Detection of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacteriaceae from Diseased Broiler Chickens in Lusaka District, Zambia
Abstract
:1. Introduction
2. Results
2.1. Antibiotics Sales
2.2. Prevalence of Enterobacteriaceae
2.3. Antimicrobial Sensitivity Showed Multidrug Resistance (MDR) among Enterobacteriaceae
2.4. Association between Cefotaxime (CTX) Resistance and ESBL Genes
3. Discussion
Study Limitations
4. Materials and Methods
4.1. Study Area and Sampling
4.2. Antimicrobial Usage Data
4.3. Bacterial Isolation
4.4. Antibiotic Sensitivity Testing
4.5. Cefotaxime (CTX) Minimum Inhibitory Concentration (MIC)
4.6. Detection of ESBL Genes by PCR
4.7. PCR Product Purification and Cycle Sequencing
4.8. Data Analysis
4.8.1. AMR Data Analysis
4.8.2. ESBL Gene Sequence Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Central Statistical Office. Zambia 2010 Census of Population and Housing: Agriculture Analytical Report; Central Statistical Office: Lusaka, Zambia, 2014; pp. 1–50.
- Muonga, E.M.; Mainda, G.; Mukuma, M.; Kwenda, G.; Hang’ombe, B.; Phiri, N.; Mwansa, M.; Munyeme, M.; Muma, J.B. Antimicrobial Resistance of Escherichia Coli and Salmonella Isolated from Raw Retail Broiler Chickens in Zambia. Res. Sq. 2019, 1–18. [Google Scholar] [CrossRef]
- Phiri, N.; Mainda, G.; Mukuma, M.; Ntazana, S.; Luke, J.; Banda, K.; Muligisa-Muonga, E.; Bumbangi, N.F.; Mwansa, M.; Yamba, K.; et al. Determination of Antimicrobial Resistant of Salmonella Species and Escherichia Coli in Broiler Chickens Slaughtered in Commercial Abattoirs in Lusaka Province, Zambia. Ph.D. Thesis, The University of Zambia, Lusaka, Zambia, 2019. Available online: https://www.researchgate.net/publication/346920039_Antibioticresistant_Salmonella_species_and_Escherichia_coli_in_broiler_chickens_from_farms_abattoirs_and_open_markets_in_selected_districts_of_Zambia (accessed on 7 November 2023).
- Apata, D.F. Antibiotic Resistance in Poultry. Int. J. Poult. Sci. 2009, 8, 404–408. [Google Scholar] [CrossRef]
- Kiambi, S.; Mwanza, R.; Sirma, A.; Czerniak, C.; Kimani, T.; Kabali, E.; Dorado-Garcia, A.; Eckford, S.; Price, C.; Gikonyo, S.; et al. Understanding Antimicrobial Use Contexts in the Poultry Sector: Challenges for Small-Scale Layer Farms in Kenya. Antibiotics 2021, 10, 106. [Google Scholar] [CrossRef]
- Lipsitch, M. The Rise and Fall of Antimicrobial Resistance. Trends Microbiol. 2001, 9, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Saliu, E.M.; Vahjen, W.; Zentek, J. Types and Prevalence of Extended-Spectrum Beta-Lactamase Producing Enterobacteriaceae in Poultry. Anim. Health Res. Rev. 2017, 18, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Smillie, C.; Garcillán-Barcia, M.P.; Francia, M.V.; Rocha, E.P.C.; de la Cruz, F. Mobility of Plasmids. Microbiol. Mol. Biol. Rev. 2010, 74, 434–452. [Google Scholar] [CrossRef] [PubMed]
- Chishimba, K.; Hang’Ombe, B.M.; Muzandu, K.; Mshana, S.E.; Matee, M.I.; Nakajima, C.; Suzuki, Y. Detection of Extended-Spectrum Beta-Lactamase-Producing Escherichia Coli in Market-Ready Chickens in Zambia. Int. J. Microbiol. 2016, 2016, 5275724. [Google Scholar] [CrossRef]
- Kaonga, N.; Hang, B.M.; Lupindu, A.M.; Hoza, A.S. Detection of CTX-M-Type Extended Spectrum Beta-Lactamase Producing Salmonella Typhimurium in Commercial Poultry Farms in Copperbelt Province. Ger. J. Vet. Res. 2021, 1, 27–34. [Google Scholar] [CrossRef]
- Republic of Zambia Ministry of Fisheries and Livestock. Ministry of Finance and National Planning 2022 Livestock Survey Report, Zambia Statistics Agency, Zambia. Available online: https://www.zamstats.gov.zm/wp-content/uploads/2023/05/The-2022-Livestock-Survey.pdf (accessed on 7 November 2023).
