Scientific Rationale and Clinical Basis for Clindamycin Use in the Treatment of Dermatologic Disease
Abstract
:1. Introduction
2. Clindamycin Structural Mechanism of Action
2.1. Antibiotics Bind to Bacterial Ribosomes
2.2. Mechanism of Translation Inhibition by Clindamycin
2.3. Clindamycin Function in C. acnes
3. Efficacy and Use of Clindamycin in Dermatologic Disease
3.1. Acne Vulgaris
3.1.1. Clindamycin Therapy Targets C. acnes
3.1.2. Evidence in Favor of Standard and Novel Topical Clindamycin Treatments for Acne
3.1.3. Clindamycin Is an Effective Treatment across Acne Patient Populations
3.2. Folliculitis
3.2.1. Bacterial Folliculitis
3.2.2. Fungal Folliculitis
3.2.3. Other Folliculitis Types
3.3. Rosacea
3.4. Hidradenitis Suppurativa (HS)
3.5. Staphylococcal Infections
3.6. Additional Indications and Contraindications
Skin Condition | Clindamycin Treatment Type | References |
---|---|---|
Acne vulgaris (common acne) | Topical clindamycin phosphate (i.e., clindamycin phosphate 1%), though clindamycin monotherapy is not recommended | [2,13,15,16,17,18,19,35,54,57,59,62] |
Topical clindamycin in combination: Clindamycin/BPO (i.e., 1%/5%; or fixed-combination 1.2%/2.5% or 1.2%/3.75%) Clindamycin/Tretinoin (i.e., 1%/0.025% or 1.2%/0.025% gel) | ||
Topical clindamycin in triple-combination (IDP-126): clindamycin phosphate/BPO/adapalene (1.2%/3.1%/0.15%) | ||
Adapalene/BPO (i.e., 0.1% or 0.3%/2.5%) | ||
BPO alone (2.5–10%) | ||
Folliculitis (i.e., bacterial superficial, bacterial Gram-negative, Malassezia (Pityrosporum) folliculitis, folliculitis decalvans (FD)) | For common bacterial/superficial folliculitis: clindamycin phosphate (1%) topical foam, solution, or gel | [64,65,66,84] |
For Gram-negative bacterial folliculitis or pustular acne: ampicillin or topical gentamycin and oral co-trimoxazole, followed by clindamycin/BPO/tretinoin and/or oral tetracyclines | ||
For severe/refractory FD: clindamycin/rifampicin treatment (i.e., 300 mg/each, 1× day/10 weeks) or oral isotretinoin or steroids; for mild FD: topical corticosteroids or topical antibiotics (2–3×/week) | ||
For Malassezia folliculitis: oral antifungals, like ketoconazole | ||
Rosacea, including papulopustular rosacea (PPR) | Sole treatment or effective combination of: metronidazole (0.75%, 1%), ivermectin (1%), azithromycin (2%), azelaic acid (15%, 20%), erythromycin (2%) | [35,36,68,85] |
PPR treatment for more severe cases may also include: oral doxycycline/minocycline/sarecycline and topical clindamycin (1%) gel or clindamycin/BPO (1%/5%) gel | ||
Staphylococcal infections | For S. aureus: at least 0.1 μg/mL minimum inhibitory concentration (MIC) clindamycin | [6,86] |
Severe: 7 days of 10 mg/kg/dose clindamycin as an antitoxin adjunct treatment may be administered intravenously (IV) | ||
Hidradenitis suppurativa (HS) | For mild HS, generally topical clindamycin (1%), or topical clindamycin/dapsone combination | [33,35] |
4. Review of the Anti-Inflammatory Properties of Clindamycin
4.1. Crosstalk between Clindamycin and the Immune System in Acne
4.2. Inflammation Mediated by C. acnes in Acne Pathogenesis
4.2.1. Role of Inflammation in Acne Lesion Formation
4.2.2. C. acnes, Sebum, and Antimicrobial Peptides (AMPs)
4.2.3. C. acnes Phylotypes and Acne Severity
4.3. Effects of Clindamycin in Treating Inflammatory Lesions
4.3.1. Clindamycin Topicals Reduce Inflammation in Acne
4.3.2. Topical Clindamycin May Subside Inflammation in Mild HS, Rosacea
5. Antibiotic Resistance to Clindamycin: Trends and Ways to Overcome
5.1. Trends in Resistance Rates Due to Clindamycin Use in Dermatological Practice
5.2. Microbial Mechanisms of Clindamycin Resistance
5.3. Molecular Mechanisms of Clindamycin Resistance
5.3.1. Mutations, Methylation, Protein–Antibiotic Interactions, and Efflux Pumps Confer Resistance to Clindamycin
5.3.2. Genes Involved in Clindamycin Resistance
5.3.3. Resistance to Clindamycin Involves Multi-Species Crosstalk
5.4. Assessing Factors Involved in Topical Clindamycin Use and Antibiotic Resistance
6. The Future Outlook for Clindamycin in Dermatology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clindamycin. Available online: https://www.acs.org/molecule-of-the-week/archive/c/clindamycin.html (accessed on 10 May 2023).
