Multidrug-Resistant Escherichia coli Remains Susceptible to Metal Ions and Graphene-Based Compounds
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibility Testing
2.2. Minimal Inhibitory Concentrations (MIC)
2.3. Minimal Bactericidal Concentrations (MBC)
MIC | MBC | ||||
---|---|---|---|---|---|
Metal Ion/Compound | Solvent | E. coli-1 | E. coli-2 | E. coli-1 | E. coli-2 |
Y | HNO3 (2%) | 52.1 ± 10.4 | 52.1 ± 10.4 | 250 ± 0.00 | 125 ± 0.00 |
Zr | 62.5 ± 0.00 | 62.5 ± 0.00 | 125 ± 0.00 | 125 ± 0.00 | |
Nb | 62.5 ± 0.00 | 62.5 ± 0.00 | 125 ± 0.00 | 125 ± 0.00 | |
Ag | 104.1 ± 36.08 | 104.1 ± 36.08 | 125 ± 0.00 | 125 ± 0.00 | |
Ta | 62.5 ± 0.00 | 62.5 ± 0.00 | 83.3 ± 20.8 | 83.3 ± 20.8 | |
In | 62.5 ± 0.00 | 62.5 ± 0.00 | 250 ± 0.00 | 250 ± 0.00 | |
Al | 62.5 ± 0.00 | 62.5 ± 0.00 | 62.5 ± 0.00 | 62.5 ± 0.00 | |
Cu | 125 ± 0.00 | 125 ± 0.00 | 250 ± 0.00 | 250 ± 0.00 | |
Zn | 62.5 ± 0.00 | 62.5 ± 0.00 | 250 ± 0.00 | 250 ± 0.00 | |
Re | 31.2 ± 0.00 | 26.0 ± 5.20 | 62.5 ± 0.00 | 62.5 ± 0.00 | |
Ga | HNO3 (5%) | 26.0 ± 0.00 | 26.0 ± 0.00 | 41.6 ± 18.04 | 41.6 ± 18.04 |
Ru | HCl (5%) | 41.6 ± 10.4 | 41.6 ± 10.4 | 125 ± 0.00 | 125 ± 0.00 |
Rh | 31.2 ± 0.00 | 31.2 ± 0.00 | 62.5 ± 0.00 | 62.5 ± 0.00 | |
Pt | 26.0 ± 5.20 | 31.2 ± 0.00 | 52.1 ± 10.4 | 52.1 ± 10.4 | |
Au | 26.0 ± 5.20 | 26.0 ± 5.20 | 41.6 ± 18.04 | 41.6 ± 18.04 | |
Pd | 26.0 ± 5.20 | 26.0 ± 5.20 | 31.2 ± 0.00 | 31.2 ± 0.00 | |
Mo | HCl (10%) | 13.0 ± 2.60 | 13.0 ± 2.60 | 26.04 ± 5.20 | 26.04 ± 5.20 |
Sn | 15.6 ± 0.00 | 15.6 ± 0.00 | 26.04 ± 5.20 | 26.04 ± 5.20 | |
HNO3 (2%) | 62.5 ± 0.00 | 62.5 ± 0.00 | 125 ± 62.5 | 125 ± 62.5 | |
HNO3 (5%) | 41.6 ± 10.4 | 41.6 ± 10.4 | 125 ± 0.00 | 125 ± 0.00 | |
HCl (5%) | 125 ± 0.00 | 125 ± 0.00 | 125 ± 0.00 | 125 ± 0.00 | |
HCl (10%) | 62.5 ± 0.00 | 62.5 ± 0.00 | 62.5 ± 0.00 | 62.5 ± 0.00 | |
Graphene | 62.5 ± 0.00 | 62.5 ± 0.00 | 125 ± 0.00 | 125 ± 0.00 | |
Graphene oxide | >500 | >500 | >500 | >500 |
2.4. Fractional Inhibitory Concentrations
2.5. Crystal Violet Biofilm Assay
3. Discussion
4. Experimental
4.1. Bacterial Strains
4.2. Antibiotic Susceptibility Testing
4.3. Antimicrobial Compounds
4.4. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Assays
4.5. Fractional Inhibitory Concentration Assay
4.6. Crystal Violet Biofilm Assay
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Ruppe, E.; Woerther, P.-L.; Barbier, F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann. Intensive Care 2015, 5, 21–36. [Google Scholar] [CrossRef]