- Nikaido, H. Multidrug Resistance in Bacteria. Annu. Rev. Biochem. 2009, 78, 119–146. [Google Scholar] [CrossRef]
- Azabo, R.; Mshana, S.; Matee, M.; Kimera, S.I. Antimicrobial Usage in Cattle and Poultry Production in Dar Es Salaam, Tanzania: Pattern and Quantity. BMC Vet. Res. 2022, 18, 7. [Google Scholar] [CrossRef]
- Kamini, M.G.; Keutchatang, F.T.; Mafo, H.Y.; Kansci, G.; Nama, G.M. Antimicrobial Usage in the Chicken Farming in Yaoundé, Cameroon: A Cross-Sectional Study. Int. J. Food Contam. 2016, 3, 10. [Google Scholar] [CrossRef]
- Caudell, M.A.; Dorado-Garcia, A.; Eckford, S.; Creese, C.; Byarugaba, D.K.; Afakye, K.; Chansa-Kabali, T.; Fasina, F.O.; Kabali, E.; Kiambi, S.; et al. Towards a Bottom-up Understanding of Antimicrobial Use and Resistance on the Farm: A Knowledge, Attitudes, and Practices Survey across Livestock Systems in Five African Countries. PLoS ONE 2020, 15, e0220274. [Google Scholar] [CrossRef] [PubMed]
- Mudenda, S.; Malama, S.; Munyeme, M.; Hang’ombe, B.M.; Mainda, G.; Kapona, O.; Mukosha, M.; Yamba, K.; Bumbangi, F.N.; Mfune, R.L.; et al. Awareness of Antimicrobial Resistance and Associated Factors among Layer Poultry Farmers in Zambia: Implications for Surveillance and Antimicrobial Stewardship Programs. Antibiotics 2022, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Mudenda, S.; Mukosha, M.; Godman, B.; Fadare, J.; Malama, S.; Munyeme, M.; Hikaambo, C.N.; Kalungia, A.C.; Hamachila, A.; Kainga, H.; et al. Knowledge, Attitudes, and Practices of Community Pharmacy Professionals on Poultry Antibiotic Dispensing, Use, and Bacterial Antimicrobial Resistance in Zambia: Implications on Antibiotic Stewardship and WHO AWaRe Classification of Antibiotics. Antibiotics 2022, 11, 1210. [Google Scholar] [CrossRef]
- Mudenda, S.; Bumbangi, F.N.; Yamba, K.; Munyeme, M.; Malama, S.; Mukosha, M.; Hadunka, M.A.; Daka, V.; Matafwali, S.K.; Siluchali, G.; et al. Drivers of Antimicrobial Resistance in Layer Poultry Farming: Evidence from High Prevalence of Multidrug-Resistant Escherichia Coli and Enterococci in Zambia. Vet. World 2023, 69, 1803–1814. [Google Scholar] [CrossRef]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef]
- Mwansa, M.; Mukuma, M.; Mulilo, E.; Kwenda, G.; Mainda, G.; Yamba, K.; Bumbangi, F.N.; Muligisa-Muonga, E.; Phiri, N.; Silwamba, I.; et al. Determination of Antimicrobial Resistance Patterns of Escherichia Coli Isolates from Farm Workers in Broiler Poultry Production and Assessment of Antibiotic Resistance Awareness Levels among Poultry Farmers in Lusaka, Zambia. Front. Public. Health 2023, 10, 998860. [Google Scholar] [CrossRef]
- Nandi, S.P.; Sultana, M.; Hossain, M.A. Prevalence and Characterization of Multidrug-Resistant Zoonotic Enterobacter spp. in Poultry of Bangladesh. Foodborne Pathog. Dis. 2013, 10, 420–427. [Google Scholar] [CrossRef]
- Gao, P.; Munir, M.; Xagoraraki, I. Correlation of Tetracycline and Sulfonamide Antibiotics with Corresponding Resistance Genes and Resistant Bacteria in a Conventional Municipal Wastewater Treatment Plant. Sci. Total Environ. 2012, 421–422, 173–183. [Google Scholar] [CrossRef]
- Sreejith, S.; Shajahan, S.; Prathiush, P.R.; Anjana, V.M.; Viswanathan, A.; Chandran, V.; Ajith Kumar, G.S.; Jayachandran, R.; Mathew, J.; Radhakrishnan, E.K. Healthy Broilers Disseminate Antibiotic Resistance in Response to Tetracycline Input in Feed Concentrates. Microb. Pathog. 2020, 149, 104562. [Google Scholar] [CrossRef]
