Rethinking Hidradenitis Suppurativa Management: Insights into Bacterial Interactions and Treatment Evolution
Abstract
:1. Introduction
2. Review
2.1. Dominant Bacteria in Skin of HS Patients
2.2. Bacteria as a Secondary Event in HS Pathogenesis
2.3. The Role of Bacterial Biofilms in HS Disease
2.4. Antibiotic Efficacy and Resistance in HS
2.5. Biologic Use and Innovation in HS
2.6. Janus Kinase Inhibitors for the Treatment of HS
2.7. IRAK4 Degraders in HS
2.8. Novel Biologic Interleukin Antagonists for HS
2.9. Future Directions in Understanding Bacteria in HS Pathogenesis and Treatment
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, T.V.; Damiani, G.; Orenstein, L.A.V.; Hamzavi, I.; Jemec, G.B. Hidradenitis suppurativa: An update on epidemiology, phenotypes, diagnosis, pathogenesis, comorbidities and quality of life. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 50–61. [Google Scholar] [CrossRef] [PubMed]
- van Straalen, K.R.; Prens, E.P.; Gudjonsson, J.E. Insights into hidradenitis suppurativa. J. Allergy Clin. Immunol. 2022, 149, 1150–1161. [Google Scholar] [CrossRef] [PubMed]
- Kanni, T.; Zenker, O.; Habel, M.; Riedemann, N.; Giamarellos-Bourboulis, E.J. Complement activation in Hidradenitis Suppurativa: A new pathway of pathogenesis? Br. J. Dermatol. 2018, 179, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Frew, J.W.; Thomsen, S.F.; Ring, H.C. Antimicrobial peptides in Hidradenitis Suppurativa: A systematic review*. Br. J. Dermatol. 2021, 186, 236–244. [Google Scholar] [CrossRef]
- Lowe, M.M.; Cohen, J.N.; Moss, M.I.; Clancy, S.; Adler, J.; Yates, A.; Naik, H.B.; Pauli, M.; Taylor, I.; McKay, A.; et al. Tertiary lymphoid structures sustain cutaneous B cell activity in Hidradenitis Suppurativa. JCI Insight 2023. [Google Scholar] [CrossRef]
- Radhakrishna, U.; Ratnamala, U.; Jhala, D.D.; Vadsaria, N.; Patel, M.; Uppala, L.V.; Vishweswaraiah, S.; Vedangi, A.; Saiyed, N.; Damiani, G.; et al. Methylated mirnas may serve as potential biomarkers and therapeutic targets for Hidradenitis Suppurativa. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 2199–2213. [Google Scholar] [CrossRef]
- Radhakrishna, U.; Ratnamala, U.; Jhala, D.D.; Uppala, L.V.; Vedangi, A.; Saiyed, N.; Patel, M.; Vadsaria, N.; Shah, S.R.; Rawal, R.M.; et al. Hidradenitis suppurativa associated telomere-methylome dysregulations in blood. J. Eur. Acad. Dermatol. Venereol. 2023, 38, 393–403. [Google Scholar] [CrossRef]
- Radhakrishna, U.; Ratnamala, U.; Jhala, D.D.; Uppala, L.V.; Vedangi, A.; Patel, M.; Vadsaria, N.; Shah, S.; Saiyed, N.; Rawal, R.M.; et al. Hidradenitis Suppurativa presents a methylome dysregulation capable to explain the pro-inflammatory microenvironment: Are these dna methylations potential therapeutic targets? J. Eur. Acad. Dermatol. Venereol. 2023, 37, 2109–2123. [Google Scholar] [CrossRef]
- Radhakrishna, U.; Ratnamala, U.; Jhala, D.D.; Vadsaria, N.; Patel, M.; Uppala, L.V.; Vedangi, A.; Saiyed, N.; Rawal, R.M.; Damiani, G.; et al. Cytochrome P450 genes mediated by DNA methylation are involved in the resistance to Hidradenitis Suppurativa. J. Investig. Dermatol. 2023, 143, 670–673. [Google Scholar] [CrossRef]
- Naik, H.B.; Jo, J.-H.; Paul, M.; Kong, H.H. Skin microbiota perturbations are distinct and disease severity–dependent in Hidradenitis Suppurativa. J. Investig. Dermatol. 2020, 140, 922. [Google Scholar] [CrossRef]
