Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Other Antimicrobial-Resistant Gram-Negative Pathogens Isolated from Bovine Mastitis: A One Health Perspective
Abstract
:1. Introduction
2. Epidemiology
2.1. Antimicrobial-Resistant, Gram-Negative Pathogens from Bovine Mastitis and Humans
2.2. Factors Associated with AMR in Gram-Negative Bacteria Causing Mastitis
3. Transmission
Mobile Genetic Elements of Gram-Negative, Antimicrobial-Resistant Isolates from Mastitis
4. Intervention Strategies
4.1. Surveillance and Monitoring
4.2. Antimicrobial Stewardship in Clinical Mastitis Treatment and Prevention
4.3. Environmental Stewardship
Topic | References | Species | AMR Genes | Findings |
---|---|---|---|---|
Global trends and epidemiology | [14] | E. coli, K. pneumoniae | - | Rapid increase in incidence rates of AMR among clinically important pathogens. |
Prevalence and impact of E. coli infections | [19] | E. coli | ESBLs | Increasing detection rates of ESBLs among E. coli causing infections in humans. |
K. pneumoniae epidemiology | [31,34,35] | K. pneumoniae | Carbapenemases, ESBLs | Widespread resistance to aminoglycosides, carbapenems, quinolones, and polymyxins. |
Phylogenetic background and strain adaptation | [11,15] | E. coli | - | Clonal adaptation and increasing prevalence, especially of E. coli ST131, in humans. |
Transmission of AMR via direct/indirect contact | [37,50,51,52,53] | E. coli, K. pneumoniae | ESBL, KPC-2 | Increased risk of transmission among dairy farm workers; indirect transmission through food and environment; low evidence of direct transmission. |
Pasteurization and raw milk consumption | [32,52,55,56] | E. coli, Enterobacterales | ESBL | Significant variation in raw milk consumption worldwide; association between raw milk and bacterial spread from cows to humans. |
MGEs and AMR spread | [24,58,59] | E. coli | - | Emphasis on the role of MGEs in the spread of AMR; inconsistent strain distribution in bovine milk vs. human clinical strains. |
Specific MGEs in mastitis | [39,60,61,62,63,64,65,66,67,68] | E. coli, Enterobacterales | blaCTX-M, blaCMY-2, blaOXA-181 | ISEcp1 linked to blaCTX-M genes and their dissemination; chromosomal and plasmid locations noted. |
Plasmids and AMR genes | [39,76,77,78,79,80,81,82] | E. coli, K. pneumoniae | blaCTX-M, blaTEM, blaSHV, blaCMY | High mobility of IncI1, IncN, and IncF plasmids among isolates; widespread dissemination of ESBL genes like blaCTX-M-15. |
Integrons and gene cassettes | [60,71,72,73,74,75] | E. coli, K. pneumoniae | Various | High prevalence of class 1 integrons among isolates; need for full genetic context in epidemiological studies. |
Surveillance and monitoring | [85,88,89] | E. coli, Klebsiella spp., other Enterobacteriaceae | ESBL/AmpC | Increasing resistance in E. coli isolates from cattle; presence of ESBL/AmpC producers. |
Antimicrobial stewardship in mastitis | [90,91,92,95,98,99,100,105] | E. coli, Klebsiella spp. | - | Antimicrobial therapy for mastitis control is not always necessary: spontaneous cure or presence of non-susceptible pathogens. Varied pathogen responses influence treatment choices. Most mild and moderate CM caused by E. coli does not require antimicrobial treatment. |
Environmental stewardship | [108,112,115,116] | E. coli, other Enterobacteriaceae | - | Presence of antimicrobial residue and multidrug-resistant E. coli in waste milk fed to calves and flushing wastewater dairy pond effluent as a potential disseminator AMR bacterium when used as soil fertilizer. |
5. Future Directions
- -
- The presence of KPC-2-positive, K. pneumoniae ST258 in the milk of cows affected by mastitis should be further investigated. It remains unclear what the possible human health implications associated with these strains are. Assessments of the potential risk of transmission from CM cases to humans, as well as possible transmission pathways, should be the focus.
- -
- The ability of mastitis-causing MPEC and antimicrobial-resistant strains of the same genetic background as human isolates to effectively colonize and persist in human intestinal cells needs to be investigated. In this regard, the habit of consuming raw milk should be investigated as a potential risk factor for intestinal colonization by selected mastitis pathogens.
- -
- The mechanisms of acquired AMR, including MGEs, among human and CM isolates within the same geographical regions should be contrasted to investigate the potential risk to public health associated with these elements. These will inform source attribution models and enable researchers to quantify human risks associated with antimicrobial-resistant coliforms in milk samples. Ideally, such investigations should also consider antimicrobials used in human medicine and in clinical mastitis treatment.
- -
- The management of waste milk is still problematic, and technologies to effectively manage this product on farms should be developed.
