Differences in the Synovial Fluid Proteome of Septic and Aseptic Implant Failure
Abstract
:1. Introduction
2. Results
2.1. Patient Groups and Characteristics
2.2. Proteome Analysis of the Synovial Fluid
2.2.1. General Composition of the Proteome
2.2.2. Differentially Abundant Proteins
2.3. Distribution of Biomarkers in SF
3. Discussion
3.1. The SF Proteome and the Influence of Abundant Protein Depletion
3.2. The Use of Proteomics for the Detection of New Biomarkers
3.3. Significance of the Identified Biomarkers
3.4. Limitations of Our Study
4. Materials and Methods
4.1. Study Design and Sample Collection
4.2. Protein and Biomarker Quantification in the SF
4.3. Proteome Measurement and Preparation
4.4. Statistics and Data Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimberg, A.; Lützner, J.; Melsheimer, O.; Morlock, M.; Steinbrück, A. Endoprothesenregister Deutschland (EPRD) Jahresbericht 2023; EPRD: Berlin, Germany, 2023; ISBN 978-3-949872-02-0. [Google Scholar]
- Fisher, C.R.; Patel, R. Profiling the Immune Response to Periprosthetic Joint Infection and Non-Infectious Arthroplasty Failure. Antibiotics 2023, 12, 296. [Google Scholar] [CrossRef] [PubMed]
- Boyle, K.K.; Wood, S.; Tarity, T.D. Low-Virulence Organisms and Periprosthetic Joint Infection-Biofilm Considerations of These Organisms. Curr. Rev. Musculoskelet. Med. 2018, 11, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Trampuz, A.; Ochsner, P.E. Prosthetic-joint infections. N. Engl. J. Med. 2004, 351, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Vasso, M.; Schiavone Panni, A. Low-grade periprosthetic knee infection: Diagnosis and management. J. Orthop. Traumatol. 2015, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Banke, I.J.; Stade, N.; Prodinger, P.M.; Tübel, J.; Hapfelmeier, A.; von Eisenhart-Rothe, R.; van Griensven, M.; Gollwitzer, H.; Burgkart, R. Antimicrobial peptides in human synovial membrane as (low-grade) periprosthetic joint infection biomarkers. Eur. J. Med. Res. 2020, 25, 33. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Zmistowski, B.; Berbari, E.F.; Bauer, T.W.; Springer, B.D.; Della Valle, C.J.; Garvin, K.L.; Mont, M.A.; Wongworawat, M.D.; Zalavras, C.G. New definition for periprosthetic joint infection: From the Workgroup of the Musculoskeletal Infection Society. Clin. Orthop. Relat. Res. 2011, 469, 2992–2994. [Google Scholar] [CrossRef] [PubMed]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Gehrke, T. Definition of periprosthetic joint infection. J. Arthroplast. 2014, 29, 1331. [Google Scholar] [CrossRef] [PubMed]
- Renz, N.; Yermak, K.; Perka, C.; Trampuz, A. Alpha Defensin Lateral Flow Test for Diagnosis of Periprosthetic Joint Infection: Not a Screening but a Confirmatory Test. J. Bone Jt. Surg. Am. 2018, 100, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Romanò, C.L.; Khawashki, H.A.; Benzakour, T.; Bozhkova, S.; Del Sel, H.; Hafez, M.; Johari, A.; Lob, G.; Sharma, H.K.; Tsuchiya, H.; et al. The W.A.I.O.T. Definition of High-Grade and Low-Grade Peri-Prosthetic Joint Infection. J. Clin. Med. 2019, 8, 650. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Tan, T.L.; Goswami, K.; Higuera, C.; Della Valle, C.; Chen, A.F.; Shohat, N. The 2018 Definition of Periprosthetic Hip and Knee Infection: An Evidence-Based and Validated Criteria. J. Arthroplast. 2018, 33, 1309–1314.e2. [Google Scholar] [CrossRef] [PubMed]