- Dallo, M.; Patel, K.; Hebert, A.A. Topical Antibiotic Treatment in Dermatology. Antibiotics 2023, 12, 188. [Google Scholar] [CrossRef]
- Mitcheltree, M.J.; Pisipati, A.; Syroegin, E.A.; Silvestre, K.J.; Klepacki, D.; Mason, J.D.; Terwilliger, D.W.; Testolin, G.; Pote, A.R.; Wu, K.J.Y.; et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 2021, 599, 507–512. [Google Scholar] [CrossRef]
- Rosenberg, M.G. Clindamycin. Pediatr. Rev. 1996, 17, 373–374. [Google Scholar] [CrossRef]
- Raebel, M.A.; Browne, B.A. Clindamycin, erythromycin, and the newer macrolides. Clin. Podiatr. Med. Surg. 1992, 9, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Smieja, M. Current indications for the use of clindamycin: A critical review. Can. J. Infect. Dis. 1998, 9, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Weingarten-Arams, J.; Adam, H.M. Clindamycin. Pediatr. Rev. 2002, 23, 149–150. [Google Scholar] [CrossRef]
- Murphy, P.B.; Bistas, K.G.; Le, J.K. Clindamycin. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kasten, M.J. Clindamycin, metronidazole, and chloramphenicol. Mayo Clin. Proc. 1999, 74, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Dréno, B.; Pécastaings, S.; Corvec, S.; Veraldi, S.; Khammari, A.; Roques, C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: A brief look at the latest updates. J. Eur. Acad. Dermatol. Venereol. 2018, 32 (Suppl. 2), 5–14. [Google Scholar] [CrossRef]
- Walsh, T.R.; Efthimiou, J.; Dréno, B. Systematic review of antibiotic resistance in acne: An increasing topical and oral threat. Lancet Infect. Dis. 2016, 16, e23–e33. [Google Scholar] [CrossRef]
- Kuriyama, T.; Karasawa, T.; Nakagawa, K.; Saiki, Y.; Yamamoto, E.; Nakamura, S. Bacteriologic features and antimicrobial susceptibility in isolates from orofacial odontogenic infections. Oral. Surg. Oral. Med. Oral Pathol. Oral Radiol. Endod. 2000, 90, 600–608. [Google Scholar] [CrossRef]
- Mohsin, N.; Hernandez, L.E.; Martin, M.R.; Does, A.V.; Nouri, K. Acne treatment review and future perspectives. Dermatol. Ther. 2022, 35, e15719. [Google Scholar] [CrossRef] [PubMed]
- Leccia, M.T.; Auffret, N.; Poli, F.; Claudel, J.P.; Corvec, S.; Dreno, B. Topical acne treatments in Europe and the issue of antimicrobial resistance. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.K.; Barankin, B.; Lam, J.M.; Leong, K.F.; Hon, K.L. Dermatology: How to manage acne vulgaris. Drugs Context 2021, 10, 2021-8-6. [Google Scholar] [CrossRef]
- Del Rosso, J.Q. Clindamycin Phosphate 1.2%/Tretinoin 0.025% Gel for the Treatment of Acne Vulgaris: Which Patients are Most Likely to Benefit the Most? J. Clin. Aesthet. Dermatol. 2015, 8, 19–23. [Google Scholar]
- Eichenfield, D.Z.; Sprague, J.; Eichenfield, L.F. Management of Acne Vulgaris: A Review. JAMA 2021, 326, 2055–2067. [Google Scholar] [CrossRef] [PubMed]
- Marushchak, O.; Gagliotti, M.; Vekaria, A.S.; Goldenberg, G. A Pilot Study of Clindamycin Phosphate 1.2% and Benzoyl Peroxide 3.75% Combination Gel in the Treatment of Perimenstrual Acne. J. Clin. Aesthet. Dermatol. 2022, 15, 18–21. [Google Scholar]
- Stein Gold, L.; Baldwin, H.; Kircik, L.H.; Weiss, J.S.; Pariser, D.M.; Callender, V.; Lain, E.; Gold, M.; Beer, K.; Draelos, Z.; et al. Efficacy and Safety of a Fixed-Dose Clindamycin Phosphate 1.2%, Benzoyl Peroxide 3.1%, and Adapalene 0.15% Gel for Moderate-to-Severe Acne: A Randomized Phase II Study of the First Triple-Combination Drug. Am. J. Clin. Dermatol. 2022, 23, 93–104. [Google Scholar] [CrossRef]
- Warner, G.T.; Plosker, G.L. Clindamycin/benzoyl peroxide gel: A review of its use in the management of acne. Am. J. Clin. Dermatol. 2002, 3, 349–360. [Google Scholar] [CrossRef]
- Ribosome. Available online: https://www.genome.gov/genetics-glossary/Ribosome (accessed on 18 May 2023).