- Ameen-Ur-Rashid, S.S.A.S. Isolation of Escherichia Coli from Poultry Liver and Its Antibiogram. Res. J. Vet. Pract. 2016, 25, 241–242. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Cryer, T.L.; Lafi, S.Q.; Basha, E.A.; Good, L.; Tarazi, Y.H. Identification of Escherichia Coli from Broiler Chickens in Jordan, Their Antimicrobial Resistance, Gene Characterization and the Associated Risk Factors. BMC Vet. Res. 2019, 15, 159. [Google Scholar] [CrossRef] [PubMed]
- Hamed, E.A.; Abdelaty, M.F.; Sorour, H.K.; Roshdy, H.; Abdelrahman, M.A.A.; Magdy, O.; Ibrahim, W.A.; Sayed, A.; Mohamed, H.; Youssef, M.I.; et al. Monitoring of Antimicrobial Susceptibility of Bacteria Isolated from Poultry Farms from 2014 to 2018. Vet. Med. Int. 2021, 2021, 6739220. [Google Scholar] [CrossRef]
- Collignon, P.; Aarestrup, F.M.; Irwin, R.; McEwen, S. Human Deaths and Third-Generation Cephalosporin Use in Poultry, Europe. Emerg. Infect. Dis. 2013, 19, 1339–1340. [Google Scholar] [CrossRef] [PubMed]
- Simoneit, C.; Burow, E.; Tenhagen, B.A.; Käsbohrer, A. Oral Administration of Antimicrobials Increase Antimicrobial Resistance in E. Coli from Chicken—A Systematic Review. Prev. Vet. Med. 2015, 118, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Shawa, M.; Furuta, Y.; Paudel, A.; Kabunda, O.; Mulenga, E.; Mubanga, M.; Kamboyi, H.; Zorigt, T.; Chambaro, H.; Simbotwe, M.; et al. Clonal Relationship between Multidrug-Resistant Escherichia Coli ST69 from Poultry and Humans in Lusaka, Zambia. FEMS Microbiol. Lett. 2021, 368, fnac004. [Google Scholar] [CrossRef]
- Subramanya, S.H.; Bairy, I.; Nayak, N.; Amberpet, R.; Padukone, S.; Metok, Y.; Bhatta, D.R.; Sathian, B. Detection and Characterization of ESBLproducing Enterobacteriaceae from the Gut of Healthy Chickens, Gallus Gallus Domesticus in Rural Nepal: Dominance of CTX-M-15-Non-ST131 Escherichia Coli Clones. PLoS ONE 2020, 15, e0227725. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Penha Filho, R.A.C.; Andrade, L.N.; Berchieri Junior, A.; Darini, A.L.C. Evaluation and Characterization of Plasmids Carrying CTX-M Genes in a Non-Clonal Population of Multidrug-Resistant Enterobacteriaceae Isolated from Poultry in Brazil. Diagn. Microbiol. Infect. Dis. 2016, 85, 444–448. [Google Scholar] [CrossRef]
- Zeynudin, A.; Pritsch, M.; Schubert, S.; Messerer, M.; Liegl, G.; Hoelscher, M.; Belachew, T.; Wieser, A. Prevalence and Antibiotic Susceptibility Pattern of CTX-M Type Extended-Spectrum β -Lactamases among Clinical Isolates of Gram-Negative Bacilli in Jimma, Ethiopia. BMC Infect. Dis. 2018, 18, 524. [Google Scholar] [CrossRef]
- Aworh, M.K.; Kwaga, J.K.P.; Hendriksen, R.S.; Okolocha, E.C.; Thakur, S. Genetic Relatedness of Multidrug Resistant Escherichia Coli Isolated from Humans, Chickens and Poultry Environments. Antimicrob. Resist. Infect. Control 2021, 10, 58. [Google Scholar] [CrossRef]
- Shams, E.; Nateghi, B.; Eshaghiyan, A.; Behshood, P. TEM Gene Detection in Clinical Pseudomonas Aeruginosa and Escherichia Coli Samples. Res. Mol. Med. 2019, 7, 43–51. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022; ISBN 9789240062702. [Google Scholar]
- Magiorakos, A. Osobennosti Narusheni I Rechi Pri Dykhanii Pod Izbytochnym Davleniem. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Standards, P.; Testing, A.S. M100 Performance Standards for Antimicrobial; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2020; ISBN 9781684400669. [Google Scholar]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef]