- -
- Finally, robust, integrated, and genomic-based systems should be designed for AMR surveillance in bovine mastitis and clinical human isolates. Ideally, these systems will also capture AMU data in animals and humans.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruegg, P.L. A 100-Year Review: Mastitis Detection, Management, and Prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed]
- Saini, V.; McClure, J.T.; Scholl, D.T.; DeVries, T.J.; Barkema, H.W. Herd-Level Relationship between Antimicrobial Use and Presence or Absence of Antimicrobial Resistance in Gram-Negative Bovine Mastitis Pathogens on Canadian Dairy Farms. J. Dairy Sci. 2013, 96, 4965–4976. [Google Scholar] [CrossRef] [PubMed]
- Pol, M.; Ruegg, P.L. Treatment Practices and Quantification of Antimicrobial Drug Usage in Conventional and Organic Dairy Farms in Wisconsin. J. Dairy Sci. 2007, 90, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. Making Antibiotic Treatment Decisions for Clinical Mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Schukken, Y.; Chuff, M.; Moroni, P.; Gurjar, A.; Santisteban, C.; Welcome, F.; Zadoks, R. The “Other” Gram-Negative Bacteria in Mastitis. Klebsiella, Serratia, and More. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Pyörälä, S. Treatment of Mastitis during Lactation. Ir. Vet. J. 2009, 62, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Burvenich, C.; Van Merris, V.; Mehrzad, J.; Diez-Fraile, A.; Duchateu, L. Severity of E. coli Mastitis Is Mainly Determined by Cow Factors Christian. Vet. Res. 2003, 34, 521–564. [Google Scholar] [CrossRef]
- O’Neill, J. Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste the Review on Antimicrobial Resistance. In Review on Antimicrobial Resistance; Welcome Trust: London, UK, 2015; pp. 1–41. [Google Scholar]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing Antimicrobial Use in Food Animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO List of Critically Important Antimicrobials (CIA), 6th ed.; WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR), Ed.; World Health Organization: Geneva, Switzerland, 2018; ISBN 9789241515528. [Google Scholar]
- Pitout, J.D.D.; DeVinney, R. Escherichia coli ST131: A Multidrug-Resistant Clone Primed for Global Domination. F1000Research 2017, 6, 195. [Google Scholar] [CrossRef]
- Oliveira, L.; Hulland, C.; Ruegg, P.L. Characterization of Clinical Mastitis Occurring in Cows on 50 Large Dairy Herds in Wisconsin. J. Dairy Sci. 2013, 96, 7538–7549. [Google Scholar] [CrossRef]
- Cobirka, M.; Tancin, V.; Slama, P. Epidemiology and Classification of Mastitis. Animals 2020, 10, 2212. [Google Scholar] [CrossRef] [PubMed]
- Mathers, A.J.; Peirano, G.; Pitout, J.D.D. The Role of Epidemic Resistance Plasmids and International High- Risk Clones in the Spread of Multidrug-Resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [Google Scholar] [CrossRef]
- Denamur, E.; Clermont, O.; Bonacorsi, S.; Gordon, D. The Population Genetics of Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2021, 19, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Shpigel, N.Y.; Elazar, S.; Rosenshine, I. Mammary Pathogenic Escherichia coli. Curr Opin Microbiol. 2008, 11, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.E.; Dolin, R.; Blaser, M.J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 1–2, ISBN 9996096742. [Google Scholar]
- Diekema, D.J.; Hsueh, P.R.; Mendes, R.E.; Pfaller, M.A.; Rolston, K.V.; Sader, H.S.; Jones, R.N. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 2019, 63, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-Antibiotic Antimicrobial Strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.C.; Castilho, I.G.; Rossi, B.F.; Bonsaglia, É.C.R.; Dantas, S.T.A.; Dias, R.C.B.; Fernandes Júnior, A.; Hernandes, R.T.; Camargo, C.H.; Ribeiro, M.G.; et al. Genetic and Antimicrobial Resistance Profiles of Mammary Pathogenic E. coli (MPEC) Isolates from Bovine Clinical Mastitis. Pathogens 2022, 11, 1435. [Google Scholar] [CrossRef]
- Fazel, F.; Jamshidi, A.; Khoramian, B. Phenotypic and Genotypic Study on Antimicrobial Resistance Patterns of E. Coli Isolates from Bovine Mastitis. Microb. Pathog. 2019, 132, 355–361. [Google Scholar] [CrossRef]
- Freitag, C.; Michael, G.B.; Kadlec, K.; Hassel, M.; Schwarz, S. Detection of Plasmid-Borne Extended-Spectrum β-Lactamase (ESBL) Genes in Escherichia Coli Isolates from Bovine Mastitis. Vet. Microbiol. 2017, 200, 151–156. [Google Scholar] [CrossRef]