- Gregory, B.; Rahman, N.; Bommakanti, A.; Shamsuzzaman, M.; Thapa, M.; Lescure, A.; Zengel, J.M.; Lindahl, L. The small and large ribosomal subunits depend on each other for stability and accumulation. Life Sci. Alliance 2019, 2, e201900508. [Google Scholar] [CrossRef]
- Lomakin, I.B.; Devarkar, S.C.; Patel, S.; Grada, A.; Bunick, C.G. Sarecycline inhibits protein translation in Cutibacterium acnes 70S ribosome using a two-site mechanism. Nucleic Acids Res. 2023, 51, 2915–2930. [Google Scholar] [CrossRef]
- Watson, Z.L.; Ward, F.R.; Méheust, R.; Ad, O.; Schepartz, A.; Banfield, J.F.; Cate, J.H. Structure of the bacterial ribosome at 2 Å resolution. Elife 2020, 9, e60482. [Google Scholar] [CrossRef]
- Dunkle, J.A.; Xiong, L.; Mankin, A.S.; Cate, J.H. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl. Acad. Sci. USA 2010, 107, 17152–17157. [Google Scholar] [CrossRef]
- Polacek, N.; Mankin, A.S. The ribosomal peptidyl transferase center: Structure, function, evolution, inhibition. Crit. Rev. Biochem. Mol. Biol. 2005, 40, 285–311. [Google Scholar] [CrossRef]
- Schlünzen, F.; Zarivach, R.; Harms, J.; Bashan, A.; Tocilj, A.; Albrecht, R.; Yonath, A.; Franceschi, F. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 2001, 413, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Tu, D.; Blaha, G.; Moore, P.B.; Steitz, T.A. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 2005, 121, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Bulkley, D.; Innis, C.A.; Blaha, G.; Steitz, T.A. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc. Natl. Acad. Sci. USA 2010, 107, 17158–17163. [Google Scholar] [CrossRef] [PubMed]
- Auerbach-Nevo, T.; Baram, D.; Bashan, A.; Belousoff, M.; Breiner, E.; Davidovich, C.; Cimicata, G.; Eyal, Z.; Halfon, Y.; Krupkin, M.; et al. Ribosomal Antibiotics: Contemporary Challenges. Antibiotics 2016, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.L.; Moore, P.B.; Steitz, T.A. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J. Mol. Biol. 2003, 330, 1061–1075. [Google Scholar] [CrossRef] [PubMed]
- Long, K.S.; Poehlsgaard, J.; Hansen, L.H.; Hobbie, S.N.; Böttger, E.C.; Vester, B. Single 23S rRNA mutations at the ribosomal peptidyl transferase centre confer resistance to valnemulin and other antibiotics in Mycobacterium smegmatis by perturbation of the drug binding pocket. Mol. Microbiol. 2009, 71, 1218–1227. [Google Scholar] [CrossRef] [PubMed]
- Scheinfeld, N. Hidradenitis suppurativa: A practical review of possible medical treatments based on over 350 hidradenitis patients. Dermatol. Online J. 2013, 19, 1. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; Desai, N.; Emtestam, L.; Hunger, R.E.; Ioannides, D.; Juhász, I.; Lapins, J.; Matusiak, L.; Prens, E.P.; Revuz, J.; et al. European S1 guideline for the treatment of hidradenitis suppurativa/acne inversa. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 619–644. [Google Scholar] [CrossRef] [PubMed]
- Bonamonte, D.; De Marco, A.; Giuffrida, R.; Conforti, C.; Barlusconi, C.; Foti, C.; Romita, P. Topical antibiotics in the dermatological clinical practice: Indications, efficacy, and adverse effects. Dermatol. Ther. 2020, 33, e13824. [Google Scholar] [CrossRef] [PubMed]
- Marson, J.W.; Baldwin, H.E. Rosacea: A wholistic review and update from pathogenesis to diagnosis and therapy. Int. J. Dermatol. 2020, 59, e175–e182. [Google Scholar] [CrossRef] [PubMed]
- Gelmetti, C. Local antibiotics in dermatology. Dermatol. Ther. 2008, 21, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Kulczycka-Mierzejewska, K.; Sadlej, J.; Trylska, J. Molecular dynamics simulations suggest why the A2058G mutation in 23S RNA results in bacterial resistance against clindamycin. J. Mol. Model. 2018, 24, 191. [Google Scholar] [CrossRef]
- Douthwaite, S.; Aagaard, C. Erythromycin binding is reduced in ribosomes with conformational alterations in the 23 S rRNA peptidyl transferase loop. J. Mol. Biol. 1993, 232, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Svetlov, M.S.; Syroegin, E.A.; Aleksandrova, E.V.; Atkinson, G.C.; Gregory, S.T.; Mankin, A.S.; Polikanov, Y.S. Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance. Nat. Chem. Biol. 2021, 17, 412–420. [Google Scholar] [CrossRef]
- Vázquez-Laslop, N.; Mankin, A.S. How Macrolide Antibiotics Work. Trends Biochem. Sci. 2018, 43, 668–684. [Google Scholar] [CrossRef]
- Aleksandrov, A.; Simonson, T. Molecular dynamics simulations of the 30S ribosomal subunit reveal a preferred tetracycline binding site. J. Am. Chem. Soc. 2008, 130, 1114–1115. [Google Scholar] [CrossRef]
- Chukwudi, C.U. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrob. Agents Chemother. 2016, 60, 4433–4441. [Google Scholar] [CrossRef]
- Beckert, B.; Leroy, E.C.; Sothiselvam, S.; Bock, L.V.; Svetlov, M.S.; Graf, M.; Arenz, S.; Abdelshahid, M.; Seip, B.; Grubmüller, H.; et al. Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. Nat. Commun. 2021, 12, 4466. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. Available online: https://pymol.org/2/ (accessed on 28 June 2023).
