The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain
Abstract
:1. Introduction
2. Results
2.1. Bacterial Isolates
2.2. Antimicrobial Resistance
2.3. Genetic Determinants Coding for Antibiotic Resistance
3. Discussion
4. Materials and Methods
4.1. Clinical Samples and Bacterial Isolates
4.2. Species Identification
4.2.1. MALDI-TOF Spectrometry
4.2.2. r16S V3–V5 Sequence Identification and Analysis
4.3. PCR Screening for Resistance Genes
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Church, N.A.; McKillip, J.L. Antibiotic resistance crisis: Challenges and imperatives. Biologia 2021, 76, 1535–1550. [Google Scholar] [CrossRef]
- Hamilton, K.W. Miracle cure, The creation of antibiotics and the birth of modern medicine. Emerg. Infect. Dis. 2019, 25, 196. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Mehra, P.; Dhanjal, D.S.; Sharma, P.; Sharma, V.; Singh, R.; Nepovimova, E.; Chopra, C.; Kuča, K. Antibiotics and Antibiotic Resistance- Flipsides of the Same Coin. Curr. Pharm. Des. 2022, 28, 2312–2329. [Google Scholar] [CrossRef]
- Akram, F.; Imtiaz, M.; Ul Haq, I. Emergent crisis of antibiotic resistance: A silent pandemic threat to 21st century. Microb. Pathog. 2023, 174, 105923. [Google Scholar] [CrossRef]
- Li, L.; Ma, J.; Yu, Z.; Li, M.; Zhang, W.; Sun, H. Epidemiological characteristics and antibiotic resistance mechanisms of Streptococcus pneumoniae: An updated review. Microbiol. Res. 2023, 266, 127221. [Google Scholar] [CrossRef]
- de Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed]
- Nanayakkara, A.K.; Boucher, H.W.; Fowler, V.G., Jr.; Jezek, A.; Outterson, K.; Greenberg, D.E. Antibiotic resistance in the patient with cancer: Escalating challenges and paths forward. CA Cancer. J. Clin. 2021, 71, 488–504. [Google Scholar] [CrossRef] [PubMed]
- Yougbaré, S.; Mutalik, C.; Okoro, G.; Lin, I.H.; Krisnawati, D.I.; Jazidie, A.; Nuh, M.; Chang, C.C.; Kuo, T.R. Emerging Trends in nanomaterials for Antibacterial Applications. Int. J. Nanomed. 2021, 16, 5831–5867. [Google Scholar] [CrossRef]
- Chellat, M.F.; Raguz, L.; Riedl, R. Targeting antibiotic resistance. Angew. Chem. Int. 2016, 55, 6600–6626. [Google Scholar] [CrossRef]
- Munir, M.U.; Ahmed, A.; Usman, M.; Salman, S. Recent advances in nanotechnology-aided materials in combating microbial resistance and functioning as antibiotics substitutes. Int. J. Nanomed. 2020, 15, 7329–7358. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, T.; Konar, D.; Pragasam, A.K.; Kumar, S.; Jana, P.; Babele, P.; Paula, D.; Purohita, A.; Tanwarc, S.; Bakshia, S.; et al. Antimicrobial resistance heterogeneity among multidrug-resistant Gram-negative pathogens: Phenotypic, genotypic, and proteomic analysis. Proc. Natl. Acad. Sci. USA 2023, 120, e2305465120. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Wang, R.; Liu, D.; Walsh, T.R.; Zhang, R.; Lv, Y.; Ke, Y.; Ji, Q.; Wei, R.; Liu, Z.; et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat. Microbiol. 2019, 4, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulou, K.; Urrutikoetxea-Gutiérrez, M.; Vidal-Garcia, M.; Diaz de Tuesta del Arco, J.-L.; Sánchez-Urtaza, S.; Wille, J.; Seifert, H.; Higgins, P.G.; Gallego, L. First report of New Delhi metallo-β-lactamase-6 (NDM-6) in a clinical Acinetobacter baumannii isolate from Northern Spain. Front. Microbiol. 2020, 11, 589253. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.M.; Salem, S.T.; Hassan, S.I.M.; Hegab, A.S.; Elkholy, Y.S. Molecular characterization of carbapenem-resistant Acinetobacter baumannii clinical isolates from egyptian patients. PLoS ONE 2021, 16, e0251508. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Mohsin, M.; Lu, X.; Abdullah, S.; Munir, A.; Wang, Z. Emergence of plasmid-mediated resistance genes tet (X) and mcr-1 in Escherichia coli clinical isolates from Pakistan. mSphere 2021, 6, e0069521. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Urtaza, S.; Ocampo-Sosa, A.; Molins-Bengoetxea, A.; Rodríguez-Grande, J.; El-Kholy, M.A.; Hernandez, M.; Abad, D.; Shawky, S.M.; Alkorta, I.; Gallego, L. Co-existence of blaNDM-1, blaOXA-23, blaOXA-64, blaPER-7 and blaADC-57 in a clinical isolate of Acinetobacter baumannii from Alexandria, Egypt. Int. J. Mol. Sci. 2023, 24, 12515. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Koirala, B.; Hernandez, Y.; Zimmerman, M.; Park, S.; Perlin, D.S.; Brady, S.F. A naturally inspired antibiotic to target multi-drug-resistant pathogens. Nature 2022, 601, 606–611. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Lepe, J.A.; Martínez-Martínez, L. Mecanismos de resistencia en bacterias gramnegativas. Med. Intensiv. 2022, 46, 392–402. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii; emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed]
- Higgins, P.G.; Dammhayn, C.; Hackel, M.; Seifert, H. Global spread of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2010, 65, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Banerjee, T.; Yadav, G.; Kumar, A. Susceptibility profile of blaOXA-23 and metallo-β-lactamases co-harbouring isolates of carbapenem resistant Acinetobacter baumannii (CRAB) against standard drugs and combinations. Frontier 2023, 12, 1068840. [Google Scholar] [CrossRef] [PubMed]
- Bartal, C.; Rolston, K.V.I.; Nesher, L. Carbapenem-resistant Acinetobacter baumannii: Colonization, infection and current treatment options. Infect. Dis. Ther. 2022, 11, 683–694. [Google Scholar] [CrossRef]
- Machuca, J.; Agüero, J.; Miró, E.; Conejo, M.C.; Oteo, J.; Boub, G.; González-López, J.J.; Oliver, A.; Navarro, F.; Pascual, A.; et al. Prevalence of quinolone resistance mechanisms in Enterobacteriaceae producing acquired AmpC ß—Lactamases and/or carbapenemases in Spain. Enferm. Infecc. Microbiol. Clin. 2017, 35, 485–490. [Google Scholar]
- Pintado, V.; Ruiz-Garbajosa, P.; Aguilera-Alonso, D.; Baquero-Artigao, F.; Bou, G.; Cantón, R.; Grau, S.; Gutiérrez-Gutiérrez, B.; Larrosa, N.; Machuca, I.; et al. Executive summary of the consensus document of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the diagnosis and antimicrobial treatment of infections due to carbapenem-resistant Gram-negative bacteria. Enferm. Infecc. Microbiol. Clin. 2023, 41, 360–370. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Irfan, S.; Zafar, A.; Guhar, D.; Ahsan, T.; Hasan, R. Metallo-beta-lactamase-producing clinical isolates of Acinetobacter species and Pseudomonas aeruginosa from intensive care unit patients of a tertiary care hospital. Indian J. Med. Microbiol. 2008, 26, 243–245. [Google Scholar]
- Tal-Jasper, R.; Katz, D.E.; Amrami, N.; Ravid, D.; Avivi, D.; Zaidenstein, R.; Lazarovitch, T.; Dadon, M.; Kaye, K.S.; Marchaim, D. Clinical and epidemiological significance of carbapenem resistance in Acinetobacter baumannii infections. Antimicrob. Agents Chemother. 2016, 60, 3127–3131. [Google Scholar] [CrossRef]