- Pokhrel, R.H.; Thapa, B.; Kafle, R.; Shah, P.K.; Tribuddharat, C. Co-Existence of Beta-Lactamases in Clinical Isolates of Escherichia Coli from Kathmandu, Nepal. BMC Res. Notes 2014, 7, 694. [Google Scholar] [CrossRef] [PubMed]
- Colom, K.; Pérez, J.; Alonso, R.; Fernández-Aranguiz, A.; Lariño, E.; Cisterna, R. Simple and Reliable Multiplex PCR Assay for Detection of BlaTEM, BlaSHV and BlaOXA-1 Genes in Enterobacteriaceae. FEMS Microbiol. Lett. 2003, 223, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 2007, 21, 1–20. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; Mcgettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
Species | Facility | Total | ||
---|---|---|---|---|
A | B | C | ||
Enterobacter | 2 | 26 | 15 | 43 |
E. coli | 5 | 11 | 4 | 20 |
Salmonella | 2 | 8 | 0 | 10 |
Klebsiella | 0 | 1 | 0 | 1 |
Shigella | 0 | 5 | 3 | 8 |
Yersinia | 0 | 2 | 0 | 2 |
Citrobacter | 0 | 4 | 0 | 4 |
Vibrio | 1 | 0 | 0 | 1 |
Proteus | 4 | 5 | 1 | 10 |
Morganella | 0 | 4 | 0 | 0 |
Total | 14 | 66 | 23 | 103 |
Facility | Pathogens | |||
---|---|---|---|---|
Enterobacter | E. coli | Salmonella | Shigella | |
A | 3 | 3 | 3 | 1 |
B | 1 | 1 | 1 | |
C | 1 | 1 | 1 |
SAMPLE ID | ORGANISM | CTX MIC | blaTEM | blaCTX-M |
---|---|---|---|---|
UZ 1 | E. coli | ≥512 | + | + |
UZ 2 | Enterobacter | 2 | + | − |
AV 1 | E. coli | 2 | + | + |
AV 2 | Enterobacter | ≥512 | + | − |
AV 3 | Enterobacter | 2 | + | − |
LS 1 | Enterobacter | 2 | + | − |
LS 2 | E. coli | 4 | − | + |
LS 3 | Enterobacter | 2 | + | − |
LS 4 | Enterobacter | 2 | + | − |
LS 5 | E. coli | ≥512 | + | + |
LS 6 | Enterobacter | 128 | + | − |
LS 7 | E. coli | ≥512 | − | + |
LS 8 | E. coli | 16 | + | + |
LS 9 | Enterobacter | 128 | + | − |
Primers | Target Gene | Sequence 5′–3′ | Expected Amplicon Size | R Reference: |
---|---|---|---|---|
TEM1F TEM1R | blaTEM | ATGAGTATTCAACATTTCCG CTGACAGTTACCAATGCTTA | 864 | [39] |
SHVF SHVR | blaSHV | GGTTATGCGTTATATTCGCC TTAGCGTTGCCAGTGCTC | 865 | [39] |
CTX-MA1 CTX-MA2 | blaCTX-M | *SCSATGTGCAG≠YACCAGTAA CCGC¥RATATGRTTGGTGGTG | 544 | [39] |
OXAF OXAR | blaOXA | ATATCTCTACTGTTGCATCTCC AAACCCTTCAAACCATCC | 619 | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chileshe, C.; Shawa, M.; Phiri, N.; Ndebe, J.; Khumalo, C.S.; Nakajima, C.; Kajihara, M.; Higashi, H.; Sawa, H.; Suzuki, Y.; et al. Detection of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacteriaceae from Diseased Broiler Chickens in Lusaka District, Zambia. Antibiotics 2024, 13, 259. https://doi.org/10.3390/antibiotics13030259
Chileshe C, Shawa M, Phiri N, Ndebe J, Khumalo CS, Nakajima C, Kajihara M, Higashi H, Sawa H, Suzuki Y, et al. Detection of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacteriaceae from Diseased Broiler Chickens in Lusaka District, Zambia. Antibiotics. 2024; 13(3):259. https://doi.org/10.3390/antibiotics13030259
Chicago/Turabian StyleChileshe, Chikwanda, Misheck Shawa, Nelson Phiri, Joseph Ndebe, Cynthia Sipho Khumalo, Chie Nakajima, Masahiro Kajihara, Hideaki Higashi, Hirofumi Sawa, Yasuhiko Suzuki, and et al. 2024. "Detection of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacteriaceae from Diseased Broiler Chickens in Lusaka District, Zambia" Antibiotics 13, no. 3: 259. https://doi.org/10.3390/antibiotics13030259
APA StyleChileshe, C., Shawa, M., Phiri, N., Ndebe, J., Khumalo, C. S., Nakajima, C., Kajihara, M., Higashi, H., Sawa, H., Suzuki, Y., Muleya, W., & Hang’ombe, B. M. (2024). Detection of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacteriaceae from Diseased Broiler Chickens in Lusaka District, Zambia. Antibiotics, 13(3), 259. https://doi.org/10.3390/antibiotics13030259