- Matzov, D.; Eyal, Z.; Benhamou, R.I.; Shalev-Benami, M.; Halfon, Y.; Krupkin, M.; Zimmerman, E.; Rozenberg, H.; Bashan, A.; Fridman, M.; et al. Structural insights of lincosamides targeting the ribosome of Staphylococcus aureus. Nucleic Acids Res. 2017, 45, 10284–10292. [Google Scholar] [CrossRef]
- Veraldi, S. Two important novelties in etiopathogenesis and therapy of acne. J. Eur. Acad. Dermatol. Venereol. 2018, 32 (Suppl. 2), 3–4. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, L.; Ren, Y.; Tan, X.; Liu, W.; Liu, Z. Applications of Human Skin Microbiota in the Cutaneous Disorders for Ecology-Based Therapy. Front. Cell. Infect. Microbiol. 2020, 10, 570261. [Google Scholar] [CrossRef] [PubMed]
- Sohn, E. Skin microbiota’s community effort. Nature 2018, 563, S91–S93. [Google Scholar] [CrossRef] [PubMed]
- Jahns, A.C.; Lundskog, B.; Ganceviciene, R.; Palmer, R.H.; Golovleva, I.; Zouboulis, C.C.; McDowell, A.; Patrick, S.; Alexeyev, O.A. An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: A case-control study. Br. J. Dermatol. 2012, 167, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, M.; Morohashi, M. An overview of topical antibiotics for acne treatment. Dermatology 1998, 196, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Veraldi, S.; Guanziroli, E.; Ferrucci, S.; Nazzaro, G. Allergic contact dermatitis caused by clindamycin. Contact Dermat. 2019, 80, 68–69. [Google Scholar] [CrossRef] [PubMed]
- Resh, W.; Stoughton, R.B. Topically applied antibiotics in acne vulgaris: Clinical response and suppression of Corynebacterium acnes in open comedones. Arch. Dermatol. 1976, 112, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Sheehan-Dare, R.A.; Papworth-Smith, J.; Cunliffe, W.J. A double-blind comparison of topical clindamycin and oral minocycline in the treatment of acne vulgaris. Acta Derm. Venereol. 1990, 70, 534–537. [Google Scholar] [CrossRef]
- Zaenglein, A.L.; Pathy, A.L.; Schlosser, B.J.; Alikhan, A.; Baldwin, H.E.; Berson, D.S.; Bowe, W.P.; Graber, E.M.; Harper, J.C.; Kang, S.; et al. Guidelines of care for the management of acne vulgaris. J. Am. Acad. Dermatol. 2016, 74, 945–973.e933. [Google Scholar] [CrossRef]
- Hoover, W.D.; Davis, S.A.; Fleischer, A.B.; Feldman, S.R. Topical antibiotic monotherapy prescribing practices in acne vulgaris. J. Dermatol. Treat. 2014, 25, 97–99. [Google Scholar] [CrossRef]
- Gonzalez, P.; Vila, R.; Cirigliano, M. The tolerability profile of clindamycin 1%/benzoyl peroxide 5% gel vs. adapalene 0.1%/benzoyl peroxide 2.5% gel for facial acne: Results of a randomized, single-blind, split-face study. J. Cosmet. Dermatol. 2012, 11, 251–260. [Google Scholar] [CrossRef]
- Keating, G.M. Adapalene 0.1%/benzoyl peroxide 2.5% gel: A review of its use in the treatment of acne vulgaris in patients aged ≥ 12 years. Am. J. Clin. Dermatol. 2011, 12, 407–420. [Google Scholar] [CrossRef]
- Eichenfield, L.F.; Krakowski, A.C. Moderate to severe acne in adolescents with skin of color: Benefits of a fixed combination clindamycin phosphate 1.2% and benzoyl peroxide 2.5% aqueous gel. J. Drugs Dermatol. 2012, 11, 818–824. [Google Scholar] [PubMed]
- Perche, P.O.; Peck, G.M.; Robinson, L.; Grada, A.; Fleischer, A.B., Jr.; Feldman, S.R. Prescribing Trends for Acne Vulgaris Visits in the United States. Antibiotics 2023, 12, 269. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.C.; Dellavalle, R.P.; Garner, S. Acne vulgaris. Lancet 2012, 379, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Cook-Bolden, F.E. Efficacy and tolerability of a fixed combination of clindamycin phosphate (1.2%) and benzoyl peroxide (3.75%) aqueous gel in moderate or severe adolescent acne vulgaris. J. Clin. Aesthet. Dermatol. 2015, 8, 28–32. [Google Scholar]
