbasi, M.; Gholizadeh, R.; Kasaee, S.R.; Vaez, A.; Chelliapan, S.; Fadhil Al-Qaim, F.; Deyab, I.F.; Shafiee, M.; Zareshahrabadi, Z.; Amani, A.M.; et al. An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver. Sci. Rep. 2023, 13, 5987. [Google Scholar] [CrossRef]
- Huang, L.; Li, W.; Guo, M.; Huang, Z.; Chen, Y.; Dong, X.; Li, Y.; Zhu, L. Silver doped-silica nanoparticles reinforced poly (ethylene glycol) diacrylate/hyaluronic acid hydrogel dressings for synergistically accelerating bacterial-infected wound healing. Carbohydr. Polym. 2023, 304, 120450. [Google Scholar] [CrossRef]
- Leng, D.; Li, Y.; Zhu, J.; Liang, R.; Zhang, C.; Zhou, Y.; Li, M.; Wang, Y.; Rong, D.; Wu, D.; et al. The Antibiofilm Activity and Mechanism of Nanosilver- and Nanozinc-Incorporated Mesoporous Calcium-Silicate Nanoparticles. Int. J. Nanomed. 2020, 15, 3921–3936. [Google Scholar] [CrossRef]
- Li, Y.-J.; Wong, K.W.; Huang, Y.-C.; Chien, C.-S.; Shih, C.-J. Evaluation of in vitro bioactivity and angiogenesis-promoting effect for mesoporous bioactive glass codoped with copper and silver. J. Non. Cryst. Solids 2023, 613, 122371. [Google Scholar] [CrossRef]
- Hosseini, M.; Hassani Besheli, N.; Deng, D.; Lievens, C.; Zuo, Y.; Leeuwenburgh, S.C.G.; Yang, F. Facile post modification synthesis of copper-doped mesoporous bioactive glass with high antibacterial performance to fight bone infection. Biomater. Adv. 2023, 144, 213198. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, F.; Kyffin, B.A.; Nikolaou, A.; Merino-Gutierrez, J.; Abrahams, I.; Kanwal, N.; Knowles, J.C.; Smith, A.J.; Smales, G.J.; Carta, D. Highly porous phosphate-based glasses for controlled delivery of antibacterial Cu ions prepared via sol–gel chemistry. RSC Adv. 2023, 13, 19662–19673. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhao, X.; Lai, W.; Li, Z.; You, D.; Yu, Z.; Li, W.; Wang, X. Surface functionalization of 3D printed Ti scaffold with Zn-containing mesoporous bioactive glass. Surf. Coat. Technol. 2022, 435, 128236. [Google Scholar] [CrossRef]
- Trinh, H.T.; Tran, T.K.A.; Arora, S.; George, S.M.; Sheri, J.; Li, Z.; Yang, J.; Naruphontjirakul, P.; Balani, K.; Karakoti, A.; et al. Zn-Loaded SBA-1 and SBA-15 Molecular Sieves for Combined Antimicrobial and Osteogenic Activity. Adv. Mater. Technol. 2023, 8, 2201169. [Google Scholar] [CrossRef]
- Simila, H.O.; Boccaccini, A.R. Sol-gel synthesis of lithium doped mesoporous bioactive glass nanoparticles and tricalcium silicate for restorative dentistry: Comparative investigation of physico-chemical structure, antibacterial susceptibility and biocompatibility. Front. Bioeng. Biotechnol. 2023, 11, 1065597. [Google Scholar] [CrossRef] [PubMed]
- Pinto e Souza, I.E.; Barrioni, B.R.; Miriceia, N.M.L.; Sachs, D.; Ribeiro, G.C.; Soares, D.C.F.; Pereira, M.M.; Nunes, E.H.M. Synergistic effect of cobalt and cerium on the structural properties and biological behavior of sol-gel-derived mesoporous bioactive glass nanoparticles. J. Non. Cryst. Solids 2023, 613, 122391. [Google Scholar] [CrossRef]
- Na, H.; Venedicto, M.; Chang, C.-Y.; Carrier, J.; Lai, C.-Y. Infrared-Activated Bactericide: Rhenium Disulfide (ReS2)-Functionalized Mesoporous Silica Nanoparticles. ACS Appl. Bio Mater. 2023, 6, 1577–1585. [Google Scholar] [CrossRef]
