Meropenem Disposition in Neonatal and Pediatric Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy
Abstract
:1. Introduction
2. Results
2.1. Patient Population and Therapeutic Drug Monitoring
2.2. Population Pharmacokinetic Model
2.3. Simulations for Meropenem Dose Optimization
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Meropenem Dosing
4.3. Bioanalytical Assays
4.4. Population Pharmacokinetic Modelling
- (1)
- Development of structural and statistical model: for the structural model, both one- and two-compartment models were explored to depict the distribution of meropenem. A first-order clearance was assumed for meropenem. Inter-individual variability was examined for each PK parameter, assuming log-normal distribution with estimated variance. Various error models, including proportional, additive and combination, were evaluated for the residual error model.
- (2)
- Covariate model: In the next step, the following covariates were tested:
- Maturation variables: BW and PNA were tested as continuous covariates.
- Disease status: laboratory values, including serum creatinine (μmol/L), estimated creatinine clearance (CrCl, calculated according to Schwartz [44,45]), serum urea (mmol/L), serum albumin (g/L) during the whole course of the disease, serum albumin values at the start of treatment (g/L), total bilirubin (μmol/L), blood pH, C-reactive protein (CRP) (mg/L), aspartate transaminase (IU/L), alanine transaminase (IU/L) and the pediatric index of mortality (PIM3) score, were tested as continuous covariates.
- Concomitant therapy: the use of inotropic drugs, diuretics, along with CRRT use were tested as categorical covariates.
- ECMO: ECMO modalities (veno-venous and veno-arterial), on/off ECMO and change in ECMO circuit were tested as categorical covariates; ECMO speed (revolutions/min), ECMO flow (L/min), duration of ECMO treatment (hours) and time after start and stop of ECMO were tested as continuous covariates.
- (3)
- Validation of the final model: A bootstrap analysis was carried out to determine the stability of the final model. In this process, 1000 replicates of the original data were created by sampling patients from the original dataset with replacements. The final model was applied to each of these 1000 resampled datasets, followed by comparing the median and 95% confidence intervals (CIs) obtained for each parameter with the estimates in the final model. The predictive capabilities of the structural and statistical model were checked using normalized prediction distribution errors (NPDEs). To achieve this, the original dataset was simulated 500 times and the observed concentrations were then compared to the range of simulated values using the NPDE package developed for R (R Foundation for Statistical Computing, Vienna, Austria; http://www.R-project.org, 3 January 2024) [46].
4.5. Monte Carlo Simulations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartlett, R.H.; Gazzaniga, A.B.; Jefferies, M.R.; Huxtable, R.F.; Haiduc, N.J.; Fong, S.W. Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. J. Extra Corpor. Technol. 1979, 11, 26–41. [Google Scholar] [CrossRef]
- Wildschut, E.D.; van Saet, A.; Pokorna, P.; Ahsman, M.J.; Van den Anker, J.N.; Tibboel, D. The impact of extracorporeal life support and hypothermia on drug disposition in critically ill infants and children. Pediatr. Clin. North. Am. 2012, 59, 1183–1204. [Google Scholar] [CrossRef] [PubMed]
- Shekar, K.; Fraser, J.F.; Smith, M.T.; Roberts, J.A. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J. Crit. Care 2012, 27, 741.e9–741.e18. [Google Scholar] [CrossRef]
- Zeilmaker, G.A.; Pokorna, P.; Mian, P.; Wildschut, E.D.; Knibbe, C.A.; Krekels, E.H.; Allegaert, K.; Tibboel, D. Pharmacokinetic considerations for pediatric patients receiving analgesia in the intensive care unit; targeting postoperative, ECMO and hypothermia patients. Expert. Opin. Drug Metab. Toxicol. 2018, 14, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Raffaeli, G.; Allegaert, K.; Koch, B.; Cavallaro, G.; Mosca, F.; Tibboel, D.; Wildschut, E.D. In vitro adsorption of analgosedative drugs in new extracorporeal membrane oxygenation circuits. Pediatr. Crit. Care Med. 2018, 19, e251–e258. [Google Scholar] [CrossRef] [PubMed]
- Wildschut, E.; Ahsman, M.; Allegaert, K.; Mathot, R.; Tibboel, D. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010, 36, 2109–2116. [Google Scholar] [CrossRef]