- Shu, M.; Wang, Y.; Yu, J.; Kuo, S.; Coda, A.; Jiang, Y.; Gallo, R.L.; Huang, C.M. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE 2013, 8, e55380. [Google Scholar] [CrossRef]
- Almoughrabie, S.; Cau, L.; Cavagnero, K.; O’Neill, A.M.; Li, F.; Roso-Mares, A.; Mainzer, C.; Closs, B.; Kolar, M.J.; Williams, K.J.; et al. Commensal Cutibacterium acnes induce epidermal lipid synthesis important for skin barrier function. Sci. Adv. 2023, 9, eadg6262. [Google Scholar] [CrossRef] [PubMed]
- Rosi, E.; Guerra, P.; Silvi, G.; Nunziati, G.; Scandagli, I.; Di Cesare, A.; Prignano, F. Consistency of bacterial triggers in the pathogenesis of Hidradenitis Suppurativa. Vaccines 2023, 11, 179. [Google Scholar] [CrossRef]
- Wolk, K.; Join-Lambert, O.; Sabat, R. Aetiology and pathogenesis of Hidradenitis Suppurativa. Br. J. Dermatol. 2020, 183, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Lapins, J.; Jarstrand, C.; Emtestam, L. Coagulase-negative staphylococci are the most common bacteria found in cultures from the deep portions of hidradenitis suppurativa lesions, as obtained by carbon dioxide laser surgery. Br. J. Dermatol. 1999, 140, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Nikolakis, G.; Join-Lambert, O.; Karagiannidis, I.; Guet-Revillet, H.; Zouboulis, C.C.; Nassif, A. Bacteriology of hidradenitis suppurativa/acne inversa: A Review. J. Am. Acad. Dermatol. 2015, 73, S12–S18. [Google Scholar] [CrossRef]
- Ring, H.C.; Riis Mikkelsen, P.; Miller, I.M.; Jenssen, H.; Fuursted, K.; Saunte, D.M.; Jemec, G.B. The bacteriology of Hidradenitis Suppurativa: A systematic review. Exp. Dermatol. 2015, 24, 727–731. [Google Scholar] [CrossRef]
- Williams, S.C.; Frew, J.W.; Krueger, J.G. A systematic review and critical appraisal of metagenomic and culture studies in Hidradenitis Suppurativa. Exp. Dermatol. 2020, 30, 1388–1397. [Google Scholar] [CrossRef]
- Wark, K.J.; Cains, G.D. The microbiome in Hidradenitis Suppurativa: A Review. Dermatol. Ther. 2020, 11, 39–52. [Google Scholar] [CrossRef]
- Guet-Revillet, H.; Coignard-Biehler, H.; Jais, J.P.; Quesne, G.; Frapy, E.; Poirée, S.; Le Guern, A.S.; Le Flèche-Matéos, A.; Hovnanian, A.; Consigny, P.H.; et al. Bacterial pathogens associated with Hidradenitis Suppurativa, France. Emerg. Infect. Dis. 2014, 20, 1990–1998. [Google Scholar] [CrossRef]
- Jahns, A.C.; Killasli, H.; Nosek, D.; Lundskog, B.; Lenngren, A.; Muratova, Z.; Emtestam, L.; Alexeyev, O.A. Microbiology of hidradenitis suppurativa (Acne Inversa): A histological study of 27 patients. Apmis 2014, 122, 804–809. [Google Scholar] [CrossRef]
- Molinelli, E.; De Simoni, E.; Candelora, M.; Sapigni, C.; Brisigotti, V.; Rizzetto, G.; Offidani, A.; Simonetti, O. Systemic antibiotic therapy in Hidradenitis Suppurativa: A review on treatment landscape and current issues. Antibiotics 2023, 12, 978. [Google Scholar] [CrossRef]
- Kathju, S.; Lasko, L.-A.; Stoodley, P. Considering hidradenitis suppurativa as a bacterial biofilm disease. FEMS Immunol. Med. Microbiol. 2012, 65, 385–389. [Google Scholar] [CrossRef]
- Parsek, M.R.; Singh, P.K. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol. 2003, 57, 677–701. [Google Scholar] [CrossRef]
- Ciofu, O.; Rojo-Molinero, E.; Macià, M.D.; Oliver, A. Antibiotic treatment of biofilm infections. Apmis 2017, 125, 304–319. [Google Scholar] [CrossRef] [PubMed]