- Keane, O.M. Genetic Diversity, the Virulence Gene Profile and Antimicrobial Resistance of Clinical Mastitis-Associated Escherichia coli. Res. Microbiol. 2016, 167, 678–684. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Liu, W.; Liu, Y.; Ali, T.; Chen, W.; Yin, J.; Han, B. Phylogenetic Group, Virulence Factors and Antimicrobial Resistance of Escherichia Coli Associated with Bovine Mastitis. Res. Microbiol. 2014, 165, 273–277. [Google Scholar] [CrossRef]
- Orsi, H.; Guimarães, F.F.; Leite, D.S.; Guerra, S.T.; Joaquim, S.F.; Pantoja, J.C.F.; Hernandes, R.T.; Lucheis, S.B.; Ribeiro, M.G.; Langoni, H.; et al. Characterization of Mammary Pathogenic Escherichia Coli Reveals the Diversity of Escherichia coli Isolates Associated with Bovine Clinical Mastitis in Brazil. J. Dairy Sci. 2023, 106, 1403–1413. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Huang, C.; Gao, X.; Wang, Z.; Liu, Y.; Tian, C.; Hong, W.; Niu, S.; Liu, M. The Phylogenetic Group, Antimicrobial Susceptibility, and Virulence Genes of Escherichia coli from Clinical Bovine Mastitis. J. Dairy Sci. 2018, 101, 572–580. [Google Scholar] [CrossRef]
- Manges, A.R.; Geum, H.M.; Guo, A.; Edens, T.J.; Fibke, C.D.; Pitout, J.D.D. Global Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. Clin. Microbiol. Rev. 2019, 32, e00135-18. [Google Scholar] [CrossRef]
- Holland, M.S.; Nobrega, D.; Peirano, G.; Naugler, C.; Church, D.L.; Pitout, J.D.D. Molecular Epidemiology of Escherichia coli Causing Bloodstream Infections in a Centralized Canadian Region: A Population-Based Surveillance Study. Clin. Microbiol. Infect. 2020, 26, 1554.e1–1554.e8. [Google Scholar] [CrossRef]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population Genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef]
- Fuenzalida, M.J.; Furmaga, E.; Aulik, N. Antimicrobial Resistance in Klebsiella Species from Milk Specimens Submitted for Bovine Mastitis Testing at the Wisconsin Veterinary Diagnostic Laboratory, 2008–2019. JDS Commun. 2021, 2, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Caliskan-Aydogan, O.; Alocilja, E.C. A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Microorganisms 2023, 11, 1491. [Google Scholar] [CrossRef] [PubMed]
- La Cadena, E.D.; Mojica, M.F.; García-Betancur, J.C.; Appel, T.M.; Porras, J.; Pallares, C.J.; Solano-Gutiérrez, J.S.; Rojas, L.J.; Villegas, M.V. Molecular Analysis of Polymyxin Resistance among Carbapenemase-Producing Klebsiella pneumoniae in Colombia. Antibiotics 2021, 10, 284. [Google Scholar] [CrossRef]
- Bowers, J.R.; Kitchel, B.; Driebe, E.M.; MacCannell, D.R.; Roe, C.; Lemmer, D.; De Man, T.; Rasheed, J.K.; Engelthaler, D.M.; Keim, P.; et al. Genomic Analysis of the Emergence and Rapid Global Dissemination of the Clonal Group 258 Klebsiella pneumoniae Pandemic. PLoS ONE 2015, 10, e0133727. [Google Scholar] [CrossRef]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic Analysis of Diversity, Population Structure, Virulence, and Antimicrobial Resistance in Klebsiella pneumoniae, an Urgent Threat to Public Health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef]
- Silva-Sanchez, J.; Barrios-Camacho, H.; Hernández-Rodriguez, E.; Duran-Bedolla, J.; Sanchez-Perez, A.; Martínez-Chavarría, L.C.; Xicohtencatl-Cortes, J.; Hernández-Castro, R.; Garza-Ramos, U. Molecular Characterization of KPC-2-Producing Klebsiella pneumoniae ST258 Isolated from Bovine Mastitis. Braz. J. Microbiol. 2021, 52, 1029–1036. [Google Scholar] [CrossRef]
- Zheng, Z.; Gorden, P.J.; Xia, X.; Zheng, Y.; Li, G. Whole-Genome Analysis of Klebsiella Pneumoniae from Bovine Mastitis Milk in the U.S. Environ. Microbiol. 2022, 24, 1183–1199. [Google Scholar] [CrossRef]
- Dahmen, S.; Métayer, V.; Gay, E.; Madec, J.Y.; Haenni, M. Characterization of Extended-Spectrum Beta-Lactamase (ESBL)-Carrying Plasmids and Clones of Enterobacteriaceae Causing Cattle Mastitis in France. Vet. Microbiol. 2013, 162, 793–799. [Google Scholar] [CrossRef]
- Ohnishi, M.; Okatani, A.T.; Harada, K.; Sawada, T.; Marumo, K.; Murakami, M.; Sato, R.; Esaki, H.; Shimura, K.; Kato, H.; et al. Genetic Characteristics of CTX-M-Type Extended-Spectrum-β-Lactamase (ESBL)-Producing Enterobacteriaceae Involved in Mastitis Cases on Japanese Dairy Farms, 2007 to 2011. J. Clin. Microbiol. 2013, 51, 3117–3122. [Google Scholar] [CrossRef]