- Michalicková, D.; Pokorná, P.; Tibboel, D.; Slanar, O.; Knibbe, C.A.; Krekels, E.H. Rapid increase in clearance of phenobarbital in neonates on extracorporeal membrane oxygenation: A pilot retrospective population pharmacokinetic analysis. Pediatr. Crit. Care Med. 2020, 21, e707–e715. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Wolkowiez, M.; Poindexter, B.; Bidegain, M.; Weitkamp, J.-H.; Schelonka, R.L.; Randolph, D.A.; Ward, R.M.; Wade, K.; Valencia, G.; Burchfield, D. Safety and effectiveness of meropenem in infants with suspected or complicated intra-abdominal infections. Clin. Infect. Dis. 2012, 55, 1495–1502. [Google Scholar] [CrossRef]
- Huttner, A.; Harbarth, S.; Hope, W.W.; Lipman, J.; Roberts, J.A. Therapeutic drug monitoring of the β-lactam antibiotics: What is the evidence and which patients should we be using it for? J. Antimicrob. Chemother. 2015, 70, 3178–3183. [Google Scholar] [CrossRef]
- Rapp, M.; Urien, S.; Foissac, F.; Béranger, A.; Bouazza, N.; Benaboud, S.; Bille, E.; Zheng, Y.; Gana, I.; Moulin, F. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur. J. Clin. Pharmacol. 2020, 76, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Drusano, G. Meropenem: Laboratory and clinical data. Clin. Microbiol. Infec 1997, 3, 4S51–54S59. [Google Scholar] [CrossRef]
- van den Anker, J.N.; Pokorna, P.; Kinzig-Schippers, M.; Martinkova, J.; de Groot, R.; Drusano, G.; Sorgel, F. Meropenem pharmacokinetics in the newborn. Antimicrob. Agents Chemother. 2009, 53, 3871–3879. [Google Scholar] [CrossRef] [PubMed]
- Cies, J.J.; Moore, W.S.; Enache, A.; Chopra, A. Population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill young children. J. Pediatr. Pharmacol. Ther. 2017, 22, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Germovsek, E.; Lutsar, I.; Kipper, K.; Karlsson, M.O.; Planche, T.; Chazallon, C.; Meyer, L.; Trafojer, U.M.; Metsvaht, T.; Fournier, I. Plasma and CSF pharmacokinetics of meropenem in neonates and young infants: Results from the NeoMero studies. J. Antimicrob. Chemother. 2018, 73, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Saito, J.; Shoji, K.; Oho, Y.; Kato, H.; Matsumoto, S.; Aoki, S.; Nakamura, H.; Ogawa, T.; Hasegawa, M.; Yamatani, A. Population pharmacokinetics and pharmacodynamics of meropenem in critically ill pediatric patients. Antimicrob. Agents Chemother. 2021, 65, 10–128. [Google Scholar] [CrossRef]
- Thy, M.; Urien, S.; Bouazza, N.; Foissac, F.; Gana, I.; Bille, E.; Béranger, A.; Toubiana, J.; Berthaud, R.; Lesage, F. Meropenem population pharmacokinetics and dosing regimen optimization in critically ill children receiving continuous renal replacement therapy. Clin. Pharmacokinet. 2022, 61, 1609–1621. [Google Scholar] [CrossRef] [PubMed]
- Yonwises, W.; Wacharachaisurapol, N.; Anugulruengkitt, S.; Maimongkol, P.; Treyaprasert, W. Population pharmacokinetics of meropenem in critically ill infant patients. Int. J. Infect. Dis. 2021, 111, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, N.; Sürmelioğlu, N.; Allegaert, K. Population pharmacokinetics in critically ill neonates and infants undergoing extracorporeal membrane oxygenation: A literature review. BMJ Paediatr. Open 2022, 6, e001512. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.W.; Watt, K.M.; Boakye-Agyeman, F.; Cohen-Wolkowiez, M.; Mok, Y.H.; Yung, C.F.; Chan, Y.H. Optimal dosing of meropenem in a small cohort of critically ill children receiving continuous renal replacement therapy. J. Clin. Pharmacol. 2021, 61, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, W.; Huang, Y.; Wang, G.; Li, Z.; Yan, G.; Chen, C.; Lu, G. Optimized dosing regimens of meropenem in septic children receiving extracorporeal life support. Front. Pharmacol. 2021, 12, 699191. [Google Scholar] [CrossRef] [PubMed]
- Zylbersztajn, B.; Parker, S.; Navea, D.; Izquierdo, G.; Ortiz, P.; Torres, J.P.; Fajardo, C.; Diaz, R.; Valverde, C.; Roberts, J. Population pharmacokinetics of vancomycin and meropenem in pediatric extracorporeal membrane oxygenation support. Front. Pharmacol. 2021, 12, 709332. [Google Scholar] [CrossRef] [PubMed]