- Abbott, I.; Cerqueira, G.M.; Bhuiyan, S.; Peleg, A.Y. Carbapenem resistance in Acinetobacter baumannii: Laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev. Anti Infect. Ther. 2013, 11, 395–409. [Google Scholar] [CrossRef]
- Higgins, P.G.; Perez-Llarena, F.J.; Zander, E.; Fernandez, A.; Bou, G.; Seifert, H. OXA-235, a novel class D beta-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2013, 57, 2121–2126. [Google Scholar] [CrossRef]
- Evans, B.A.; Amyes, S.G.B. OXA beta-lactamases. Clin. Microbiol. Rev. 2014, 27, 241–263. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Stefanik, D.; Wille, J.; Hackel, M.; Higgins, P.G.; Siefert, H. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii clinical isolates and identification of the novel international clone IC9, results from a worldwide surveillance study (2012–2016). In Proceedings of the ECCMID 2019, Amsterdam, The Netherlands, 13–16 April 2019. [Google Scholar]
- Brown, S.; Amyes, S. OXA, β-lactamases in Acinetobacter: The story so far. J. Antimicrob. Chemother. 2006, 57, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Bonnin, R.A.; Nordmann, P. Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. Infect. Genet. Evol. 2012, 12, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, R.A.; Nordmann, P.; Potron, A.; Lecuyer, H.; Zahar, J.R.; Poirel, L. Carbapenem hydrolyzing GES-type extended-spectrum beta-lactamase in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2011, 55, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, R.A.; Rotimi, V.O.; Al Hubail, M.; Gasiorowski, E.; Al Sweih, N.; Nordmann, P.; Poirel, L. Wide dissemination of GES-type carbapenemases in Acinetobacter baumannii isolates in Kuwait. Antimicrob. Agents Chemother. 2013, 57, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Farajnia, S.; Azhari, F.; Alikhani, M.Y.; Hosseini, M.K.; Amir, P.; Sohrabi, N. Prevalence of PER and VEB type extended spectrum beta lactamases among multidrug resistant Acinetobacter baumannii isolates in north-west of Iran. Iran J. Basic Med. Sci. 2013, 16, 751–755. [Google Scholar] [PubMed]
- Ali, F.A.; Bakir, S.H.; Haji, S.H.; Hussen, B.M. Evaluation of blaGES-5 and blaveb-1 genes with multidrug-resistant extend, pandrug resistance patterns (MDR, XDR, PDR), and biofilm formation in Pseudomonas aeruginosa isolates. Cell. Mol. Biol. 2021, 67, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Ortiz de la Rosa, J.M.; Nordmann, P.; Poirel, L. ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2019, 74, 1934–1939. [Google Scholar] [CrossRef]
- Tiemtoré, R.Y.W.; Mètuor Dabiré, A.; Ouermi, D.; Sougué, S.; Benao, S.; Simporé, J. Isolation and identification of Escherichia coli and Klebsiella pneumoniae strains resistant to the oxyimino-cephalosporins and the monobactam by production of GES type extended spectrum beta-lactamase (ESBL) at Saint Camille Hospital Center in Ouagadougou, Burkina Faso. Infect. Drug Resist. 2022, 15, 3191–3204. [Google Scholar]
- Jaillard, M.; van Belkum, A.; Cady, K.C.; Creely, D.; Shortridge, D.; Blanc, B.; Barbu, E.M.; Dunne, W.M., Jr.; Zambardi, G.; Enright, M.; et al. Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2017, 50, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Baran, I.; Aksu, N. Phenotypic and genotypic characteristics of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Turkey. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Al-Shamiri, M.M.; Zhang, S.; Mi, P.; Liu, Y.; Xun, M.; Yang, E.; Ai, L.; Han, L.; Chen, Y. Phenotypic and genotypic characteristics of Acinetobacter baumannii enrolled in the relationship among antibiotic resistance, biofilm formation and motility. Microb. Pathog. 2021, 155, 104922. [Google Scholar] [CrossRef] [PubMed]