- Song, Y.; Cai, L.; Tian, Z.; Wu, Y.; Chen, J. Phytochemical Curcumin-Coformulated, Silver-Decorated Melanin-like Polydopamine/Mesoporous Silica Composites with Improved Antibacterial and Chemotherapeutic Effects against Drug-Resistant Cancer Cells. ACS Omega 2020, 5, 15083–15094. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, S.; Heras, C.; Lozano, D.; Vallet-Regí, M.; Salinas, A.J. Nanodevices based on mesoporous glass nanoparticles enhanced with zinc and curcumin to fight infection and regenerate bone. Acta Biomater. 2023, 166, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Rama, M.; Vijayalakshmi, U. Synergism of silver/CEM drug on novel proteinaceous silk fibroin/mesoporous silica based sandwich-layered nanofibrous scaffolds for osteoregenerative applications. Ceram. Int. 2023, 49, 17032–17051. [Google Scholar] [CrossRef]
- Mu, M.; Lin, Y.-T.; DeFlorio, W.; Arcot, Y.; Liu, S.; Zhou, W.; Wang, X.; Min, Y.; Cisneros-Zevallos, L.; Akbulut, M. Multifunctional antifouling coatings involving mesoporous nanosilica and essential oil with superhydrophobic, antibacterial, and bacterial antiadhesion characteristics. Appl. Surf. Sci. 2023, 634, 157656. [Google Scholar] [CrossRef]
- García, A.; González, B.; Harvey, C.; Izquierdo-Barba, I.; Vallet-Regí, M. Effective reduction of biofilm through photothermal therapy by gold core@shell based mesoporous silica nanoparticles. Microporous Mesoporous Mater. 2021, 328, 111489. [Google Scholar] [CrossRef]
- Pamukçu, A.; Karakaplan, M.B.; Didem, Ş.K. Mesoporous silica shell in a core@shell nanocomposite design enables antibacterial action with multiple modes of action. Nano Futur. 2023, 7, 025007. [Google Scholar] [CrossRef]
- Marinescu, G.; Culita, D.C.; Mocanu, T.; Mitran, R.-A.; Petrescu, S.; Stan, M.S.; Chifiriuc, M.C.; Popa, M. New Nanostructured Materials Based on Mesoporous Silica Loaded with Ru(II)/Ru(III) Complexes with Anticancer and Antimicrobial Properties. Pharmaceutics 2023, 15, 1458. [Google Scholar] [CrossRef] [PubMed]
- Ugalde-Arbizu, M.; Aguilera-Correa, J.J.; San Sebastian, E.; Páez, P.L.; Nogales, E.; Esteban, J.; Gómez-Ruiz, S. Antibacterial Properties of Mesoporous Silica Nanoparticles Modified with Fluoroquinolones and Copper or Silver Species. Pharmaceuticals 2023, 16, 961. [Google Scholar] [CrossRef]
- Durdu, S.; Arslanturk, A.; Aktug, S.L.; Korkmaz, K.; Aktas, S.; Unal, F.; Yalcin, E.; Cavusoglu, K. A comparison study on bioactivity and antibacterial properties of Ag-, Cu- and Zn- deposited oxide coatings produced on titanium. J. Mater. Sci. 2022, 57, 17203–17218. [Google Scholar] [CrossRef]
- Aziz, I.; Mulyani, E.; Yusuf, Y. Morphological, mechanical and antibacterial properties of Ti–Cu–N thin films deposited by sputtering DC. Heliyon 2023, 9, e17170. [Google Scholar] [CrossRef]
- Thukkaram, M.; Cools, P.; Nikiforov, A.; Rigole, P.; Coenye, T.; Van Der Voort, P.; Du Laing, G.; Vercruysse, C.; Declercq, H.; Morent, R.; et al. Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation. Appl. Surf. Sci. 2020, 500, 144235. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Abid, H.A.; Nazli, H.; Shahid, A.; Riaz, S.; Naseem, S. Mg doped TiO2 thin films: Optical, dielectric, photocatalytic, magnetic and antibacterial studies. Mater. Sci. Eng. B 2023, 297, 116674. [Google Scholar] [CrossRef]
- Huang, H.-L.; Tsai, M.-T.; Chang, Y.-Y.; Lin, Y.-J.; Hsu, J.-T. Fabrication of a Novel Ta(Zn)O Thin Film on Titanium by Magnetron Sputtering and Plasma Electrolytic Oxidation for Cell Biocompatibilities and Antibacterial Applications. Metals 2020, 10, 649. [Google Scholar] [CrossRef]
- Hu, C.-C.; Chang, C.-H.; Chang, Y.; Hsieh, J.-H.; Ueng, S.W.-N. Beneficial Effect of TaON-Ag Nanocomposite Titanium on Antibacterial Capacity in Orthopedic Application. Int. J. Nanomed. 2020, 15, 7889–7900. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Rodríguez, O.; Trejo-Valdez, M.D.; Torres-SanMiguel, C.R.; Pérez-Hernández, N.; Bañuelos-Hernández, Á.; Manríquez-Ramírez, M.E.; Hernández-Benítez, J.A.; Rodríguez-Tovar, A.V. Evaluation of the performance of TiO2 thin films doped with silver nanoparticles as a protective coating for metal prostheses. Surf. Coat. Technol. 2023, 458, 129349. [Google Scholar] [CrossRef]