- Cies, J.J.; Moore, W.S.; Conley, S.B.; Dickerman, M.J.; Small, C.; Carella, D.; Shea, P.; Parker, J.; Chopra, A. Pharmacokinetics of continuous infusion meropenem with concurrent extracorporeal life support and continuous renal replacement therapy: A case report. J. Pediatr. Pharmacol. Ther. 2016, 21, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Jabareen, A.; Nassar, L.; Karasik, M.; Efrati, E.; Hadash, A.; Kassis, I.; Kurnik, D. Individual meropenem clearance in infants on ECMO and CVVHDF is difficult to predict: A case report and review of the literature. Pediatr. Infect. Dis. J. 2022, 41, 117–120. [Google Scholar] [CrossRef]
- Saito, J.; Shoji, K.; Oho, Y.; Aoki, S.; Matsumoto, S.; Yoshida, M.; Nakamura, H.; Kaneko, Y.; Hayashi, T.; Yamatani, A. Meropenem pharmacokinetics during extracorporeal membrane oxygenation and continuous haemodialysis: A case report. J. Glob. Antimicrob. Resist. 2020, 22, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Chen, W.; Yan, G.; Wang, G.; Lu, G.; Chen, C. Pharmacokinetics of meropenem in children with sepsis undergoing extracorporeal life support: A prospective observational study. J. Clin. Pharm. Ther. 2021, 46, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Cies, J.J.; Nikolos, P.; Moore, W.S.; Giliam, N.; Low, T.; Marino, D.; Deacon, J.; Enache, A.; Chopra, A. Oxygenator impact on meropenem/vaborbactam in extracorporeal membrane oxygenation circuits. Perfusion 2022, 37, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, H.; Zhang, Q.; Ou, Q.; Zhou, H.; Sha, T.; Zeng, Z.; Wu, J.; Lu, J.; Chen, Z. Effects of ex vivo extracorporeal membrane oxygenation circuits on sequestration of antimicrobial agents. Front. Med. 2021, 8, 748769. [Google Scholar] [CrossRef] [PubMed]
- Raina, R.; Sethi, S.K.; Wadhwani, N.; Vemuganti, M.; Krishnappa, V.; Bansal, S.B. Fluid overload in critically ill children. Front. Pediatr. 2018, 6, 306. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.C.; Frymoyer, A.; Boothroyd, D.B.; Bonifacio, S.; Sutherland, S.M.; Chock, V.Y. Acute kidney injury in neonates with hypoxic ischemic encephalopathy based on serum creatinine decline compared to KDIGO criteria. Pediatr. Nephrol. 2024; 1–8. [Google Scholar]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Kuai, Y.; Li, M.; Chen, J.; Jiang, Z.; Bai, Z.; Huang, H.; Wei, L.; Liu, N.; Li, X.; Lu, G. Comparison of diagnostic criteria for acute kidney injury in critically ill children: A multicenter cohort study. Crit. Care 2022, 26, 207. [Google Scholar] [CrossRef] [PubMed]
- Selewski, D.T.; Cornell, T.T.; Heung, M.; Troost, J.P.; Ehrmann, B.J.; Lombel, R.M.; Blatt, N.B.; Luckritz, K.; Hieber, S.; Gajarski, R. Validation of the KDIGO acute kidney injury criteria in a pediatric critical care population. Intensive Care Med. 2014, 40, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.E.; Jain, G.; Glassock, R.J.; Warnock, D.G. Comparison of absolute serum creatinine changes versus Kidney Disease: Improving Global Outcomes consensus definitions for characterizing stages of acute kidney injury. Nephrol. Dial. Transplant. 2013, 28, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-E.; Kou, C.; Li, X.; Tang, B.-H.; Yao, B.-F.; Hao, G.-X.; Zheng, Y.; van den Anker, J.; You, D.-P.; Shen, A.-D. Developmental Population Pharmacokinetics-Pharmacodynamics of Meropenem in Chinese Neonates and Young Infants: Dosing Recommendations for Late-Onset Sepsis. Children 2022, 9, 1998. [Google Scholar] [CrossRef] [PubMed]
- Kongthavonsakul, K.; Lucksiri, A.; Eakanunkul, S.; Roongjang, S.; na Ayuthaya, S.I.; Oberdorfer, P. Pharmacokinetics and pharmacodynamics of meropenem in children with severe infection. Int. J. Antimicrob. Agents 2016, 48, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.M.; Awdishu, L. Drug dosing considerations in continuous renal replacement therapy. Semin. Dial. 2021, 34, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Selistre, L.; Rabilloud, M.; Cochat, P.; de Souza, V.; Iwaz, J.; Lemoine, S.; Beyerle, F.; Poli-de-Figueiredo, C.E.; Dubourg, L. Comparison of the Schwartz and CKD-EPI equations for estimating glomerular filtration rate in children, adolescents, and adults: A retrospective cross-sectional study. PLoS Med. 2016, 13, e1001979. [Google Scholar] [CrossRef]
- Grapow, M.T.; von Wattenwyl, R.; Guller, U.; Beyersdorf, F.; Zerkowski, H.-R. Randomized controlled trials do not reflect reality: Real-world analyses are critical for treatment guidelines! J. Thorac. Cardiovasc. Surg. 2006, 132, 5–7. [Google Scholar] [CrossRef]
- Available online: https://eped.se/ (accessed on 30 December 2017).