- Bettoli, V.; Manfredini, M.; Massoli, L.; Carillo, C.; Barozzi, A.; Amendolagine, G.; Ruina, G.; Musmeci, D.; Libanore, M.; Curtolo, A.; et al. Rates of antibiotic resistance/sensitivity in bacterial cultures of Hidradenitis Suppurativa patients. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Hessam, S.; Sand, M.; Georgas, D.; Anders, A.; Bechara, F.G. Microbial profile and antimicrobial susceptibility of bacteria found in inflammatory hidradenitis suppurativa lesions. Ski. Pharmacol. Physiol. 2016, 29, 161–167. [Google Scholar] [CrossRef]
- Goldburg, S.R.; Strober, B.E.; Payette, M.J. Hidradenitis Suppurativa. J. Am. Acad. Dermatol. 2020, 82, 1061–1082. [Google Scholar] [CrossRef]
- Iannone, M.; Janowska, A.; Bartolomei, G.; Puntoni, M.; Oranges, T.; Romanelli, M.; Dini, V. Systemic antibiotics in hidradenitis suppurativa: Efficacy and effects of body mass index and smoking pack-year on the response to therapy. Dermatol. Ther. 2021, 34, e14919. [Google Scholar] [CrossRef] [PubMed]
- van Straalen, K.R.; Tzellos, T.; Guillem, P.; Benhadou, F.; Cuenca-Barrales, C.; Daxhelet, M.; Daoud, M.; Efthymiou, O.; Giamarellos-Bourboulis, E.J.; Jemec, G.B.; et al. The efficacy and tolerability of tetracyclines and clindamycin plus rifampicin for the treatment of Hidradenitis Suppurativa: Results of a prospective European cohort study. J. Am. Acad. Dermatol. 2021, 85, 369–378. [Google Scholar] [CrossRef]
- López-Llunell, C.; Riera-Martí, N.; Gamissans, M.; Romaní, J. Dapsone in Hidradenitis Suppurativa: A case series of 56 patients. Dermatol. Ther. 2021, 34, e15161. [Google Scholar] [CrossRef]
- Nesbitt, E.; Clements, S.; Driscoll, M. A concise clinician’s guide to therapy for hidradenitis suppurativa. Int. J. Women’s Dermatol. 2020, 6, 80–84. [Google Scholar] [CrossRef]
- Ellis, C.; Azmat, C. Adalimumab. In Statpearls; StatPearls Publishing: St. Petersburg, FL, USA, 2022; Available online: https://www.ncbi.nlm.nih.gov/books/NBK557889/ (accessed on 4 February 2024).
- Kimball, A.B.; Jemec, G.B.; Alavi, A.; Reguiai, Z.; Gottlieb, A.B.; Bechara, F.G.; Paul, C.; Bourboulis, E.J.G.; Villani, A.P.; Schwinn, A.; et al. Secukinumab in moderate-to-severe hidradenitis suppurativa (Sunshine and sunrise): Week 16 and week 52 results of two identical, multicentre, randomised, placebo-controlled, double-blind phase 3 trials. Lancet 2023, 401, 747–761. [Google Scholar] [CrossRef]
- McGeachy, M.J.; Cua, D.J.; Gaffen, S.L. The Il-17 family of cytokines in health and disease. Immunity 2019, 50, 892–906. [Google Scholar] [CrossRef]
- Chin, D.; Goncheva, M.I.; Flannagan, R.S.; Deecker, S.R.; Guariglia-Oropeza, V.; Ensminger, A.W.; Heinrichs, D.E. Coagulase-negative staphylococci release a purine analog that inhibits staphylococcus aureus virulence. Nat. Commun. 2021, 12, 1887. [Google Scholar] [CrossRef]
- Kimball, A.B.; Okun, M.M.; Williams, D.A.; Gottlieb, A.B.; Papp, K.A.; Zouboulis, C.C.; Armstrong, A.W.; Kerdel, F.; Gold, M.H.; Forman, S.B.; et al. Two phase 3 trials of adalimumab for Hidradenitis Suppurativa. N. Engl. J. Med. 2016, 375, 422–434. [Google Scholar] [CrossRef]
- Adams, R.; Maroof, A.; Baker, T.; Lawson, A.D.; Oliver, R.; Paveley, R.; Rapecki, S.; Shaw, S.; Vajjah, P.; West, S.; et al. Bimekizumab, a novel humanized igg1 antibody that neutralizes both IL-17A and IL-17F. Front. Immunol. 2020, 11, 1894. [Google Scholar] [CrossRef]
- Glatt, S.; Jemec, G.B.; Forman, S.; Sayed, C.; Schmieder, G.; Weisman, J.; Rolleri, R.; Seegobin, S.; Baeten, D.; Ionescu, L.; et al. Efficacy and safety of bimekizumab in moderate to severe Hidradenitis Suppurativa. JAMA Dermatol. 2021, 157, 1279. [Google Scholar] [CrossRef] [PubMed]