- Widyastuti, E.; Chiu, C.-T.; Hsu, J.-L.; Chieh Lee, Y. Photocatalytic antimicrobial and photostability studies of TiO2/ZnO thin films. Arab. J. Chem. 2023, 16, 105010. [Google Scholar] [CrossRef]
- Cautela, J.; Stenqvist, B.; Schillen, K.; Belic, D.; Månsson, L.K.; Hagemans, F.; Seuss, M.; Fery, A.; Crassous, J.M.J.; Galantini, L. Supracolloidal Atomium. ACS Nano 2020, 14, 15748–15756. [Google Scholar] [CrossRef] [PubMed]
- Piantanida, E.; Alonci, G.; Bertucci, A.; De Cola, L. Design of Nanocomposite Injectable Hydrogels for Minimally Invasive Surgery. Acc. Chem. Res. 2019, 52, 2101–2112. [Google Scholar] [CrossRef] [PubMed]
- Saleemi, M.A.; Kong, Y.L.; Yong, P.V.C.; Wong, E.H. An Overview of Antimicrobial Properties of Carbon Nanotubes-Based Nanocomposites. Adv. Pharm. Bull. 2022, 12, 449–465. [Google Scholar] [CrossRef]
- Strokov, K.; Galstyan, A. Chitosan-Silicon Phthalocyanine Conjugate as Effective Photo-Functional Hydrogel for Tracking and Killing of Bacteria. Eur. J. Org. Chem. 2020, 2020, 7327–7332. [Google Scholar] [CrossRef]
MOF Carrier | MOF Building Blocks | Antibacterial Component | Mechanism | Effective Against | Ref. |
---|---|---|---|---|---|
Ceftazidime@ZIF-8 | Zn2+, 2-H-MeIM | Ceftazidime | Ceftazidime release | E. coli | [51] |
PCN-224-Ag-HA | Zr4+, TCPP | Ag+, ROS | Ag+ release | S. aureus, MRSA | [52] |
GS5-CL-Ag@CD-MOF | K+, γ-CDs | Ag+ | Ag+ release | E. coli, S. aureus | [53] |
ZIF-8-PAA-MB@Ag-NPs@Van-PEG | Zn2+, 2-H-MeIM | Ag-NPs, vancomycin, ROS | Ag+ and vancomycin release | E. coli, S. aureus, MRSA | [54] |
CHX@Cu-BTC | Cu2+, H3BTC | Cu2+, CHX | MOF degradation and CHX release | E. coli, S. aureus | [55] |
Cu-MSA Cu-SA | Cu2+, MSA, SA | Cu2+ | Cu2+ release | E. coli, Pseudomona, S. aureus, B. subtilis, C. Albicans | [56] |
Fe/SBA-16/ZIF-8 | Zn2+, 2-H-MeIM | Zn2+ | Zn2+ release | P. aeruginosa, MRSA biofilms | [57] |
ZIF-8-RF | Zn2+, 2-H-MeIM | RF | RF release | P. aeruginosa, MRSA | [9] |
Bio-MOFs | AA, K+, Na+, Mg2+ | Azelaic acid | MOF decomposition | S. aureus, S. epidermidis | [58] |
Zn-MOF@curcumin | Zn2+, DMA | Zn2+, curcumin | Curcumine and Zn2+ release | S. aureus, E. coli. | [59] |
MIP-177 | Ti4+, H4mdip | NO | NO release | no reported | [60] |
Nanomaterial | Effective Against | Application | Ref. |
---|---|---|---|
Mesoporous silicon nanoparticles | L. casei | Wound healing | [67] |
Mesoporous silica nanoparticles/AgNPs | M. tuberculosis | Antimicrobial | [68] |
Core/shell mesoporous silica nanostructures/Nitrogen-sulfur/carbon dots | S. aureus, P. aeruginosa, E. coli | Wound healing | [69] |
Ag+/mesoporous thin films (SiO2 or TiO2) | P. aeruginosa, S. aureus | Long-lasting Antibacterial Thin film coatings | [70] |
Ag+/SBA-15 or Ag+/mesoporous silica | E. coli, P. aeruginosa, S. cholerasuis, B. cereus, S. aureus | Long-lasting Antibacterial coatings | [71] |
Acrylate resin/silver/mesoporous silica nanocarrier | C. albicans | Dental prosthesis | [72] |
MBG/AgNPs | E. coli, S. aureus | Bone tissue regeneration | [73] |
Ag/mesoporous silica nanoparticles | S. aureus, E. coli, Candida | Biomedical application | [74] |
Polyethylene glycol diacrylate/catechol-hyaluronic acid/Ag-mesoporous silica nanoparticles | S. aureus, E. coli | Wound healing | [75] |