- Winters, R.D.; Mitchell, M. Folliculitis. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Clindamycin phosphate (1%) foam for the treatment of superficial folliculitis. J. Am. Acad. Dermatol. 2005, 52, P118. [CrossRef]
- Rubenstein, R.M.; Malerich, S.A. Malassezia (pityrosporum) folliculitis. J. Clin. Aesthet. Dermatol. 2014, 7, 37–41. [Google Scholar]
- Miguel-Gómez, L.; Rodrigues-Barata, A.R.; Molina-Ruiz, A.; Martorell-Calatayud, A.; Fernández-Crehuet, P.; Grimalt, R.; Barco, D.; Arias-Santiago, S.; Serrano-Falcón, C.; Camacho, F.M.; et al. Folliculitis decalvans: Effectiveness of therapies and prognostic factors in a multicenter series of 60 patients with long-term follow-up. J. Am. Acad. Dermatol. 2018, 79, 878–883. [Google Scholar] [CrossRef]
- Farshchian, M.; Daveluy, S. Rosacea. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Daou, H.; Paradiso, M.; Hennessy, K.; Seminario-Vidal, L. Rosacea and the Microbiome: A Systematic Review. Dermatol. Ther. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Breneman, D.; Savin, R.; VandePol, C.; Vamvakias, G.; Levy, S.; Leyden, J. Double-blind, randomized, vehicle-controlled clinical trial of once-daily benzoyl peroxide/clindamycin topical gel in the treatment of patients with moderate to severe rosacea. Int. J. Dermatol. 2004, 43, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Maronese, C.A.; Moltrasio, C.; Genovese, G.; Marzano, A.V. Biologics for Hidradenitis suppurativa: Evolution of the treatment paradigm. Expert Rev. Clin. Immunol. 2023, 1–21. [Google Scholar] [CrossRef]
- Snodgrass, A.; Motaparthi, K. Systemic antibacterial agents. In Comprehensive Dermatologic Drug Therapy, 4th ed.; Wolverton, S.E., Wu, J.J., Eds.; Elsevier: Philadelphia PA, USA, 2021; pp. 95–96. [Google Scholar]
- Alikhan, A.; Sayed, C.; Alavi, A.; Alhusayen, R.; Brassard, A.; Burkhart, C.; Crowell, K.; Eisen, D.B.; Gottlieb, A.B.; Hamzavi, I.; et al. North American clinical management guidelines for hidradenitis suppurativa: A publication from the United States and Canadian Hidradenitis Suppurativa Foundations: Part II: Topical, intralesional, and systemic medical management. J. Am. Acad. Dermatol. 2019, 81, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Bristow, I.R.; Lee, Y.L. Pitted keratolysis: A clinical review. J. Am. Podiatr. Med. Assoc. 2014, 104, 177–182. [Google Scholar] [CrossRef]
- Gray, N.A.; Tod, B.; Rohwer, A.; Fincham, L.; Visser, W.I.; McCaul, M. Pharmacological interventions for periorificial (perioral) dermatitis in children and adults: A systematic review. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 380–390. [Google Scholar] [CrossRef]
- Holdiness, M.R. Management of cutaneous erythrasma. Drugs 2002, 62, 1131–1141. [Google Scholar] [CrossRef]
- Dilley, M.; Geng, B. Immediate and Delayed Hypersensitivity Reactions to Antibiotics: Aminoglycosides, Clindamycin, Linezolid, and Metronidazole. Clin. Rev. Allergy Immunol. 2022, 62, 463–475. [Google Scholar] [CrossRef]
- Kim, S.; Michaels, B.D.; Kim, G.; Del Rosso, J.Q. Systemic antibacterial agents. In Comprehensive Dermatologic Drug Therapy, 3rd ed.; Wolverton, S.E., Ed.; Elsevier: Philadelphia PA, USA, 2013; pp. 93–95. [Google Scholar]
- Lammintausta, K.; Tokola, R.; Kalimo, K. Cutaneous adverse reactions to clindamycin: Results of skin tests and oral exposure. Br. J. Dermatol. 2002, 146, 643–648. [Google Scholar] [CrossRef]
- Monteagudo, B.; Cabanillas, M.; Iriarte, P.; Ramírez-Santos, A.; León-Muinos, E.; González-Vilas, D.; Suárez-Amor, Ó. Clindamycin-induced Maculopapular Exanthema with Preferential Involvement of Striae Distensae: A Koebner phenomenon? Acta Dermatovenerol. Croat. 2018, 26, 61–63. [Google Scholar]
- Papakonstantinou, E.; Müller, S.; Röhrbein, J.H.; Wieczorek, D.; Kapp, A.; Jakob, T.; Wedi, B. Generalized reactions during skin testing with clindamycin in drug hypersensitivity: A report of 3 cases and review of the literature. Contact Dermat. 2018, 78, 274–280. [Google Scholar] [CrossRef]