- Huang, L.; Haagensen, J.; Verotta, D.; Lizak, P.; Aweeka, F.; Yang, K. Determination of meropenem in bacterial media by LC–MS/MS. J. Chromatogr. B 2014, 961, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.; Castanheira, M.; Diekema, D.; Messer, S.; Moet, G.; Jones, R. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin susceptibility testing of Candida species. J. Clin. Microbiol. 2010, 48, 1592–1599. [Google Scholar] [CrossRef]
- Lindbom, L.; Pihlgren, P.; Jonsson, N. PsN-Toolkit—A collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput. Methods Programs Biomed. 2005, 79, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Lindbom, L.; Ribbing, J.; Jonsson, E.N. Perl-speaks-NONMEM (PsN)—A Perl module for NONMEM related programming. Comput. Methods Programs Biomed. 2004, 75, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.J.; Brion, L.P.; Spitzer, A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr. Clin. North. Am. 1987, 34, 571–590. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.J.; Feld, L.G.; Langford, D.J. A simple estimate of glomerular filtration ratein full-term infants during the first year of life. J. Pediatr. 1984, 104, 849–854. [Google Scholar] [CrossRef]
- Comets, E.; Brendel, K.; Mentré, F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: The npde add-on package for R. Comput. Methods Programs 2008, 90, 154–166. [Google Scholar] [CrossRef] [PubMed]
Parameter (Unit) | Value * |
---|---|
Body weight (kg) | 7.88 (3.62–11.97) |
Sex, male/female, n (%) | 23/22 (51/49) |
Age (days) at start of the therapy | 3 (0–465) |
Neonates, n (%) | 27 (60) |
Infants (28 days–1 year), n (%) | 4 (9) |
Children, n (%) | 14 (31) |
Dosing | |
ECMO off | 20 to 40 mg/kg 2–3 times a day |
ECMO on | loading dose of 20 mg/kg (maximum 2 g) + continuous infusion |
Continuous infusion: | |
Age group 0–2 months | 30–80 mg/kg/day |
Age group 3 months–12 years | 60–120 mg/kg/day |
Age group 13–18 years | 1.5–6 g/day. |
Laboratory values | |
Creatinine (μmol/L) | 45 (29–67) |
Estimated creatinine clearance (mL/min/1.73 m2) | 63 (34–113) |
Urea (mmol/L) | 5.6 (4.2–9) |
Total bilirubin (μmol/L) | 15 (6–49) |
AST (IU/L) | 0.96 (0.53–2.18) |
ALT (IU/L) | 0.66 (0.31–1.33) |
pH of blood | 7.39 (7.33–7.43) |
Albumin (g/L) | 26 (22–30) |
Albumin at the start of treatment (g/L) | 23 (22–26) |
CRP (mg/L) | 49 (18–112) |
PIM3 score | 30.5 (13.4–66.1) |
Concomitant treatments | |
Diuretics; n (%) | 38 (84) |
Inotropes; n (%) | 41 (91) |
CRRT; n (%) | 31 (69) |
ECMO properties | |
ECMO patients; n (%) | 38 (84) |
Length (h) | 230 (107–251) |
ECMO flow (L/min) | 360 (300–680) |
ECMO speed (revolutions/min) | 2400 (2150–2800) |
Veno-venous modality, n (%) of ECMO patients | 7 (18.5) |
Veno-arterial modality, n (%) of ECMO patients | 31 (81.5) |
Parameter [Units] | Final Model (RSE %) | Bootstrap (95% CI) |