- Solarino, G.; Bizzoca, D.; Moretti, L.; Vicenti, G.; Piazzolla, A.; Moretti, B. What’s New in the Diagnosis of Periprosthetic Joint Infections: Focus on Synovial Fluid Biomarkers. Trop. Med. Infect. Dis. 2022, 7, 355. [Google Scholar] [CrossRef] [PubMed]
- Bjerke-Kroll, B.T.; Christ, A.B.; McLawhorn, A.S.; Sculco, P.K.; Jules-Elysée, K.M.; Sculco, T.P. Periprosthetic joint infections treated with two-stage revision over 14 years: An evolving microbiology profile. J. Arthroplast. 2014, 29, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.K.; Abbaszadeh, A.; Tarabichi, S.; Azboy, I.; Parvizi, J. Diagnosis of Periprosthetic Joint Infection: The Utility of Biomarkers in 2023. Antibiotics 2023, 12, 1054. [Google Scholar] [CrossRef] [PubMed]
- Busch, A.; Jäger, M.; Engler, H.; Haversath, M.; Bielefeld, C.; Landgraeber, S.; Wegner, A. Is Procalcitonin (PCT) a reliable biomarker for preoperative diagnosing of low grade periprosthetic joint infection? A prospective study. BMC Musculoskelet. Disord. 2020, 21, 257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cai, Y.; Bai, G.; Zhang, C.; Li, W.; Yang, B.; Zhang, W. The value of calprotectin in synovial fluid for the diagnosis of chronic prosthetic joint infection. Bone Jt. Res. 2020, 9, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qin, L.; Wang, J.; Huang, W. Synovial fluid IL-1β appears useful for the diagnosis of chronic periprosthetic joint infection. J. Orthop. Surg. Res. 2021, 16, 144. [Google Scholar] [CrossRef] [PubMed]
- Busch, A.; Jäger, M.; Engler, H.; Wasssenaar, D.; Bielefeld, C.; Wegner, A. Die Wertigkeit von synovialem Neopterin, TNF-α und Presepsin in der Diagnostik von Periprothetischen Infektionen: Eine prospektive Studie. Z. Orthop. Unfall. 2022, 160, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.R.; Mangalaparthi, K.K.; Greenwood-Quaintance, K.E.; Abdel, M.P.; Pandey, A.; Patel, R. Mass spectrometry-based proteomic profiling of sonicate fluid differentiates Staphylococcus aureus periprosthetic joint infection from non-infectious failure: A pilot study. Proteom. Clin. Appl. 2023, 17, e2200071. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.R.; Salmons, H.I.; Mandrekar, J.; Greenwood-Quaintance, K.E.; Abdel, M.P.; Patel, R. A 92 protein inflammation panel performed on sonicate fluid differentiates periprosthetic joint infection from non-infectious causes of arthroplasty failure. Sci. Rep. 2022, 12, 16135. [Google Scholar] [CrossRef] [PubMed]
- Jacovides, C.L.; Parvizi, J.; Adeli, B.; Jung, K.A. Molecular markers for diagnosis of periprosthetic joint infection. J. Arthroplast. 2011, 26, 99–103.e1. [Google Scholar] [CrossRef] [PubMed]