- Smeets, T.J.; Jessurun, N.; Härmark, L.; Kardaun, S.H. Clindamycin-induced acute generalised exanthematous pustulosis: Five cases and a review of the literature. Neth. J. Med. 2016, 74, 421–428. [Google Scholar]
- Nielson, C.; Hsu, S.; Motaparthi, K. Topical antibacterial agents. In Comprehensive Dermatologic Drug Therapy, 4th ed.; Wolverton, S.E., Wu, J.J., Eds.; Elsevier: Philadelphia PA, USA, 2021; pp. 474–475. [Google Scholar]
- Pelet del Toro, N.M.; Strunk, A.; Wu, J.J.; Gold, L.S.; Del Rosso, J.; Brodell, R.; Han, G. Topical clindamycin for acne vulgaris: Pharmacovigilance safety review and retrospective analysis of gastrointestinal events. SKIN J. Cutan. Med. 2024, 8, s341. [Google Scholar] [CrossRef]
- Piamphongsant, T. Pustular acne. Int. J. Dermatol. 1985, 24, 441–443. [Google Scholar] [CrossRef]
- van Zuuren, E.J. Rosacea. N. Engl. J. Med. 2017, 377, 1754–1764. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.J.; Dotel, R.; Braddick, M.; Britton, P.N.; Eisen, D.P.; Francis, J.R.; Lynar, S.; McMullan, B.; Meagher, N.; Nelson, J.; et al. Clindamycin adjunctive therapy for severe Staphylococcus aureus treatment evaluation (CASSETTE)-an open-labelled pilot randomized controlled trial. JAC Antimicrob. Resist. 2022, 4, dlac014. [Google Scholar] [CrossRef]
- Szegedi, A.; Dajnoki, Z.; Bíró, T.; Kemény, L.; Törőcsik, D. Acne: Transient Arrest in the Homeostatic Host-Microbiota Dialog? Trends Immunol. 2019, 40, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Harder, J.; Tsuruta, D.; Murakami, M.; Kurokawa, I. What is the role of antimicrobial peptides (AMP) in acne vulgaris? Exp. Dermatol. 2013, 22, 386–391. [Google Scholar] [CrossRef]
- Kurokawa, I.; Nakase, K. Recent advances in understanding and managing acne. F1000Research 2020, 9, 792. [Google Scholar] [CrossRef] [PubMed]
- Tanghetti, E.A. The role of inflammation in the pathology of acne. J. Clin. Aesthet. Dermatol. 2013, 6, 27–35. [Google Scholar] [PubMed]
- Martel, J.L.; Miao, J.H.; Badri, T. Anatomy, Hair Follicle. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Chen, Y.; Knight, R.; Gallo, R.L. Evolving approaches to profiling the microbiome in skin disease. Front. Immunol. 2023, 14, 1151527. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, H. Acne, the Skin Microbiome, and Antibiotic Treatment. Am. J. Clin. Dermatol. 2019, 20, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Thiboutot, D.; Gollnick, H.; Bettoli, V.; Dréno, B.; Kang, S.; Leyden, J.J.; Shalita, A.R.; Lozada, V.T.; Berson, D.; Finlay, A.; et al. New insights into the management of acne: An update from the Global Alliance to Improve Outcomes in Acne group. J. Am. Acad. Dermatol. 2009, 60, S1–S50. [Google Scholar] [CrossRef] [PubMed]
- Guy, R.; Green, M.R.; Kealey, T. Modeling acne in vitro. J. Investig. Dermatol. 1996, 106, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, I.; Mayer-da-Silva, A.; Gollnick, H.; Orfanos, C.E. Monoclonal antibody labeling for cytokeratins and filaggrin in the human pilosebaceous unit of normal, seborrhoeic and acne skin. J. Investig. Dermatol. 1988, 91, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Hughes, B.R.; Morris, C.; Cunliffe, W.J.; Leigh, I.M. Keratin expression in pilosebaceous epithelia in truncal skin of acne patients. Br. J. Dermatol. 1996, 134, 247–256. [Google Scholar] [CrossRef]
- Fouda, I.; Obaid, Z.M.; Hegazy, S.F.; Samir Abd Al-Samie, H.; Nofal, A. Calprotectin in acne vulgaris: A possible contributory role. J. Cosmet. Dermatol. 2021, 20, 621–625. [Google Scholar] [CrossRef]
- Bhat, Y.J.; Latief, I.; Hassan, I. Update on etiopathogenesis and treatment of Acne. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 298–306. [Google Scholar] [CrossRef]
- Botros, P.A.; Tsai, G.; Pujalte, G.G. Evaluation and Management of Acne. Prim. Care 2015, 42, 465–471. [Google Scholar] [CrossRef]