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- O’Gorman, J.; Humphreys, H. Application of copper to prevent and control infection. Where are we now? J. Hosp. Infect. 2012, 81, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Silver, S.; Phung, T.; Silver, G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J. Ind. Microbiol. Biotechnol. 2006, 33, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Lemire, J.A.; Harrison, J.J.; Turner, R.T. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Waters, J.E.; Stevens-Cullinane, L.; Siebenmann, L.; Hess, J. Recent advances in the development of metal complexes as antibacterial agents with metal-specific modes of action. Curr. Opin. Microbiol. 2023, 75, 102347. [Google Scholar] [CrossRef] [PubMed]
- Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M. Review on the antimicrobial properties of carbon nanostructures. Materials 2017, 10, 1066. [Google Scholar] [CrossRef] [PubMed]
- Bitounis, D.; Ali-Boucettta, H.; Hong, B.H.; Min, D.H.; Kosteralos, K. Prospects and challenges of graphene in biomedical applications. Adv. Mater. 2013, 25, 2258–2268. [Google Scholar] [CrossRef]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Mennati, A.; Jarafi, S.; Khezri, K.; Adibkia, K. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 2015, 5, 19–23. [Google Scholar]
- Ji, H.; Sun, H.; Qu, X. Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv. Drug Deliv. Rev. 2016, 105, 176–189. [Google Scholar] [CrossRef]
- Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem. Res. Toxicol. 2012, 25, 15–34. [Google Scholar] [CrossRef]
- Zhou, R.; Gao, H. Cytotoxicity of graphene: Recent advances and future perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 452–474. [Google Scholar] [CrossRef]
- Mohammed, H.; Ajay Kumar, A.; Bekyarova, E.; Al-Hadeethi, Y.; Zhang, Y.; Chen, m.; Ansari, M.S.; Cochis, A.; Rimondini, L. Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope review. Front. Bioeng. Biotechnol. 2020, 8, 465. [Google Scholar] [CrossRef]
- Lai, H.Z.; Chen, W.Y.; Wu, C.Y.; Chen, Y.C. Potent antibacterial nanoparticles for Pathogenic bacteria. ACS Appl. Mater. Interfaces 2015, 7, 2046–2054. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Biotechnol. 2017, 15, 65–85. [Google Scholar] [CrossRef]
- Ajibade, P.A.; Idemudia, O.G. Synthesis, characterization and antibacterial studies of Pd (II) and Pt (II) complexes of some diaminopyrimidine derivatives. Bioinorg. Chem. Appl. 2013, 2013, 54949–54957. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D.; Liang, H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guerin. J. Nanobiotechnol. 2012, 10, 19. [Google Scholar] [CrossRef]
- Radojevic, I.; Sava, V.; Ljiljana, Č.; Srećko, T.; Marina, M.; Miloš, N.; Gordana, R. Antibacterial and antibiofilm screening of new platinum (IV) complexes with some s-alkyl derivatives of Thiosalicylic acid. Kragujev. J. Sci. 2017, 39, 137–143. [Google Scholar] [CrossRef]
- Karaky, N.; Kirby, A.; McBain, A.J.; Butler, J.A.; El Mohtadi, M.; Banks, C.E.; Whitehead, K.A. Metal ions and graphene-based compounds as alternative options for burn wounds infected by antibiotic-resistant Pseudomonas aeruginosa. Arch. Microbiol. 2020, 202, 995–1004. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef]