- Cretu, D.; Diamandis, E.P.; Chandran, V. Delineating the synovial fluid proteome: Recent advancements and ongoing challenges in biomarker research. Crit. Rev. Clin. Lab. Sci. 2013, 50, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Bennike, T.; Ayturk, U.; Haslauer, C.M.; Froehlich, J.W.; Proffen, B.L.; Barnaby, O.; Birkelund, S.; Murray, M.M.; Warman, M.L.; Stensballe, A.; et al. A normative study of the synovial fluid proteome from healthy porcine knee joints. J. Proteome Res. 2014, 13, 4377–4387. [Google Scholar] [CrossRef]
- Balakrishnan, L.; Bhattacharjee, M.; Ahmad, S.; Nirujogi, R.S.; Renuse, S.; Subbannayya, Y.; Marimuthu, A.; Srikanth, S.M.; Raju, R.; Dhillon, M.; et al. Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients. Clin. Proteom. 2014, 11, 1. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jung, J.H.; Kim, J.; Baek, W.-K.; Rhee, J.; Kim, T.-H.; Kim, S.-H.; Kim, K.P.; Son, C.-N.; Kim, J.-S. Proteomic analysis of human synovial fluid reveals potential diagnostic biomarkers for ankylosing spondylitis. Clin. Proteom. 2020, 17, 20. [Google Scholar] [CrossRef]
- Ali, N.; Turkiewicz, A.; Hughes, V.; Folkesson, E.; Tjörnstand, J.; Neuman, P.; Önnerfjord, P.; Englund, M. Proteomics Profiling of Human Synovial Fluid Suggests Increased Protein Interplay in Early-Osteoarthritis (OA) That Is Lost in Late-Stage OA. Mol. Cell. Proteom. 2022, 21, 100200. [Google Scholar] [CrossRef] [PubMed]
- Echan, L.A.; Tang, H.-Y.; Ali-Khan, N.; Lee, K.; Speicher, D.W. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics 2005, 5, 3292–3303. [Google Scholar] [CrossRef] [PubMed]
- Keshishian, H.; Addona, T.; Burgess, M.; Kuhn, E.; Carr, S.A. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol. Cell. Proteom. 2007, 6, 2212–2229. [Google Scholar] [CrossRef]
- Cao, Z.; Tang, H.-Y.; Wang, H.; Liu, Q.; Speicher, D.W. Systematic comparison of fractionation methods for in-depth analysis of plasma proteomes. J. Proteome Res. 2012, 11, 3090–3100. [Google Scholar] [CrossRef]
- Filip, S.; Vougas, K.; Zoidakis, J.; Latosinska, A.; Mullen, W.; Spasovski, G.; Mischak, H.; Vlahou, A.; Jankowski, J. Comparison of Depletion Strategies for the Enrichment of Low-Abundance Proteins in Urine. PLoS ONE 2015, 10, e0133773. [Google Scholar] [CrossRef]
- Yocum, A.K.; Yu, K.; Oe, T.; Blair, I.A. Effect of immunoaffinity depletion of human serum during proteomic investigations. J. Proteome Res. 2005, 4, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Lucas, D.A.; Chan, K.C.; Issaq, H.J.; Petricoin, E.F.; Liotta, L.A.; Veenstra, T.D.; Conrads, T.P. An investigation into the human serum “interactome”. Electrophoresis 2004, 25, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.P.; Hsu, C.-C.; Yeh, W.-L.; Lin, H.-C.; Hsieh, S.-Y.; Lin, S.-C.; Chen, T.-T.; Chen, M.J.; Tang, S.F. Optimizing human synovial fluid preparation for two-dimensional gel electrophoresis. Proteome Sci. 2011, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, C.; Chen, X.; Cai, Y.; Li, W.; Fang, X.; Zhang, W. Bone protein analysis via label-free quantitative proteomics in patients with periprosthetic joint infection. J. Proteom. 2022, 252, 104448. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Q.; Li, R.; Qin, J.; Song, L.; Zhang, Q.; Liu, M.; Chen, J.; Wang, C. LTF, PRTN3, and MNDA in Synovial Fluid as Promising Biomarkers for Periprosthetic Joint Infection: Identification by Quadrupole Orbital-Trap Mass Spectrometry. J. Bone Jt. Surg. Am. 2019, 101, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.A.; Klika, A.K.; Bowers, K.; Colon-Franco, J.; Piuzzi, N.S.; Higuera, C.A. Calprotectin Lateral Flow Test: Consistent Across Criteria for Ruling Out Periprosthetic Joint Infection. J. Arthroplast. 2022, 37, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.M.; Goh, G.S.; Tarabichi, S.; Shohat, N.; Parvizi, J. Synovial C-Reactive Protein is a Useful Adjunct for Diagnosis of Periprosthetic Joint Infection. J. Arthroplast. 2022, 37, 2437–2443.e1. [Google Scholar] [CrossRef] [PubMed]
- Grassi, M.; Salari, P.; Farinelli, L.; D’Anzeo, M.; Onori, N.; Gigante, A. Synovial Biomarkers to Detect Chronic Periprosthetic Joint Infection: A Pilot Study to Compare Calprotectin Rapid Test, Calprotectin ELISA Immunoassay and Leukocyte Esterase Test. J. Arthroplast. 2022, 37, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Q.; Li, R.; Duan, J.-Y.; Wang, C.-B. Synovial Fluid C-reactive Protein as a Diagnostic Marker for Periprosthetic Joint Infection: A Systematic Review and Meta-analysis. Chin. Med. J. 2016, 129, 1987–1993. [Google Scholar] [CrossRef] [PubMed]
- Bini, L.; Magi, B.; Marzocchi, B.; Cellesi, C.; Berti, B.; Raggiaschi, R.; Rossolini, A.; Pallini, V. Two-dimensional electrophoretic patterns of acute-phase human serum proteins in the course of bacterial and viral diseases. Electrophoresis 1996, 17, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Serada, S.; Suzuki, K.; Nishikawa, A.; Ogata, A.; Nanki, T.; Hattori, K.; Kohsaka, H.; Miyasaka, N.; Takeuchi, T.; et al. Leucine-rich α2 -glycoprotein as a potential biomarker for joint inflammation during anti-interleukin-6 biologic therapy in rheumatoid arthritis. Arthritis Rheumatol. 2015, 67, 2056–2060. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.J.; Kang, E.-J.; Lee, S.-W.; Lee, S.-K.; Park, Y.-B.; Song, J.-S.; Choi, S.T. Usefulness of serum leucine-rich alpha-2 glycoprotein as a disease activity biomarker in patients with rheumatoid arthritis. J. Korean Med. Sci. 2014, 29, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Jin, E.-H.; Chae, S.-C.; Shim, S.-C.; Kim, H.-G.; Chung, H.-T. Identification of Human LRG1 Polymorphisms and Their Genetic Association with Rheumatoid Arthritis. Genom. Inform. 2008, 6, 77–83. [Google Scholar] [CrossRef]
- Serada, S.; Fujimoto, M.; Ogata, A.; Terabe, F.; Hirano, T.; Iijima, H.; Shinzaki, S.; Nishikawa, T.; Ohkawara, T.; Iwahori, K.; et al. iTRAQ-based proteomic identification of leucine-rich alpha-2 glycoprotein as a novel inflammatory biomarker in autoimmune diseases. Ann. Rheum. Dis. 2010, 69, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, J.; Zhang, X.; Wang, C.; Huang, Y.; Dai, K.; Zhang, X. TNF-α-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death Dis. 2017, 8, e2715. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, H.; Cann, P.M. Protein Content of Model Synovial Fluid and CoCrMo Wear. Biotribology 2021, 26, 100172. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Buderer, N.M. Statistical methodology: I. Incorporating the prevalence of disease into the sample size calculation for sensitivity and specificity. Acad. Emerg. Med. 1996, 3, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.G. (Ed.) Sampling Techniques, 3rd ed.; Wiley: New York, NY, USA, 1977; ISBN 047116240X. [Google Scholar]