- Martí, S.; Fernández-Cuenca, F.; Pascual, A.; Ribera, A.; Rodríguez-Baño, J.; Bou, G.; Miguel Cisneros, J.; Pachón, J.; Martínez-Martínez, L.; Vila, J. Prevalence of the tet (A) and tet (B) genes as mechanisms of resistance to tetracycline and minocycline in Acinetobacter baumannii clinical isolates. Enferm. Infecc. Microbiol. Clin. 2006, 24, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Nowroozi, J.; Akhavan, S.A.; Tahmasebinejad Kamarposhti, L.; Razavipour, R.; Mazhar, F. Evaluation of ciprofloxacin (gyrA, parC Genes) and tetracycline (tet (B) Gene) resistance in nosocomial Acinetobacter baumannii infections. Jundishapur J. Microbiol. 2014, 7, e8976. [Google Scholar] [CrossRef]
- Ranjbar, R.; Farahani, A. Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL, ESBL, and tetracycline resistance genes in multidrug-resistant Acinetobacter baumannii isolated from burn wound infections in Iran. Antimicrob. Resist. Infect. Control 2019, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.L.; Yang, C.J.; Chuang, Y.C.; Sheng, W.H.; Chen, Y.C.; Chang, S.C. Minocycline susceptibility and tet (B) gene in carbapenem-resistant Acinetobacter baumannii in Taiwan. Infect. Drug Resist. 2022, 15, 2401–2408. [Google Scholar] [CrossRef]
- Mojica, M.F.; De La Cadena, E.; García-Betancur, J.C.; Porras, J.; Novoa-Caicedo, I.; Páez-Zamora, L.; Pallares, C.; Appel, T.M.; Radice, M.A.; Castañeda-Méndez, P.; et al. Molecular mechanisms of resistance to ceftazidime/avibactam in clinical isolates of Enterobacterales and Pseudomonas aeruginosa in Latin American hospitals. mSphere 2023, 8, e0065122. [Google Scholar] [CrossRef]
- Glen, K.A.; Lamont, I.L. β-lactam resistance in Pseudomonas aeruginosa: Current status, future prospects. Pathogens 2021, 10, 1638. [Google Scholar] [CrossRef]
- Gloag, E.S.; Marshall, C.W.; Snyder, D.; Lewin, G.R.; Harris, J.S.; Santos-Lopez, A.; Chaney, S.B.; Whiteley, M.; Cooper, V.S.; Wozniak, D.J. Pseudomonas aeruginosa inter strain dynamics and selection of hyperbiofilm mutants during a chronic infection. mBio 2019, 10, e01698-19. [Google Scholar] [CrossRef]
- Kovach, K.; Davis-Fields, M.; Irie, Y.; Jain, K.; Doorwar, S.; Vuong, K.; Dhamani, N.; Mohanty, K.; Touhami, A.; Gordon, V.D. Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production. NPJ Biofilms Microbiomes 2017, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Piazza, A.; Comandatore, F.; Romeri, F.; Brilli, M.; Dichirico, B.; Ridolfo, A.; Antona, C.; Bandi, C.; Gismondo, M.R.; Rimoldi, S.G. Identification of blaVIM-1 gene in ST307 and ST661 Klebsiella pneumoniae clones in Italy: Old acquaintances for new combinations. Microb. Drug Resist. 2019, 25, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Chenouf, N.S.; Carvalho, J.A.; Castro, A.P.; Silva, V.; Capita, R.; Alonso-Calleja, C.; Enes Dapkevicius, M.L.N.; Igrejas, G.; Torres, C.; et al. Multidrug-resistant Klebsiella pneumoniae harboring extended spectrum β-lactamase encoding genes isolated from human septicemias. PLoS ONE. 2021, 16, e0250525. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Simmonds, A.; Uhlemann, A.C. Clinical implications of genomic adaptation and evolution of carbapenem-resistant Klebsiella pneumoniae. J. Infect. Dis. 2017, 215 (Suppl. 1), S18–S27. [Google Scholar] [CrossRef] [PubMed]