- Locatelli, C.; Caronte, I.; Scaccabarozzi, L.; Migliavacca, R.; Pagani, L.; Moroni, P. Extended-Spectrum β-Lactamase Production in E. coli Strains Isolated from Clinical Bovine Mastitis. Vet. Res. Commun. 2009, 33, 141–144. [Google Scholar] [CrossRef]
- Locatelli, C.; Scaccabarozzi, L.; Pisoni, G.; Moroni, P. CTX-M1 ESBL-Producing Klebsiella pneumoniae subsp. Pneumoniae Isolated from Cases of Bovine Mastitis. J. Clin. Microbiol. 2010, 48, 3822–3823. [Google Scholar] [CrossRef]
- Geser, N.; Stephan, R.; Hächler, H. Occurrence and Characteristics of Extended-Spectrum b-Lactamase (ESBL) Producing Enterobacteriaceae in Food Producing Animals, Minced Meat and Raw Milk. BMC Vet. Res. 2012, 8, 21. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.-D.; Shang, X.-F.; Wang, X.-R.; Wang, L.; Yan, Z.-T.; Li, H.-S. sheng Prevalence and Characteristics of Extended Spectrum β-Lactamase-Producing Escherichia coli from Bovine Mastitis Cases in China. J. Integr. Agric. 2018, 17, 1246–1251. [Google Scholar] [CrossRef]
- Yu, Z.N.; Wang, J.; Ho, H.; Wang, Y.T.; Huang, S.N.; Han, R.W. Prevalence and Antimicrobial-Resistance Phenotypes and Genotypes of Escherichia coli Isolated from Raw Milk Samples from Mastitis Cases in Four Regions of China. J. Glob. Antimicrob. Resist. 2020, 22, 94–101. [Google Scholar] [CrossRef]
- Makovec, J.A.; Ruegg, P.L. Antimicrobial Resistance of Bacteria Isolated from Dairy Cow Milk Samples Submitted for Bacterial Culture: 8905 Samples (1994–2001). J. Am. Vet. Med. Assoc. 2003, 222, 1582–1589. [Google Scholar] [CrossRef]
- Snow, L.C.; Warner, R.G.; Cheney, T.; Wearing, H.; Stokes, M.; Harris, K.; Teale, C.J.; Coldham, N.G. Risk Factors Associated with Extended Spectrum Beta-Lactamase Escherichia coli (CTX-M) on Dairy Farms in North West England and North Wales. Prev. Vet. Med. 2012, 106, 225–234. [Google Scholar] [CrossRef]
- Huang, S.; Tian, P.; Kou, X.; An, N.; Wu, Y.; Dong, J.; Cai, H.; Li, B.; Xue, Y.; Liu, Y.; et al. The Prevalence and Characteristics of Extended-Spectrum β-Lactamase Escherichia Coli in Raw Milk and Dairy Farms in Northern Xinjiang, China. Int. J. Food Microbiol. 2022, 381, 109908. [Google Scholar] [CrossRef]
- Endimiani, A.; Bertschy, I.; Perreten, V. Escherichia coli Producing CMY-2 β-Lactamase in Bovine Mastitis Milk. J. Food Prot. 2012, 75, 137–138. [Google Scholar] [CrossRef]
- Hoelzer, K.; Wong, N.; Thomas, J.; Talkington, K.; Jungman, E.; Coukell, A. Antimicrobial Drug Use in Food-Producing Animals and Associated Human Health Risks: What, and How Strong, Is the Evidence? BMC Vet. Res. 2017, 13, 211. [Google Scholar] [CrossRef]
- Dorado-García, A.; Smid, J.H.; Van Pelt, W.; Bonten, M.J.M.; Fluit, A.C.; Van Den Bunt, G.; Wagenaar, J.A.; Hordijk, J.; Dierikx, C.M.; Veldman, K.T.; et al. Molecular Relatedness of ESBL/AmpC-Producing Escherichia coli from Humans, Animals, Food and the Environment: A Pooled Analysis. J. Antimicrob. Chemother. 2018, 73, 339–347. [Google Scholar] [CrossRef]
- Collis, R.M.; Burgess, S.A.; Biggs, P.J.; Midwinter, A.C.; French, N.P.; Toombs-Ruane, L.; Cookson, A.L. Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Dairy Farm Environments: A New Zealand Perspective. Foodborne Pathog. Dis. 2019, 16, 5–22. [Google Scholar] [CrossRef]
- Gelalcha, B.D.; Kerro Dego, O. Extended-Spectrum Beta-Lactamases Producing Enterobacteriaceae in the USA Dairy Cattle Farms and Implications for Public Health. Antibiotics 2022, 11, 1313. [Google Scholar] [CrossRef]
- Miltgen, G.; Martak, D.; Valot, B.; Kamus, L.; Garrigos, T.; Verchere, G.; Gbaguidi-Haore, H.; Ben Cimon, C.; Ramiandrisoa, M.; Picot, S.; et al. One Health Compartmental Analysis of ESBL-Producing Escherichia coli on Reunion Island Reveals Partitioning between Humans and Livestock. J. Antimicrob. Chemother. 2022, 77, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Sudarwanto, M.; Akineden, O.; Odenthal, S.; Gross, M.; Usleber, E. Extended-Spectrum b-Lactamase (ESBL)–Producing Klebsiella pneumoniae in Bulk Tank Milk from Dairy Farms in Indonesia. Foodborne Pathog. Dis. 2015, 12, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.S.; Price, L.B. Recent Research Examining Links among Klebsiella pneumoniae from Food, Food Animals, and Human Extraintestinal Infections. Curr. Environ. Health Rep. 2016, 3, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Clabots, C.; Porter, S.B.; Bender, T.; Johnston, B.D.; Thuras, P. Intestinal Persistence of Colonizing Escherichia coli Strains, Especially ST131-H30, in Relation to Bacterial and Host Factors. J. Infect. Dis. 2022, 225, 2197–2207. [Google Scholar] [CrossRef]