- Choong, A.L.C.; Shadbolt, C.; Dowsey, M.M.; Choong, P.F.M. Sex-based differences in the outcomes of total hip and knee arthroplasty: A narrative review. ANZ J. Surg. 2021, 91, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, R.W.; Rowe, T.; Tersteeg, M.; Dombrowski, M.E.; Odum, S.; Otero, J.E. The Influence of Patient Sex on Outcomes Following One-Stage and Two-Stage Revision for Periprosthetic Joint Infection in Total Joint Arthroplasty. Antibiotics 2023, 12, 1392. [Google Scholar] [CrossRef] [PubMed]
- Choong, A.L.; Shadbolt, C.; Choong, E.; Spelman, T.; Muñoz-Mahamud, E.; Lora-Tamayo, J.; Kim, K.; Wouthuyzen-Bakker, M.; Spangehl, M.; Chayakulkeeree, M.; et al. The Impact of Sex on the Outcomes of Prosthetic Joint Infection Treatment with Debridement, Antibiotics and Implant Retention: A Systematic Review and Individual Patient Data Meta-analysis. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2022, 6. [Google Scholar] [CrossRef] [PubMed]
- Higgins, E.; Tai, D.B.G.; Lahr, B.; Suh, G.A.; Berbari, E.F.; Perry, K.I.; Abdel, M.P.; Tande, A.J. Sex-specific analysis of clinical features and outcomes in staphylococcal periprosthetic joint infections managed with two-stage exchange arthroplasty. J. Bone Jt. Infect. 2023, 8, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Mironenko, C.M.; Kapadia, M.; Donlin, L.; Figgie, M.; Carli, A.V.; Henry, M.; Goodman, S.M.; Miller, A.O. 239. Sex Differences in Prosthetic Joint Infection. Open Forum Infect. Dis. 2021, 8, S229. [Google Scholar] [CrossRef]
- Towle, K.M.; Monnot, A.D. An Assessment of Gender-Specific Risk of Implant Revision After Primary Total Hip Arthroplasty: A Systematic Review and Meta-analysis. J. Arthroplast. 2016, 31, 2941–2948. [Google Scholar] [CrossRef] [PubMed]
- Solarino, G.; Bizzoca, D.; Moretti, A.M.; D’Apolito, R.; Moretti, B.; Zagra, L. Sex and Gender-Related Differences in the Outcome of Total Hip Arthroplasty: A Current Concepts Review. Medicina 2022, 58, 1702. [Google Scholar] [CrossRef] [PubMed]
- Hill, H.D.; Straka, J.G. Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal. Biochem. 1988, 170, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Jäger, M.; Latosinska, A.; Herten, M.; Busch, A.; Grupp, T.; Sowislok, A. The Implant Proteome-The Right Surgical Glue to Fix Titanium Implants In Situ. J. Funct. Biomater. 2022, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.S.; Moggridge, S.; Müller, T.; Sorensen, P.H.; Morin, G.B.; Krijgsveld, J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019, 14, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007, 2, 1896–1906. [Google Scholar] [CrossRef]
- Olsen, J.V.; de Godoy, L.M.F.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A.; Lange, O.; Horning, S.; Mann, M. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 2005, 4, 2010–2021. [Google Scholar] [CrossRef]
- Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011, 10, 1794–1805. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 2014, 13, 2513–2526. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.; Hermjakob, H. Reactome pathway analysis: A high-performance in-memory approach. BMC Bioinform. 2017, 18, 142. [Google Scholar] [CrossRef] [PubMed]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef] [PubMed]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef] [PubMed]
Variable | Septic | Aseptic | p-Value | |
---|---|---|---|---|
Number of patients | 8 (38%) | 13 (62%) | ||
Female:Male | 4:4 (50%) | 11:2 (85%) | 0.210 | |
Age [years] | 68.5 ± 13.3 | 67.8 ± 11.0 | 0.893 | |
BMI | 29.4 ± 5.3 | 31.6 ± 5.6 | 0.742 | |
Revision site | hip | 6 (75%) | 7 (54%) | |
knee | - | 6 (46%) | ||
shoulder | 2 (25%) | - | ||
Comorbidities | ||||
Hypertension | 4 (50%) | 4 (31%) | ||
Obesity | 6 (75%) | 5 (38%) | ||
Osteoporosis | 1 (12%) | 1 (8%) | ||
Heart disease | 2 (25%) | 3 (23%) | ||
Kidney disease | 1 (13%) | - | ||
Parkinson’s disease | 1 (13%) | - | ||
Diabetes | 3 (38%) | - | ||
Hypothyroidism | - | 1 (8%) | ||
COPD | - | 1 (8%) |
Plasma/Blood Parameter | Septic | Aseptic | p-Value | Normal Values |
---|---|---|---|---|
Leukozytes [1 per nL] | 8.6 ± 1.9 | 7.7 ± 2.8 | 0.410 | 4.5–12.7 |
Thrombocytes [1 per nL] | 295.9 ± 111.3 | 275.6 ± 49.1 | 0.570 | 173.0–390.0 |
Sodium [mmol/L] | 138.8 ± 3.5 | 140.6 ±2.3 | 0.157 | 136.0–145.0 |
Potassium [mmol/L] | 4.4 ± 0.4 | 4.8 ± 0.4 | 0.056 | 3.5–5.1 |
Hemoglobin [g/dL] | 12.3 ± 2.5 | 13.7 ± 1.2 | 0.170 | 11.9–14.6 |
Creatinine [mg/dL] | 1.0 | 0.9 | 0.514 | 0.5–0.9 |
CRP [mg/dL] | 5.1 | 0.5 | 0.002 * | <0.5 |
PTT [s] | 30.7 | 28.6 | 0.218 | 23.9–33.2 |
Quick [%] | 91.8 ± 23.5 | 97.6 ± 10.2 | 0.436 | 74–120 |
Protein | Gene Name | FC | log2 FC | p-Value |
---|---|---|---|---|
Leucine-rich alpha-2-glycoprotein | LRG1 | 9.07 | 3.18 | 0.007 |
C-reactive protein | CRP | 7.57 | 2.92 | 0.017 |
Protein S100-A8 | S100A8 | 4.42 | 2.14 | 0.042 |
Coronin-1A | CORO1A | 4.03 | 2.01 | 0.002 |
Histone H2B type 1-L | HIST1H2BL | 4.02 | 2.01 | 0.045 |
Leukocyte elastase inhibitor | SERPINB1 | 3.60 | 1.85 | 0.011 |
Protein S100-A9 | S100A9 | 3.11 | 1.63 | 0.046 |
6-phosphogluconate dehydrogenase | PGD | 2.75 | 1.46 | 0.003 |
Serum amyloid A-4 protein | SAA4 | 2.69 | 1.43 | 0.036 |
C4b-binding protein beta chain | C4BPB | 1.92 | 0.94 | 0.036 |
Serum amyloid P-component | APCS | 1.84 | 0.88 | 0.025 |
Alpha-actinin-1 | ACTN1 | 1.63 | 0.70 | 0.021 |
Complement component C9 | C9 | 1.59 | 0.67 | 0.009 |
Complement C1q subcomponent subunit A | C1QA | 1.54 | 0.62 | 0.030 |
Apolipoprotein D | APOD | 1.54 | 0.62 | 0.043 |
Profilin-1 | PFN1 | 1.35 | 0.44 | 0.009 |
Adenylyl cyclase-associated protein 1 | CAP1 | 1.26 | 0.33 | 0.029 |
Collagen alpha-3(VI) chain | COL6A3 | 0.80 | −0.32 | 0.029 |
Serum paraoxonase/arylesterase 1 | PON1 | 0.79 | −0.34 | 0.043 |
Alpha-2-HS-glycoprotein | AHSG | 0.79 | −0.35 | 0.043 |
Thyroxine-binding globulin | SERPINA7 | 0.75 | −0.41 | 0.043 |