- Degitz, K.; Ochsendorf, F. Acne. J. Dtsch. Dermatol. Ges 2017, 15, 709–722. [Google Scholar] [CrossRef]
- Thiboutot, D.; Dréno, B.; Sanders, V.; Rueda, M.J.; Gollnick, H. Changes in the management of acne: 2009-2019. J. Am. Acad. Dermatol. 2020, 82, 1268–1269. [Google Scholar] [CrossRef]
- Kwon, H.H.; Yoon, J.Y.; Park, S.Y.; Suh, D.H. Analysis of distribution patterns of Propionibacterium acnes phylotypes and Peptostreptococcus species from acne lesions. Br. J. Dermatol. 2013, 169, 1152–1155. [Google Scholar] [CrossRef]
- Lomholt, H.B.; Kilian, M. Population genetic analysis of Propionibacterium acnes identifies a subpopulation and epidemic clones associated with acne. PLoS ONE 2010, 5, e12277. [Google Scholar] [CrossRef]
- Legiawati, L.; Halim, P.A.; Fitriani, M.; Hikmahrachim, H.G.; Lim, H.W. Microbiomes in Acne Vulgaris and Their Susceptibility to Antibiotics in Indonesia: A Systematic Review and Meta-Analysis. Antibiotics 2023, 12, 145. [Google Scholar] [CrossRef]
- Drucker, C.R. Update on topical antibiotics in dermatology. Dermatol. Ther. 2012, 25, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Tolaymat, L.; Dearborn, H.; Zito, P.M. Adapalene. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Johnson, T.; Kang, D.; Barnard, E.; Li, H. Strain-Level Differences in Porphyrin Production and Regulation in Propionibacterium acnes Elucidate Disease Associations. mSphere 2016, 1, e00023-15. [Google Scholar] [CrossRef] [PubMed]
- Paugam, C.; Corvec, S.; Saint-Jean, M.; Le Moigne, M.; Khammari, A.; Boisrobert, A.; Nguyen, J.M.; Gaultier, A.; Dréno, B. Propionibacterium acnes phylotypes and acne severity: An observational prospective study. J. Eur. Acad. Dermatol. Venereol. 2017, 31, e398–e399. [Google Scholar] [CrossRef]
- Canu, A.; Malbruny, B.; Coquemont, M.; Davies, T.A.; Appelbaum, P.C.; Leclercq, R. Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2002, 46, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Giessing, A.M.; Jensen, S.S.; Rasmussen, A.; Hansen, L.H.; Gondela, A.; Long, K.; Vester, B.; Kirpekar, F. Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria. RNA 2009, 15, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, R.; Courvalin, P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob. Agents Chemother. 1991, 35, 1267–1272. [Google Scholar] [CrossRef]
- Long, K.S.; Poehlsgaard, J.; Kehrenberg, C.; Schwarz, S.; Vester, B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob. Agents Chemother. 2006, 50, 2500–2505. [Google Scholar] [CrossRef]
- Morar, M.; Bhullar, K.; Hughes, D.W.; Junop, M.; Wright, G.D. Structure and mechanism of the lincosamide antibiotic adenylyltransferase LinB. Structure 2009, 17, 1649–1659. [Google Scholar] [CrossRef]
- Crowe-McAuliffe, C.; Murina, V.; Turnbull, K.J.; Kasari, M.; Mohamad, M.; Polte, C.; Takada, H.; Vaitkevicius, K.; Johansson, J.; Ignatova, Z.; et al. Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nat. Commun. 2021, 12, 3577. [Google Scholar] [CrossRef]
- Murina, V.; Kasari, M.; Hauryliuk, V.; Atkinson, G.C. Antibiotic resistance ABCF proteins reset the peptidyl transferase centre of the ribosome to counter translational arrest. Nucleic Acids Res. 2018, 46, 3753–3763. [Google Scholar] [CrossRef] [PubMed]
- Chouchani, C.; El Salabi, A.; Marrakchi, R.; Ferchichi, L.; Walsh, T.R. First report of mefA and msrA/msrB multidrug efflux pumps associated with blaTEM-1 β-lactamase in Enterococcus faecalis. Int. J. Infect. Dis. 2012, 16, e104–e109. [Google Scholar] [CrossRef]
- Johnson, A.F.; LaRock, C.N. Antibiotic Treatment, Mechanisms for Failure, and Adjunctive Therapies for Infections by Group A Streptococcus. Front. Microbiol. 2021, 12, 760255. [Google Scholar] [CrossRef] [PubMed]