- Kimball, A.B.; Zouboulis, C.C.; Sayed, C. Bimekizumab in patients with moderate-to-severe hidradenitis suppurativa: 48-week efficacy and safety from BE HEARD I & II, two phase 3, randomized, double-blind, placebo controlled, multicenter studies. In Proceedings of the Late-Breaking Platform Presentation at the 2023 American Academy of Dermatology Annual Meeting, New Orleans, LA, USA, 18 March 2023. [Google Scholar]
- Alavi, A.; Hamzavi, I.; Brown, K.; Santos, L.L.; Zhu, Z.; Liu, H.; Howell, M.D.; Kirby, J.S. Janus kinase 1 inhibitor INCB054707 for patients with moderate-to-severe hidradenitis suppurativa: Results from two phase II studies. Br. J. Dermatol. 2022, 186, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Santos, L.L.; Smith, S.H. Modulation of disease-associated pathways in Hidradenitis Suppurativa by the Janus kinase 1 inhibitor povorcitinib: Transcriptomic and proteomic analyses of two phase 2 studies. Int. J. Mol. Sci. 2023, 24, 7185. [Google Scholar] [CrossRef] [PubMed]
- Frings, V.G.; Nadine, R.O.T.H.; Gläsel, M.; Bauer, B.; Goebeler, M.; Presser, D.; Kerstan, A. Hidradenitis suppurativa: Absence of hyperhidrosis but presence of a proinflammatory signature in patients’ sweat. Acta Derm.-Venereol. 2022, 102, 2731. [Google Scholar] [CrossRef] [PubMed]
- Incyte Announces 52-Week Results from Phase 2 Study Evaluating Povorcitinib (INCB54707) in Patients with Hidradenitis Suppurativa. Incyte. 10 February 2023. Available online: https://investor.incyte.com/news-releases/news-release-details/incyte-announces-52-week-results-phase-2-study-evaluating (accessed on 15 January 2024).
- Kozera, E.; Flora, A.; Frew, J.W. Real-world safety and clinical response of janus kinase inhibitor upadacitinib in the treatment of Hidradenitis Suppurativa: A retrospective cohort study. J. Am. Acad. Dermatol. 2022, 87, 1440–1442. [Google Scholar] [CrossRef] [PubMed]
- A Study to Assess Change in Disease Activity and Adverse Events of Oral Upadacitinib in Adult and Adolescent Participants with Moderate to Severe Hidradenitis Suppurativa Who Have Failed Anti-TNF Therapy (Step-Up HS). Clinicaltrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05889182?cond=Hidradenitis+Suppurativa&intr=Upadacitinib&rank=1 (accessed on 15 January 2024).
- Witte-Händel, E.; Wolk, K.; Tsaousi, A.; Irmer, M.L.; Mößner, R.; Shomroni, O.; Lingner, T.; Witte, K.; Kunkel, D.; Salinas, G.; et al. The IL-1 pathway is hyperactive in hidradenitis suppurativa and contributes to skin infiltration and destruction. J. Investig. Dermatol. 2019, 139, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, L.; Acloque, G.; Bacchelli, S.; Schwartz, H.; Feinstein, B.J.; La Stella, P.; Alavi, A.; Gollerkeri, A.; Davis, J.; Campbell, V.; et al. Irak4 degrader in Hidradenitis Suppurativa and atopic dermatitis: A phase 1 trial. Nat. Med. 2023, 29, 3127–3136. [Google Scholar] [CrossRef]
- Kymera Announces Positive Results from Phase 1 Clinical Trial Evaluating KT-474 in Patients with HS and AD and Sanofi’s Decision to Advance KT-474 into Phase 2 Clinical Trials. Kymera Therapeutics, Inc. 14 December 2022. Available online: https://investors.kymeratx.com/news-releases/news-release-details/kymera-announces-positive-results-phase-1-clinical-trial (accessed on 15 January 2024).