Mesoporouscalciumsilicatenanoparticles/silver-zinc | E. faecalis | Root canal disinfectant | [76] |
80SiO2–15CaO–5P2O5-(5-x)Ag-xCuO (x = 0–5)/MBG | S. aureus | Bone formation | [77] |
MBGNs/copper ions | S. aureus | Antibacterial | [78] |
Phosphate-based mesoporous glasses/Cu ions | S. aureus, E. coli | Bioabsorbable materials | [79] |
Zn-MBG | S. aureus, E. coli | Implants-associated infections | [80] |
Zn/SBA-1/SBA-15 | E. coli, B. subtilis | Bone regeneration | [81] |
Tricalcium silicate/MBGNs/Li | S. aureus, E. coli | Biomedical applications | [82] |
MBGNs/Ce-Co | S. aureus | Wound healing | [83] |
Nanomaterial | Effective Against | Application | Ref. |
---|---|---|---|
MSN-ReS2 | E. coli, S. aureus | Agent therapeutic with a synergistic bactericide function | [84] |
CCM@SBA-15/PDA/Ag | E. coli, S. aureus | Effect of bactericide and drug resistance in cancers | [85] |
SiO2–CaO–P2O5 | S. aureus | Bactericide action and promoting bone regeneration | [86] |
Ag-doped mesoporous silica nanofibers | E. coli, S. aureus | Antibacterial efficacy, bone regeneration, and defect repair | [87] |
Modified MSNs | planktonicbacteria, E. coli, S. aureus | Antibacterial and anti-adhesion properties | [88] |
AuNR@MSN | S. aureus | Antimicrobial action | [89] |
CeO2@pSiO2 | E. coli | Bactericide effect | [90] |
Ru complex-loaded SBA-15 silica | S. aureus, E. faecalis | Antitumoral, antiproliferative, antibacterial, and antibiofilm activity | [91] |
Modified MSNs | S. aureus, E. faecalis, E.coli, P. aeruginosa | Antibacterial activity and inhibiting strains of multidrug-resistant P. aeruginosa | [92] |
Ag-, Cu-, and Zn-based TiO2 | E. coli, S. aureus | Antimicrobial activity | [93] |
Ti–Cu–N film | S. aureus | Antimicrobial activity | [94] |
Ag-doped TiO2 | E. coli, S. aureus | Antimicrobial activity | [95] |
Mg-doped TiO2 | S. aureus, K. pneumoniae, P. aeruginosa, E. coli | Antimicrobial activity | [96] |
Tantalum oxide and Ta(Zn)O-coated Ti | S. aureus, A. actinomycetemcomitans | Antimicrobial activity and surface treatments for titanium-based implants | [97] |
TaON-Ag | S. aureus, coagulase-negative Staphylococcus, E. coli, P. aeruginosa | Antibacterial activity against common microorganisms in orthopedic infections, demonstrating potential for use in clinical applications | [98] |
TiO2 films | A. flavus | Decrease in the corrosion rate in metallic implants, biocompatible with osteoblast cells, and antifungal activity | [99] |
TiO2/ZnO | E. coli, S. aureus, C. albicans | Photocatalysts and antimicrobial activity | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez, G.E.; Hamer, M.; Regiart, M.D.; Tortella, G.R.; Seabra, A.B.; Soler Illia, G.J.A.A.; Fernández-Baldo, M.A. Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health. Antibiotics 2024, 13, 173. https://doi.org/10.3390/antibiotics13020173
Gomez GE, Hamer M, Regiart MD, Tortella GR, Seabra AB, Soler Illia GJAA, Fernández-Baldo MA. Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health. Antibiotics. 2024; 13(2):173. https://doi.org/10.3390/antibiotics13020173
Chicago/Turabian StyleGomez, Germán E., Mariana Hamer, Matías D. Regiart, Gonzalo R. Tortella, Amedea B. Seabra, Galo J. A. A. Soler Illia, and Martín A. Fernández-Baldo. 2024. "Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health" Antibiotics 13, no. 2: 173. https://doi.org/10.3390/antibiotics13020173
APA StyleGomez, G. E., Hamer, M., Regiart, M. D., Tortella, G. R., Seabra, A. B., Soler Illia, G. J. A. A., & Fernández-Baldo, M. A. (2024). Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health. Antibiotics, 13(2), 173. https://doi.org/10.3390/antibiotics13020173