- Aoki, S.; Nakase, K.; Nakaminami, H.; Wajima, T.; Hayashi, N.; Noguchi, N. Transferable Multidrug-Resistance Plasmid Carrying a Novel Macrolide-Clindamycin Resistance Gene, erm(50), in Cutibacterium acnes. Antimicrob. Agents Chemother. 2020, 64, e01810-19. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, S.; Koizumi, J.; Nakase, K.; Hayashi, N.; Horiuchi, Y.; Watanabe, K.; Asai, T.; Yamazaki, A.; Nakazaki, E.; Nakaminami, H. Increased frequency of clindamycin-resistant Cutibacterium acnes strains isolated from Japanese patients with acne vulgaris caused by the prevalence of exogenous resistance genes. J. Dermatol. 2023, 50, 793–799. [Google Scholar] [CrossRef]
- Koizumi, J.; Nakase, K.; Hayashi, N.; Takeo, C.; Nakaminami, H. Multidrug Resistance Plasmid pTZC1 Could Be Pooled among Cutibacterium Strains on the Skin Surface. Microbiol. Spectr. 2023, 11, e0362822. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, J.; Nakase, K.; Hayashi, N.; Nasu, Y.; Hirai, Y.; Nakaminami, H. Multidrug-resistant Cutibacterium avidum isolated from patients with acne vulgaris and other infections. J. Glob. Antimicrob. Resist. 2022, 28, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Nakase, K.; Koizumi, J.; Fukumoto, S.; Hayashi, N.; Noguchi, N.; Nakaminami, H. Increased Prevalence of Minocycline-Resistant Staphylococcus epidermidis with tet(M) by Tetracycline Use for Acne Treatment. Microb. Drug Resist. 2022, 28, 861–866. [Google Scholar] [CrossRef] [PubMed]
- MacGibeny, M.A.; Jo, J.H.; Kong, H.H. Antibiotic Stewardship in Dermatology-Reducing the Risk of Prolonged Antimicrobial Resistance in Skin. JAMA Dermatol. 2022, 158, 989–991. [Google Scholar] [CrossRef] [PubMed]
- Fitz-Gibbon, S.; Tomida, S.; Chiu, B.H.; Nguyen, L.; Du, C.; Liu, M.; Elashoff, D.; Erfe, M.C.; Loncaric, A.; Kim, J.; et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J. Investig. Dermatol. 2013, 133, 2152–2160. [Google Scholar] [CrossRef]
- Eichenfield, L.F.; Stein Gold, L.; Kircik, L.H.; Werschler, W.P.; Beer, K.; Draelos, Z.D.; Tanghetti, E.A.; Papp, K.A.; Baldwin, H.; Lain, E.; et al. Triple-combination clindamycin phosphate 1.2%/benzoyl peroxide 3.1%/adapalene 0.15% gel for moderate-to-severe acne in children and adolescents: Randomized phase 2 study. Pediatr. Dermatol. 2023, 40, 452–459. [Google Scholar] [CrossRef]
Antibiotic | Class | Mechanism of Protein Synthesis Inhibition | Route of Administration |
---|---|---|---|
Clindamycin | Lincosamide | Inhibits the 50S ribosomal subunit at 23S rRNA within the PTC | Mainly topical |
Erythromycin | Macrolide | Inhibits 50S at 23S rRNA within the NPET | Mainly topical |
Tetracycline, Doxycycline, Minocycline, Sarecycline | Tetracycline | All inhibit 30S at 16S rRNA within the A-site; sarecycline inhibits C. acnes ribosome at a second site within the NPET | Mainly oral, minocycline also topical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armillei, M.K.; Lomakin, I.B.; Del Rosso, J.Q.; Grada, A.; Bunick, C.G. Scientific Rationale and Clinical Basis for Clindamycin Use in the Treatment of Dermatologic Disease. Antibiotics 2024, 13, 270. https://doi.org/10.3390/antibiotics13030270
Armillei MK, Lomakin IB, Del Rosso JQ, Grada A, Bunick CG. Scientific Rationale and Clinical Basis for Clindamycin Use in the Treatment of Dermatologic Disease. Antibiotics. 2024; 13(3):270. https://doi.org/10.3390/antibiotics13030270
Chicago/Turabian StyleArmillei, Maria K., Ivan B. Lomakin, James Q. Del Rosso, Ayman Grada, and Christopher G. Bunick. 2024. "Scientific Rationale and Clinical Basis for Clindamycin Use in the Treatment of Dermatologic Disease" Antibiotics 13, no. 3: 270. https://doi.org/10.3390/antibiotics13030270
APA StyleArmillei, M. K., Lomakin, I. B., Del Rosso, J. Q., Grada, A., & Bunick, C. G. (2024). Scientific Rationale and Clinical Basis for Clindamycin Use in the Treatment of Dermatologic Disease. Antibiotics, 13(3), 270. https://doi.org/10.3390/antibiotics13030270