---|---|---|
Fixed effects | ||
CL [L/h] = CLp × (BW/7.88) | ||
CLp | 1.09 (8%) | 1.09 (0.98–1.21) |
Vd [L] = Vp × (BW/7.88) × (1 + θCRRT) CRRT_on | ||
Vp | 3.98 (14%) | 4.01 (2.22–7.30) |
θCRRT | 1.04 (76%) | 1.06 (0.14–2.20) |
Inter-individual variability | ||
CL (%) | 0.0887 (48%) | 0.0882 (0.0429–0.1510) |
Vd (%) | 0.916 (68%) | 0.800 (0.060–1.729) |
Residual variability | ||
Proportional | 0.17 (17%) | 0.167 (0.119–0.225) |
Probability of target attainment for 40% fT > MIC | ||||||||||||
20 mg/kg 30 min q8h | 20 mg/kg 3 h q8h | 40 mg/kg 30 min q8h | 40 mg/kg 3 h q8h | 60 mg/kg/day cont. | 120 mg/kg/day cont. | |||||||
MIC | CRRT = 0 | CRRT = 1 | CRRT = 0 | CRRT = 1 | CRRT = 0 | CRRT = 1 | CRRT = 0 | CRRT = 1 | CRRT = 0 | CRRT = 1 | CRRT = 0 | CRRT = 1 |
0.5 | 93 | 98 | 98 | 99 | 95 | 98 | 98 | 99 | 100 | 100 | 100 | 100 |
1 | 91 | 97 | 97 | 99 | 93 | 98 | 98 | 99 | 100 | 100 | 100 | 100 |
2 | 87 | 96 | 95 | 99 | 90 | 98 | 97 | 99 | 100 | 100 | 100 | 100 |
4 | 80 | 93 | 92 | 98 | 87 | 96 | 95 | 99 | 100 | 100 | 100 | 100 |
8 | 55 | 64 | 71 | 78 | 79 | 81 | 82 | 85 | 99 | 99 | 100 | 100 |
16 | 17 | 28 | 35 | 42 | 55 | 65 | 69 | 70 | 45 | 53 | 69 | 69 |
Probability of target attainment for 100% fT > MIC | ||||||||||||
20 mg/kg 30 min q8h | 20 mg/kg 3 h q8h | 40 mg/kg 30 min q8h | 40 mg/kg 3 h q8h | 60 mg/kg/day cont. | 120 mg/kg/day cont. | |||||||
MIC | CRRT = 0 | CRRT = 1 | CRRT = 0 | CRRT = 1 | CRRT = 0 | CRRT = 1 | CRRT = 0 | CRRT = 1 | CRRT = 0 | CRRT = 1 | CRRT = 0 | CRRT = 1 |
0.5 | 74 | 81 | 76 | 87 | 75 | 84 | 77 | 89 | 74 | 89 | 79 | 90 |
1 | 71 | 75 | 72 | 83 | 74 | 81 | 76 | 87 | 61 | 84 | 74 | 89 |
2 | 66 | 68 | 61 | 74 | 71 | 75 | 72 | 82 | 55 | 71 | 61 | 74 |
4 | 57 | 51 | 53 | 53 | 65 | 67 | 70 | 74 | 25 | 53 | 54 | 71 |
8 | 12 | 12 | 11 | 13 | 66 | 50 | 52 | 54 | 6 | 21 | 25 | 52 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokorná, P.; Michaličková, D.; Tibboel, D.; Berner, J. Meropenem Disposition in Neonatal and Pediatric Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy. Antibiotics 2024, 13, 419. https://doi.org/10.3390/antibiotics13050419
Pokorná P, Michaličková D, Tibboel D, Berner J. Meropenem Disposition in Neonatal and Pediatric Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy. Antibiotics. 2024; 13(5):419. https://doi.org/10.3390/antibiotics13050419
Chicago/Turabian StylePokorná, Pavla, Danica Michaličková, Dick Tibboel, and Jonas Berner. 2024. "Meropenem Disposition in Neonatal and Pediatric Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy" Antibiotics 13, no. 5: 419. https://doi.org/10.3390/antibiotics13050419
APA StylePokorná, P., Michaličková, D., Tibboel, D., & Berner, J. (2024). Meropenem Disposition in Neonatal and Pediatric Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy. Antibiotics, 13(5), 419. https://doi.org/10.3390/antibiotics13050419