- Jones-Dias, D.; Manageiro, V.; Graça, R.; Sampaio, D.A.; Albuquerque, T.; Themudo, P.; Vieira, L.; Ferreira, E.; Clemente, L.; Caniça, M. QnrS1- and Aac(6′)-Ib-Cr-Producing Escherichia coli among Isolates from Animals of Different Sources: Susceptibility and Genomic Characterization. Front. Microbiol. 2016, 7, 671. [Google Scholar] [CrossRef] [PubMed]
- Tahar, S.; Nabil, M.M.; Safia, T.; Ngaiganam, E.P.; Omar, A.; Hafidha, C.; Hanane, Z.; Rolain, J.M.; Diene, S.M. Molecular Characterization of Multidrug-Resistant Escherichia coli Isolated from Milk of Dairy Cows with Clinical Mastitis in Algeria. J. Food Prot. 2020, 83, 2173–2178. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-Spectrum β-Lactamases: An Update on Their Characteristics, Epidemiology and Detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; Coque, T.M. The CTX-M β-Lactamase Pandemic. Curr. Opin. Microbiol. 2006, 9, 466–475. [Google Scholar] [CrossRef]
- Toleman, M.A.; Walsh, T.R. Combinatorial Events of Insertion Sequences and ICE in Gram-Negative Bacteria. FEMS Microbiol. Rev. 2011, 35, 912–935. [Google Scholar] [CrossRef]
- Li, D.; Wyrsch, E.R.; Elankumaran, P.; Dolejska, M.; Marenda, M.S.; Browning, G.F.; Bushell, R.N.; McKinnon, J.; Chowdhury, P.R.; Hitchick, N.; et al. Genomic Comparisons of Escherichia coli ST131 from Australia. Microb. Genom. 2021, 7, 000721. [Google Scholar] [CrossRef] [PubMed]
- Timofte, D.; Maciuc, I.E.; Evans, N.J.; Williams, H.; Wattret, A.; Fick, J.C.; Williams, N.J. Detection and Molecular Characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-Lactamases from Bovine Mastitis Isolates in the United Kingdom. Antimicrob. Agents Chemother. 2014, 58, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Tark, D.S.; Moon, D.C.; Kang, H.Y.; Kim, S.R.; Nam, H.M.; Lee, H.S.; Jung, S.C.; Lim, S.K. Antimicrobial Susceptibility and Characterization of Extended-Spectrum β-Lactamases in Escherichia coli Isolated from Bovine Mastitic Milk in South Korea from 2012 to 2015. J. Dairy Sci. 2017, 100, 3463–3469. [Google Scholar] [CrossRef] [PubMed]
- Koovapra, S.; Bandyopadhyay, S.; Das, G.; Bhattacharyya, D.; Banerjee, J.; Mahanti, A.; Samanta, I.; Nanda, P.K.; Kumar, A.; Mukherjee, R.; et al. Molecular Signature of Extended Spectrum β-Lactamase Producing Klebsiella pneumoniae Isolated from Bovine Milk in Eastern and North-Eastern India. Infect. Genet. Evol. 2016, 44, 395–402. [Google Scholar] [CrossRef]
- Jouini, A.; Klibi, A.; Kmiha, S.; Hamrouni, S.; Ghram, A.; Maaroufi, A. Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia. Pathogens 2022, 11, 948. [Google Scholar] [CrossRef] [PubMed]
- Ludden, C.; Decano, A.G.; Jamrozy, D.; Pickard, D.; Morris, D.; Parkhill, J.; Peacock, S.J.; Cormican, M.; Downing, T. Genomic Surveillance of Escherichia coli ST131 Identifies Local Expansion and Serial Replacement of Subclones. Microb. Genom. 2020, 6, mgen000352. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Ur Rahman, S.; Zhang, L.; Shahid, M.; Zhang, S.; Liu, G.; Gao, J.; Han, B. ESBL-Producing Escherichia coli from Cows Suffering Mastitis in China Contain Clinical Class 1 Integrons with CTX-M Linked to ISCR1. Front. Microbiol. 2016, 7, 1931. [Google Scholar] [CrossRef] [PubMed]
- Gillings, M.R. Integrons: Past, Present, and Future. Microbiol. Mol. Biol. Rev. 2014, 78, 257–277. [Google Scholar] [CrossRef]
- Behera, M.; Parmanand; Roshan, M.; Rajput, S.; Gautam, D.; Vats, A.; Ghorai, S.M.; De, S. Novel AadA5 and DfrA17 Variants of Class 1 Integron in Multidrug-Resistant Escherichia coli Causing Bovine Mastitis. Appl. Microbiol. Biotechnol. 2023, 107, 433–446. [Google Scholar] [CrossRef]
- Rao, A.N.; Barlow, M.; Clark, L.A.; Boring, J.R.; Tenover, F.C.; McGowan, J.E. Class 1 Integrons in Resistant Escherichia coli and Klebsiella spp., US Hospitals. Emerg. Infect. Dis. 2006, 12, 1011–1014. [Google Scholar] [CrossRef]