- García-González, N.; Beamud, B.; Fuster, B.; Giner, S.; Domínguez, M.V.; Sánchez, A.; Sevilla, J.; Coque, T.M.; Gimeno, C.; González-Candelas, F. Tracking the Emergence and Dissemination of a blaNDM-23 Gene in a Multidrug Resistance Plasmid of Klebsiella pneumoniae. Microbiol. Spectr. 2023, 11, e0258522. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Wada, T.; Nishijima, S.; Fukushima, Y.; Nakajima, C.; Suzuki, Y.; Takahashi, S.; Yokota, S.I. Emergence of the novel aminoglycoside acetyltransferase variant aac(6′)-Ib-D179Y and acquisition of colistin heteroresistance in carbapenem-resistant Klebsiella pneumoniae due to a disrupting mutation in the DNA repair enzyme MutS. mBio 2020, 11, e01954-20. [Google Scholar] [CrossRef]
- Çiçek, A.Ç.; Şemen, V.; Ejder, N.A.; Gündoğdu, D.Z.U.; Kalcan, S.K.; Köse, F.T.; Özgümüş, O.B. Molecular epidemiological analysis of integron gene cassettes and tet (A)/tet (B)/tet (D) gene associations in Escherichia coli strains producing extended-spectrum β-lactamase (ESBL) in urine cultures. Adv. Clin. Exp. Med. 2022, 31, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Perewari, D.O.; Otokunefor, K.; Agbagwa, O.E. Tetracycline-resistant genes in Escherichia coli from clinical and nonclinical sources in Rivers State, Nigeria. Int. J. Microbiol. 2022, 2022, 9192424. [Google Scholar] [CrossRef]
- Brosius, J.; Palmer, M.L.; Kennedy, P.J.; Noller, H.F. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 1978, 75, 4801–4805. [Google Scholar] [CrossRef]
- Brosius, J.; Dull, T.J.; Noller, H.F. Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 1980, 77, 201–204. [Google Scholar] [CrossRef]
- Sáenz, Y.; Briñas, L.; Domínguez, E.; Ruiz, J.; Zarazaga, M.; Vila, J.; Torres, C. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob. Agents Chemother. 2004, 48, 3996–4001. [Google Scholar] [CrossRef] [PubMed]
- Bert, F.; Branger, C.; Lambert-Zechovsky, N. Identification of PSE and OXA β-lactamase genes in Pseudomonas aeruginosa using PCR–restriction fragment length polymorphism. J. Antimicrob. Chemother. 2002, 50, 11–18. [Google Scholar] [CrossRef]
- Moubareck, C.; Daoud, Z.; Hakimé, N.I.; Hamzé, M.; Mangeney, N.; Matta, H.; Mokhbat, J.E.; Rohban, R.; Sarkis, D.K.; Doucet-Populaire, F. Countrywide spread of community- and hospital-acquired extended-spectrum β-lactamase (CTX-M-15)-producing Enterobacteriaceae in Lebanon. J. Clin. Microbiol. 2005, 43, 3309–3313. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, N.H.; Kim, E.C.; Hong, S.G.; Park, Y.J.; Lee, K.; Bae, I.K.; Song, E.H.; Jeong, S.H. Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J. Antimicrob. Chemother. 2005, 56, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.; Gregson, D.B.; Poirel, L.; McClure, J.A.; Le, P.; Church, D.L. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J. Clin. Microbiol. 2005, 43, 3129–3135. [Google Scholar] [CrossRef] [PubMed]
- Hujer, K.M.; Hujer, A.M.; Hulten, E.A.; Bajaksouzian, S.; Adams, J.M.; Donskey, C.J.; Ecker, D.J.; Massire, C.; Eshoo, M.W.; Sampath, R.; et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob. Agents Chemother. 2006, 50, 4114–4123. [Google Scholar] [CrossRef]
- Danel, F.; Hall, L.M.; Gur, D.; Akalin, H.E.; Livermore, D.M. Transferable production of PER-1 β-lactamase in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 1995, 35, 281–294. [Google Scholar] [CrossRef]