- Harrison, J.J.; Ceri, H.; Turner, R.J. Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol. 2007, 5, 928–938. [Google Scholar] [CrossRef]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Li, W.R.; Sun, T.L.; Zhou, S.L.; Ma, Y.K.; Shi, Q.S.; Xie, X.B. A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int. Biodeterior. Biodegrad. 2017, 123, 304–310. [Google Scholar] [CrossRef]
- Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns 2007, 33, 139–148. [Google Scholar] [CrossRef]
- Percival, S.L.; Bowler, P.G.; Russel, D. Bacterial resistance to silver in wound care. J. Hosp. Infect. 2005, 60, 1–7. [Google Scholar] [CrossRef]
- Chopra, I. The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? J. Antimicrob. Chemother. 2007, 59, 587–590. [Google Scholar] [CrossRef]
- Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601. [Google Scholar] [CrossRef]
- Ocsoy, I.; Paret, M.L.; Ocsoy, M.A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 2013, 7, 8972–8980. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 697–6980. [Google Scholar] [CrossRef]
- Ruiz, O.N.; Fernando, K.A.; Wang, B.; Brown, N.A.; Luo, P.G.; McNamara, N.D.; Vangsness, M.; Sun, Y.P.; Bunker, C.E. Graphene oxide: A nonspecific enhancer of cellular growth. ACS Nano 2011, 5, 8100–8107. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736. [Google Scholar] [CrossRef]
- Ng, I.M.; Shamsi, S. Graphene Oxide (GO): A Promising Nanomaterial against Infectious Diseases Caused by Multidrug-Resistant Bacteria. Int. J. Mol. Sci. 2022, 23, 9096. [Google Scholar] [CrossRef]
- McQuillan, J.S.; Infante, H.G.; Stokes, E.; Shaw, A.M. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 2012, 6, 857–866. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. JCMA 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Branda, S.; Vik, A.; Friedman, L.; Kiolter, R. Biofilms: The matrix revised. Trends Microbiol. 2005, 13, 20–26. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. 2008. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 16 April 2024).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
Antibiotic | E. coli-1 | E. coli-2 |
---|---|---|
Ampicillin | 19.33 ± 1.52 | 11.00 ± 1.00 |
Chloramphenicol | 12.33 ± 0.57 | 22.00 ± 1.73 |
Colistin sulphate | 23.66 ± 1.15 | 27.33 ± 1.52 |
Kanamycin | 13.00 ± 1.00 | 26.66 ± 1.52 |
Nalidixic acid | 15.00 ± 1.00 | 24.66 ± 0.57 |
Nitrofurantoin | 6.00 ± 1.00 | 17.66 ± 1.15 |
Streptomycin | 10.33 ± 1.00 | 11.33 ± 1.52 |
Tetracycline | 9.66 ± 0.57 | 7.33 ± 0.57 |
FICs of GO (1:1) | Mo | Au | Ag | Sn | Y | Pt | Pd | Ru |
---|---|---|---|---|---|---|---|---|
E. coli-1 | 0.50 | 1.00 | 1.00 | 0.50 | 1.00 | 0.50 | 1.00 | 0.25 |