- Li, B.; Hu, Y.; Wang, Q.; Yi, Y.; Woo, P.C.Y.; Jing, H.; Zhu, B.; Liu, C.H. Structural Diversity of Class 1 Integrons and Their Associated Gene Cassettes in Klebsiella pneumoniae Isolates from a Hospital in China. PLoS ONE 2013, 8, e75805. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Li, D.; Liu, F.; Du, F.L.; Long, D.; Zhang, W.; Liu, Y. Distribution of Integrons and Phylogenetic Groups among Highly Virulent Serotypes of Klebsiella pneumoniae in a Chinese Tertiary Hospital. J. Glob. Antimicrob. Resist. 2020, 21, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chang, W.; Zhang, H.; Hu, D.; Wang, X. The Role of Plasmids in the Multiple Antibiotic Resistance Transfer in ESBLs-Producing Escherichia coli Isolated from Wastewater Treatment Plants. Front. Microbiol. 2019, 10, 633. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; Garciá-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids Using Plasmidfinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A. Plasmids in Gram Negatives: Molecular Typing of Resistance Plasmids. Int. J. Med. Microbiol. 2011, 301, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of Plasmids by PCR-Based Replicon Typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Naranjo-Lucena, A.; Slowey, R. Invited Review: Antimicrobial Resistance in Bovine Mastitis Pathogens: A Review of Genetic Determinants and Prevalence of Resistance in European Countries. J. Dairy Sci. 2023, 106, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Madec, J.Y.; Haenni, M. Antimicrobial Resistance Plasmid Reservoir in Food and Food-Producing Animals. Plasmid 2018, 99, 72–81. [Google Scholar] [CrossRef]
- Madec, J.Y.; Poirel, L.; Saras, E.; Gourguechon, A.; Girlich, D.; Nordmann, P.; Haenni, M. Non-ST131 Escherichia coli from Cattle Harbouring Human-like Bla CTX-M-15-Carrying Plasmids. J. Antimicrob. Chemother. 2012, 67, 578–581. [Google Scholar] [CrossRef]
- Peirano, G.; Chen, L.; Nobrega, D.; Finn, T.J.; Kreiswirth, B.N.; DeVinney, R.; Pitout, J.D.D. Genomic Epidemiology of Global Carbapenemase-Producing Escherichia coli, 2015–2017. Emerg. Infect. Dis. 2022, 28, 924–931. [Google Scholar] [CrossRef]
- Decano, A.G.; Downing, T. An Escherichia coli ST131 Pangenome Atlas Reveals Population Structure and Evolution across 4071 Isolates. Sci. Rep. 2019, 9, 17394. [Google Scholar] [CrossRef]
- Dantas Palmeira, J.; Ferreira, H.M.N. Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacteriaceae in Cattle Production—A Threat around the World. Heliyon 2020, 6, e03206. [Google Scholar] [CrossRef] [PubMed]
- Sanders, P.; Vanderhaeghen, W.; Fertner, M.; Fuchs, K.; Obritzhauser, W.; Agunos, A.; Carson, C.; Borck Høg, B.; Dalhoff Andersen, V.; Chauvin, C.; et al. Monitoring of Farm-Level Antimicrobial Use to Guide Stewardship: Overview of Existing Systems and Analysis of Key Components and Processes. Front. Vet. Sci. 2020, 7, 540. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.; Heider, L.C.; Léger, D.; Mcclure, J.T.; Rizzo, D.; Dufour, S.; Kelton, D.F.; Renaud, D.; Barkema, H.W.; Sanchez, J. Canadian Dairy Network for Antimicrobial Stewardship and Resistance (CaDNetASR): An On-Farm Surveillance System. Front. Vet. Sci. 2022, 8, 799622. [Google Scholar] [CrossRef] [PubMed]
- de Jong, A.; El Garch, F.; Simjee, S.; Moyaert, H.; Rose, M.; Youala, M.; Siegwart, E. Monitoring of Antimicrobial Susceptibility of Udder Pathogens Recovered from Cases of Clinical Mastitis in Dairy Cows across Europe: VetPath Results. Vet. Microbiol. 2018, 213, 73–81. [Google Scholar] [CrossRef] [PubMed]
- El Garch, F.; Youala, M.; Simjee, S.; Moyaert, H.; Klee, R.; Truszkowska, B.; Rose, M.; Hocquet, D.; Valot, B.; Morrissey, I.; et al. Antimicrobial Susceptibility of Nine Udder Pathogens Recovered from Bovine Clinical Mastitis Milk in Europe 2015–2016: VetPath Results. Vet. Microbiol. 2020, 245, 108644. [Google Scholar] [CrossRef] [PubMed]
- Tomazi, T.; dos Santos, M.V. Antimicrobial Use for Treatment of Clinical Mastitis in Dairy Herds from Brazil and Its Association with Herd-Level Descriptors. Prev. Vet. Med. 2020, 176, 104937. [Google Scholar] [CrossRef] [PubMed]
- Lago, A.; Godden, S.M.; Bey, R.; Ruegg, P.L.; Leslie, K. The Selective Treatment of Clinical Mastitis Based on On-Farm Culture Results: I. Effects on Antibiotic Use, Milk Withholding Time, and Short-Term Clinical and Bacteriological Outcomes. J. Dairy Sci. 2011, 94, 4441–4456. [Google Scholar] [CrossRef]
- Tomazi, T.; Ferreira, G.C.; Orsi, A.M.; Gonçalves, J.L.; Ospina, P.A. Association of Herd-Level Risk Factors and Incidence Rate of Clinical Mastitis in 20 Brazilian Dairy Herds. Prev. Vet. Med. 2018, 161, 9–18. [Google Scholar] [CrossRef]
- Roberson, J.R. Establishing Treatment Protocols for Clinical Mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2003, 19, 223–234. [Google Scholar] [CrossRef]