- Lutikizumab Showed Positive Results in a Phase 2 Trial of Adults with Moderate to Severe Hidradenitis Suppurativa as Program Advances to Phase 3. PR Newswire. 8 January 2024. Available online: https://www.prnewswire.com/news-releases/lutikizumab-showed-positive-results-in-a-phase-2-trial-of-adults-with-moderate-to-severe-hidradenitis-suppurativa-as-program-advances-to-phase-3-302027605.html (accessed on 4 January 2024).
Study | HS Findings |
---|---|
Naik et al. (2020) [10] | Higher number of mixed anaerobes and diversity; possible correlation between presence of anaerobes and disease severity; decreased Cutibacterium overall but greater presence in inframammary and axilla compared to healthy patients |
Wolk et al. (2020) [14] | Presence of anaerobic cocci in deep axillary and inguinal lesions; less S. aureus in comparison to CoNS; decreased S. aureus presence in deep lesions compared to the surface |
Nikolakis et al. (2015) [16] | Fusobacterium spp. and Bacteroides spp. may be associated with chronic lesions; did not detect CoNS in severe lesions |
Ring et al. (2015) [17] | Most predominant species detected in HS lesions appears to be CoNS, and in some cases, was the only detected bacteria; sinus tracts are heavily dominated by anaerobic species (ex. Prevotella, Porphyromonas) |
Williams et al. (2020) [18] | Increased anaerobes and Corynebacterium, and decreased Cutibacterium within active lesions; CoNS identified in biofilm of severe HS patients |
Guet-Revillet et al. (2014) [20] | Possible positive correlation between abundance of anaerobic bacteria and severity of disease; identified strict anaerobes, milleri group streptococci, and anaerobic actinomycetes; predominant gram-positive cocci were Anaerococcus spp., Peptoniphilus spp., and Fineholdia spp. and predominant gram-negative rods were Prevotella spp., Porphyromonas spp., Bacteroides spp., and Fusobacterium spp.; S. aureus detected in 0% of Hurley stage I lesions, 4% of stage II lesions, and 25% of stage III lesions; S. lugdunensis is predominant in Hurley stage I, and stages II and III have mixed anaerobe profiles |
Jahns et al. (2014) [21] | Unable to isolate S. aureus or CoNS from deeper cutaneous layers |
Kathju et al. (2012) [23] | Featured case study showcases chronic and severe HS with developed biofilm that is unable to be eradicated by antibiotics |
Bettoli et al. (2019) [26] | Evaluated antibiotic resistance rates were 65.7% for clindamycin and 69.3% for rifampicin when not used synergistically |
Hessam et al. (2016) [27] | Evaluated antibiotic resistance rate for clindamycin was about 55% |
Study | Bacteria | Role | HS Relationship |
---|---|---|---|
Naik et al. (2020) [10], Shu et al. (2013) [11] | Cutibacterium | Skin commensal that ferments carbohydrates into propionic acid, which is a compound known for its bactericidal activity against pathogens; metabolizes free fatty acids from sebum and decreases surface pH to support commensal bacteria while inhibiting pathogens and preventing biofilm formation | Decreased overall but greater presence in inframammary and axilla compared to healthy patients |
Wolk et al. (2020) [14], Nikolakis et al. (2015) [16], Ring et al. (2015) [17] | Coagulase-negative Staphylococci | Skin commensal that can also cause severe infection in immunosuppressed patients | The most predominant species detected in HS lesions according to some studies; none detected in severe lesions when fluorescence in situ hybridization is utilized |