Transforming growth factor-β-induced | TGFBI | 0.63 | −0.67 | 0.036 |
Immunoglobulin kappa variable 2D-29 | IGKV2D-29 | 0.60 | −0.73 | 0.043 |
Kallistatin | SERPINA4 | 0.60 | −0.74 | 0.003 |
Serotransferrin | TF | 0.58 | −0.79 | 0.007 |
EGF-containing fibulin extracellular matrix p. 1 | EFEMP1 | 0.52 | −0.94 | 0.035 |
Gelsolin | GSN | 0.51 | −0.96 | 0.001 |
Tetranectin | CLEC3B | 0.50 | −0.99 | 0.043 |
Annexin A2 | ANXA2 | 0.48 | −1.07 | 0.035 |
Fibronectin | FN1 | 0.41 | −1.28 | 0.025 |
Versican core protein | VCAN | 0.37 | −1.43 | 0.035 |
Proteoglycan 4 | PRG4 | 0.36 | −1.46 | 0.036 |
Complement factor D | CFD | 0.31 | −1.68 | 0.006 |
Immunoglobulin lambda variable 7-46 | IGLV7-46 | 0.31 | −1.69 | 0.021 |
Cartilage oligomeric matrix protein | COMP | 0.27 | −1.87 | 0.003 |
Cartilage acidic protein 1 | CRTAC1 | 0.12 | −3.00 | 0.011 |
Dihydropyrimidinase-related protein 2 | DPYSL2 | 0.11 | −3.16 | 0.030 |
Main Parental Pathway | Enriched Pathway | Total Proteins in the Pathway | Assigned Proteins | FDR |
---|---|---|---|---|
Hemostasis | Platelet activation, signaling, and aggregation | 293 | 9 | 1.47 × 10−5 |
Immune System | Innate Immune System | 1341 | 15 | 1.79 × 10−4 |
Neutrophil degranulation | 478 | 9 | 3.47 × 10−4 | |
Complement Cascade | 156 | 6 | 3.1 × 10−4 | |
Extracellular matrix organization | ECM proteoglycans | 79 | 4 | 3.25 × 10−3 |
Integrin cell surface interactions | 86 | 3 | 3.41 × 10−2 | |
Metabolism of proteins | Amyloid fiber formation | 89 | 4 | 4.59 × 10−3 |
Post-translational protein phosphorylation | 109 | 4 | 7.93 × 10−3 | |
Regulation of Insulin-like Growth Factor (IGF) transport | 127 | 4 | 1.11 × 10−2 |
SF Parameter | Septic | Aseptic | Cut-Off | Sensitivity [%] | Specificity [%] | AUC | p-Value | Cohen’s d |
---|---|---|---|---|---|---|---|---|
Protein [mg/mL] | 55.0 ± 5.7 | 38.8 ± 10.3 | 47 | 87.5 | 76.9 | 0.89 | 0.002 * | 1.72 |
LRG1 [mg/mL] | 19.4 ± 9.4 | 7.1 ± 4.1 | 10.95 | 87.5 | 84.6 | 0.90 | 0.001 * | 1.88 |
CRP [µg/mL] | 9.1 ± 8.6 | 0.9 ± 1.1 | 1.1 | 87.5 | 76.9 | 0.87 | 0.003 * | 1.56 |
Calprotectin [µg/mL] | 31.9 ± 23.8 | 5.2 ± 10.7 | 4.63 | 87.5 | 76.9 | 0.93 | 0.001 * | 1.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowislok, A.; Busch, A.; Kaschani, F.; Kaiser, M.; Jäger, M. Differences in the Synovial Fluid Proteome of Septic and Aseptic Implant Failure. Antibiotics 2024, 13, 346. https://doi.org/10.3390/antibiotics13040346
Sowislok A, Busch A, Kaschani F, Kaiser M, Jäger M. Differences in the Synovial Fluid Proteome of Septic and Aseptic Implant Failure. Antibiotics. 2024; 13(4):346. https://doi.org/10.3390/antibiotics13040346
Chicago/Turabian StyleSowislok, Andrea, André Busch, Farnusch Kaschani, Markus Kaiser, and Marcus Jäger. 2024. "Differences in the Synovial Fluid Proteome of Septic and Aseptic Implant Failure" Antibiotics 13, no. 4: 346. https://doi.org/10.3390/antibiotics13040346
APA StyleSowislok, A., Busch, A., Kaschani, F., Kaiser, M., & Jäger, M. (2024). Differences in the Synovial Fluid Proteome of Septic and Aseptic Implant Failure. Antibiotics, 13(4), 346. https://doi.org/10.3390/antibiotics13040346