- Kikuchi, M.; Okabe, T.; Shimizu, H.; Matsui, T.; Matsuda, F.; Haga, T.; Fujimoto, K.; Endo, Y.; Sugiura, K. Antimicrobial Use and Its Association with the Presence of Methicillin-Resistant Staphylococci (MRS) and Extended-Spectrum Beta-Lactamases (ESBL)-Producing Coliforms in Mastitic Milk on Dairy Farms in the Chiba Prefecture, Japan. Heliyon 2022, 8, e12381. [Google Scholar] [CrossRef] [PubMed]
- Krömker, V.; Leimbach, S. Mastitis Treatment—Reduction in Antibiotic Usage in Dairy Cows. Reprod. Domest. Anim. 2017, 52, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Suojala, L.; Kaartinen, L.; Pyörälä, S. Treatment for Bovine Escherichia coli Mastitis—An Evidence-Based Approach. J. Vet. Pharmacol. Ther. 2013, 36, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Fuenzalida, M.J.; Ruegg, P.L. Negatively Controlled, Randomized Clinical Trial to Evaluate Intramammary Treatment of Nonsevere, Gram-Negative Clinical Mastitis. J. Dairy Sci. 2019, 102, 5438–5457. [Google Scholar] [CrossRef] [PubMed]
- de Jong, E.; McCubbin, K.D.; Speksnijder, D.; Dufour, S.; Middleton, J.R.; Ruegg, P.L.; Lam, T.J.G.M.; Kelton, D.F.; McDougall, S.; Godden, S.M.; et al. Invited Review: Selective Treatment of Clinical Mastitis in Dairy Cattle. J. Dairy Sci. 2023, 106, 3761–3778. [Google Scholar] [CrossRef] [PubMed]
- Lago, A.; Godden, S.M. Use of Rapid Culture Systems to Guide Clinical Mastitis Treatment Decisions. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 389–412. [Google Scholar] [CrossRef] [PubMed]
- de Jong, E.; Creytens, L.; De Vliegher, S.; McCubbin, K.D.; Baptiste, M.; Leung, A.A.; Speksnijder, D.; Dufour, S.; Middleton, J.R.; Ruegg, P.L.; et al. Selective Treatment of Nonsevere Clinical Mastitis Does Not Adversely Affect Cure, Somatic Cell Count, Milk Yield, Recurrence, or Culling: A Systematic Review and Meta-Analysis. J. Dairy Sci. 2023, 106, 1267–1286. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, A.; Koops, W.J.; Wemmenhove, H. Antibiotic Use in Dairy Herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 2016, 99, 1632–1648. [Google Scholar] [CrossRef] [PubMed]
- USDA. Milk Quality, Milking Procedures, and Mastitis on US Dairies, 2014; USDA: Washington, DC, USA, 2016.
- Rowe, S.M.; Godden, S.M.; Nydam, D.V.; Gorden, P.J.; Lago, A.; Vasquez, A.K.; Royster, E.; Timmerman, J.; Thomas, M.J. Randomized Controlled Non-Inferiority Trial Investigating the Effect of 2 Selective Dry-Cow Therapy Protocols on Antibiotic Use at Dry-off and Dry Period Intramammary Infection Dynamics. J. Dairy Sci. 2020, 103, 6473–6492. [Google Scholar] [CrossRef]
- Mata, F.; Jesus, M.S.; Pinto, R.P.; Mata, A. A Meta-Analysis of the Mastitis Vaccination Efficacy in Dairy Cattle. Open Vet. J. 2023, 13, 179–187. [Google Scholar] [CrossRef]
- Gurjar, A.A.; Klaessig, S.; Salmon, S.A.; Schukken, R.J.; Yancey, Y.H. Evaluation of an Alternative Dosing Regimen of a J-5 Mastitis Vaccine against Intramammary Escherichia coli Challenge in Nonlactating Late-Gestation Dairy Cows. J. Dairy Sci. 2013, 96, 5053–5063. [Google Scholar] [CrossRef] [PubMed]
- Gorden, P.J.; Kleinhenz, M.D.; Ydstie, J.A.; Brick, T.A.; Slinden, L.M.; Peterson, M.P.; Straub, D.E.; Burkhardt, D.T. Efficacy of Vaccination with a Klebsiella pneumoniae Siderophore Receptor Protein Vaccine for Reduction of Klebsiella Mastitis in Lactating Cattle. J. Dairy Sci. 2018, 101, 10398–10408. [Google Scholar] [CrossRef] [PubMed]
- Tomazi, T.; Tomazi, A.C.C.H.; Silva, J.C.C.; Bringhenti, L.; Bravo, M.L.M.C.; Rodrigues, M.X.; Bicalho, R.C. Immunization with a Novel Recombinant Protein (YidR) Reduced the Risk of Clinical Mastitis Caused by Klebsiella spp. and Decreased Milk Losses and Culling Risk after Escherichia coli Infections. J. Dairy Sci. 2021, 104, 4787–4802. [Google Scholar] [CrossRef] [PubMed]
- Tempini, P.N.; Aly, S.S.; Karle, B.M.; Pereira, R.V. Multidrug Residues and Antimicrobial Resistance Patterns in Waste Milk from Dairy Farms in Central California. J. Dairy Sci. 2018, 101, 8110–8122. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.V.; Siler, J.D.; Bicalho, R.C.; Warnick, L.D. Multiresidue Screening of Milk Withheld for Sale at Dairy Farms in Central New York State. J. Dairy Sci. 2014, 97, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- USDA. Dairy 2007. Part I: Reference of Dairy Cattle Health and Management Practices in the United States, 2007; USDA: Washington, DC, USA, 2007; pp. 1–122.