Nikolakis et al. (2015) [16], Guet-Revillet et al. (2014) [20], Molinelli et al. (2023) [22] | Staphylococcus lugdunensis | Species of CoNS that mimics S. aureus and is known to induce abscesses; preferred carriage site appears to be the perineal and inguinal regions with the breast region as an additional site | Detected in HS nodules and abscesses; established association with Hurley stage I |
Ring et al. (2015) [17] | Staphylococcus epidermidis | Known to form biofilms, especially in indwelling foreign devices | Present in sinus tracts |
Study | Drug | Methodology | Resistance Rate | Most Commonly Isolated Bacteria |
---|---|---|---|---|
Bettoli et al. (2019) [26] | Clindamycin Rifampicin Penicillin Ciprofloxacin Tetracycline Erythromycin | Cultured purulent material from HS lesions collected from swabs | 65.7% 69.3% 70.0% 74.0% 84.7% 89.0% | Bacterial families: Enterobacteriaceae (30.7%), Staphylococcus (25.2%), Streptococcus (14.1%) Genus or species: Proteus spp. (13.5%), Escherichia coli (9.8%) |
Hessam et al. (2016) [27] | Clindamycin | Cultures from deep portions of HS lesions obtained from surgical patients | 55.0% | Coagulase-negative Staphylococci, Staphylococcus aureus, Proteus mirabilis, Escherichia coli |
Study | Drug | Achieved HiSCR50 Rate |
---|---|---|
van Straalen et al. (2021) [30] | Oral Tetracyclines Clindamycin with Rifampicin | Week 12: 40.1% Week 12: 48.2% |
López-Llunell et al. (2021) [31] | Dapsone | Week 12: 62.5% |
Kimball et al. (2016) [37] | Adalimumab | PIONEER I: 41.8% Adalimumab vs. 26.0% placebo PIONEER II: 58.9% Adalimumab vs. 27.6% placebo |
Kimball et al. (2023) [34] | Secukinumab | SUNSHINE: 45% Secukinumab vs. 34.0% placebo SUNRISE: 42% Secukinumab vs. 31.0% placebo |
Glatt et al. (2021) [39] | Bimekizumab | 57.3% Bimekizumab vs. 26.1% placebo |
Kimball et al. (2023) [40] | Bimekizumab | BE HEARD I Week 16: 47.8% Bimekizumab Q2W vs. 45.3% Bimekizumab Q24 vs. 28.7% placebo BE HEARD II Week 16: 52% Bimekizumab Q2W vs. 53.8% Bimekizumab Q24 vs. 32.2% placebo (BE HEARD I/II Week 48 HiSCR75: 55.0% Bimekizumab) |
Alavi et al. (2022) [41] | Povorcitinib | Study 1: 43.0% Povorcitinib Study 2: Total 65.0% Povorcitinib (56.0% 30 mg, 56.0% 60 mg, 88.0% 90 mg) vs. 57.0% placebo |
Kozera et al. (2022) [45] | Upadacitinib | Week 4: 75.0% Upadacitinib 15 mg (30.0% HiSCR75, 20.0% HiSCR90) Week 12: 100% Upadacitinib 30 mg (95.0% HiSCR75, 30.0% HiSCR90) |
Ackerman et al. (2023) [48] | KT-474 | 28 days with 2-week follow-up: 42.0–50.0% |
PR Newswire (2024) [50] | Lutikizumab | Week 16: 27.0% Lutikizumab 100 mg Q2W vs. 48.7% Lutikizumab 300 mg Q1W vs. 59.5% Lutikizumab 300 mg Q2W vs. 35.0% placebo (Week 16 HiSCR75: 16.2% Lutikizumab 100 mg Q2W vs. 38.5% Lutikizumab 300 mg Q1W vs. 45.9% Lutikizumab 300 mg Q2W vs. 17.5% placebo) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, F.D.; Damiani, G.; Bunick, C.G. Rethinking Hidradenitis Suppurativa Management: Insights into Bacterial Interactions and Treatment Evolution. Antibiotics 2024, 13, 268. https://doi.org/10.3390/antibiotics13030268
Huynh FD, Damiani G, Bunick CG. Rethinking Hidradenitis Suppurativa Management: Insights into Bacterial Interactions and Treatment Evolution. Antibiotics. 2024; 13(3):268. https://doi.org/10.3390/antibiotics13030268
Chicago/Turabian StyleHuynh, Faith D., Giovanni Damiani, and Christopher G. Bunick. 2024. "Rethinking Hidradenitis Suppurativa Management: Insights into Bacterial Interactions and Treatment Evolution" Antibiotics 13, no. 3: 268. https://doi.org/10.3390/antibiotics13030268
APA StyleHuynh, F. D., Damiani, G., & Bunick, C. G. (2024). Rethinking Hidradenitis Suppurativa Management: Insights into Bacterial Interactions and Treatment Evolution. Antibiotics, 13(3), 268. https://doi.org/10.3390/antibiotics13030268