E. coli-2 | 0.45 | 1.00 | 1.00 | 0.47 | 1.00 | 0.49 | 0.99 | 0.19 |
FICs of Gr (1:1) | Mo | Au | Ag | Sn | Y | Pt | Pd | Ru |
---|---|---|---|---|---|---|---|---|
E. coli-1 | 0.5 | 0.49 | 1.00 | 0.49 | 1.00 | 0.49 | 1.00 | 1.00 |
E. coli-2 | 0.33 | 0.33 | 0.75 | 0.50 | 0.99 | 0.50 | 1.00 | 0.85 |
E. coli-1 | E. coli-2 | |
---|---|---|
Ag + Pd | 0.21 | 0.25 |
Ag + Zn | 0.25 | 0.25 |
Ag + Mo | 0.19 | 0.25 |
Ag + Au | 1.00 | 1.00 |
Ag + Pt | 1.00 | 1.00 |
Ag + Sn | 3.00 | 2.00 |
Ag + Ga | 1.00 | 1.00 |
Pd + Zn | 3.00 | 2.00 |
Pd + Mo | 0.38 | 0.49 |
Pd + Au | 0.21 | 0.25 |
Pd + Pt | 0.19 | 0.12 |
Pd+ Sn | 0.27 | 0.24 |
Pd + Ga | 0.44 | 0.50 |
Zn + Mo | 3.00 | 2.00 |
Zn + Au | 3.00 | 2.00 |
Zn + Pt | 1.00 | 1.00 |
Zn + Sn | 0.45 | 0.50 |
Zn + Ga | 0.33 | 0.50 |
Mo + Au | 2.00 | 2.00 |
Mo + Pt | 1.00 | 1.00 |
Mo + Sn | 0.33 | 0.49 |
Mo + Ga | 0.50 | 0.50 |
Pt + Sn | 1.00 | 1.00 |
Pt + Ga | 1.00 | 1.00 |
Sn + Ga | 3.00 | 2.00 |
Au + Pt | 0.35 | 0.49 |
Au + Sn | 1.00 | 0.99 |
Au + Ga | 0.33 | 0.5 |
Au + Ag + Sn | 1.00 | 0.99 |
Pd + Pt + Sn | 0.19 | 0.25 |
Au + Ag + Pd | 0.25 | 0.12 |
% Biofilm Reduction | % Biofilm Reduction | % Biofilm Reduction | % Biofilm Reduction | % Biofilm Reduction | |||||
---|---|---|---|---|---|---|---|---|---|
Re | 83.3 | Rh | 87.5 | Au | 59.7 | Ga | 83.3 | GO | 26.4 |
Re-GO | −25 | Rh-GO | 31.9 | Au-GO | 76.4 | Ga-GO | 73.6 | Gr | 69.4 |
Re-Gr | 75 | Rh-Gr | 70.8 | Au-Gr | 88.9 | Ga-Gr | 55.6 | Ctrl | 0 |
Pd | −13.8 | Mo | 76.4 | Pt | 16.7 | Sn | 62.5 | ||
Pd-GO | 58.3 | Mo-GO | 61.1 | Pt-GO | 70.8 | Sn-GO | 84.7 | ||
Pd-Gr | 76.4 | Mo-Gr | 5.6 | Pt-Gr | 55.6 | Sn-Gr | 86.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaky, N.; Tang, S.; Ramalingam, P.; Kirby, A.; McBain, A.J.; Banks, C.E.; Whitehead, K.A. Multidrug-Resistant Escherichia coli Remains Susceptible to Metal Ions and Graphene-Based Compounds. Antibiotics 2024, 13, 381. https://doi.org/10.3390/antibiotics13050381
Karaky N, Tang S, Ramalingam P, Kirby A, McBain AJ, Banks CE, Whitehead KA. Multidrug-Resistant Escherichia coli Remains Susceptible to Metal Ions and Graphene-Based Compounds. Antibiotics. 2024; 13(5):381. https://doi.org/10.3390/antibiotics13050381
Chicago/Turabian StyleKaraky, Nathalie, Shiying Tang, Parameshwari Ramalingam, Andrew Kirby, Andrew J. McBain, Craig E. Banks, and Kathryn A. Whitehead. 2024. "Multidrug-Resistant Escherichia coli Remains Susceptible to Metal Ions and Graphene-Based Compounds" Antibiotics 13, no. 5: 381. https://doi.org/10.3390/antibiotics13050381
APA StyleKaraky, N., Tang, S., Ramalingam, P., Kirby, A., McBain, A. J., Banks, C. E., & Whitehead, K. A. (2024). Multidrug-Resistant Escherichia coli Remains Susceptible to Metal Ions and Graphene-Based Compounds. Antibiotics, 13(5), 381. https://doi.org/10.3390/antibiotics13050381