- Vasseur, E.; Borderas, F.; Cue, R.I.; Lefebvre, D.; Pellerin, D.; Rushen, J.; Wade, K.M.; de Passillé, A.M. A Survey of Dairy Calf Management Practices in Canada That Affect Animal Welfare. J. Dairy Sci. 2010, 93, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Van Vleck Pereira, R.; Siler, J.D.; Bicalho, R.C.; Warnick, L.D. In Vivo Selection of Resistant E. coli after Ingestion of Milk with Added Drug. PLoS ONE 2014, 9, e115223. [Google Scholar] [CrossRef]
- Maynou, G.; Migura-Garcia, L.; Chester-Jones, H.; Ziegler, D.; Bach, A.; Terré, M. Effects of Feeding Pasteurized Waste Milk to Dairy Calves on Phenotypes and Genotypes of Antimicrobial Resistance in Fecal Escherichia coli Isolates before and after Weaning. J. Dairy Sci. 2017, 100, 7967–7979. [Google Scholar] [CrossRef] [PubMed]
- Roca, M.; Villegas, L.; Kortabitarte, M.L.; Althaus, R.L.; Molina, M.P. Effect of Heat Treatments on Stability of β-Lactams in Milk. J. Dairy Sci. 2011, 94, 1155–1164. [Google Scholar] [CrossRef]
- Gosselin, V.B.; Bodmer, M.; Schüpbach-Regula, G.; Steiner, A.; Meylan, M. Survey on the Disposal of Waste Milk Containing Antimicrobial Residues on Swiss Dairy Farms. J. Dairy Sci. 2022, 105, 1242–1254. [Google Scholar] [CrossRef]
- Ibekwe, A.M.; Bhattacharjee, A.S.; Phan, D.; Ashworth, D.; Schmidt, M.P.; Murinda, S.E.; Obayiuwana, A.; Murry, M.A.; Schwartz, G.; Lundquist, T.; et al. Potential Reservoirs of Antimicrobial Resistance in Livestock Waste and Treated Wastewater That Can Be Disseminated to Agricultural Land. Sci. Total Environ. 2023, 872, 162194. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nery Garcia, B.L.; Dantas, S.T.A.; da Silva Barbosa, K.; Mendes Mitsunaga, T.; Butters, A.; Camargo, C.H.; Nobrega, D.B. Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Other Antimicrobial-Resistant Gram-Negative Pathogens Isolated from Bovine Mastitis: A One Health Perspective. Antibiotics 2024, 13, 391. https://doi.org/10.3390/antibiotics13050391
Nery Garcia BL, Dantas STA, da Silva Barbosa K, Mendes Mitsunaga T, Butters A, Camargo CH, Nobrega DB. Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Other Antimicrobial-Resistant Gram-Negative Pathogens Isolated from Bovine Mastitis: A One Health Perspective. Antibiotics. 2024; 13(5):391. https://doi.org/10.3390/antibiotics13050391
Chicago/Turabian StyleNery Garcia, Breno Luis, Stéfani Thais Alves Dantas, Kristian da Silva Barbosa, Thatiane Mendes Mitsunaga, Alyssa Butters, Carlos Henrique Camargo, and Diego Borin Nobrega. 2024. "Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Other Antimicrobial-Resistant Gram-Negative Pathogens Isolated from Bovine Mastitis: A One Health Perspective" Antibiotics 13, no. 5: 391. https://doi.org/10.3390/antibiotics13050391
APA StyleNery Garcia, B. L., Dantas, S. T. A., da Silva Barbosa, K., Mendes Mitsunaga, T., Butters, A., Camargo, C. H., & Nobrega, D. B. (2024). Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Other Antimicrobial-Resistant Gram-Negative Pathogens Isolated from Bovine Mastitis: A One Health Perspective. Antibiotics, 13(5), 391. https://doi.org/10.3390/antibiotics13050391