- Poirel, L.; Le Thomas, I.; Naas, T.; Karim, A.; Nordmann, P. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2000, 44, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Aubert, D.; Poirel, L.; Chevalier, J.; Leotard, S.; Pages, J.M.; Nordmann, P. Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2001, 45, 1615–1620. [Google Scholar] [CrossRef]
- Amirkamali, S.; Naserpour-Farivar, T.; Azarhoosh, K.; Peymani, A. Distribution of the blaOXA, blaVEB-1, and blaGES-1 genes and resistance patterns of ESBL-producing Pseudomonas aeruginosa isolated from hospitals in Tehran and Qazvin, Iran. Rev. Soc. Bras. Med. Trop. 2017, 50, 315–320. [Google Scholar] [CrossRef]
- van de Klundert, J.A.M.; Vliegenthart, J.S. PCR detection of genes coding for aminoglycoside-modifying enzymes. In Diagnostic Molecular Microbiology; Persing, D.H., Smith, T.F., Tenover, F.C., White, T.J., Eds.; American Society Microbiology: Washington, DC, USA, 1993; pp. 547–552. [Google Scholar]
- Guardabassi, L.; Dijkshoorn, L.; Collard, J.M.; Olsen, J.E.; Dalsgaard, A. Distribution and in-vitro transfer of tetracycline resistance determinants in clinical and aquatic Acinetobacter strains. J. Med. Microbiol. 2000, 49, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Swick, M.; Morgan-Linnell, S.K.; Carlson, K.M.; Zechiedrich, L. Expression of multidrug efflux genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrob. Agents Chemother. 2011, 55, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Bim Kim, H.; Wang, M.; Park, C.H.; Kim, E.C.; Jacoby, G.A.; Hooper, D.C. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 3582. [Google Scholar] [CrossRef] [PubMed]
Species | Types of Samples | ||||||
---|---|---|---|---|---|---|---|
Respiratory Sample | Urine | Blood | Body Swab | Body Fluids | Exudates | Catheter | |
Acinetobacter baumannii | 38.8% | 19.3% | 9.6% | 6.5% | 13% | 6.4% | 6.4% |
Escherichia coli | 8% | 72% | 12% | - | 4% | 4% | - |
Klebsiella pneumoniae | 8.7% | 39.1% | 26.2% | - | 8.7% | 13% | 4.3% |
Pseudomonas aeruginosa | 52.6% | 15.8% | 5.3% | - | 21% | 5.3% | - |
Isolate | Antimicrobial Resistance | Genetic Determinants |
---|---|---|
UJA A1 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, TOBRA, AMK, CIP, LEV, MINO, SXT | blaOXA-23, blaNDM-1, tet (B), tet (A), tet (E), aac(6′)-Ib, blaVEB |
UJA A2 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, SXT | blaOXA-23, blaNDM-1, tet (B), tet (A), tet (E), aac(6’)-Ib, blaVEB, blaGES |
UJA A6 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, SXT, CS | blaOXA-23, blaNDM-1, tet (B), tet (A), tet (E), dfrA 12, aac(6′)-Ib, blaVEB, blaGES |
UJA A25 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, SXT | blaOXA-23, blaNDM-1, tet (E), dfrA 12, aac(6′)-Ib, blaVEB, blaGES |
UJA A27 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, DOR, GM, AMK, CIP, LEV, MINO, SXT | blaCTX-M, blaOXA-23, blaNDM-1, tet (B), tet (E), aac(6′)-Ib, blaVEB, blaGES |
UJA A35 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, AMK, CIP, LEV, CS | blaCTX-M, aac(6′)-Ib |
UJA A38 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, TOBRA, AMK, CIP, LEV, SXT, CS | blaCTX-M, blaIMP, blaOXA-23, blaNDM-1, tet (B), dfrA 12, aac(6′)-Ib, blaVEB, blaGES |
UJA A39 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, SXT, CS | blaCTX-M, blaOXA-23, blaNDM-1, tet (B), aac(6′)-Ib, blaVEB, blaGES |
UJA A40 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, SXT | blaOXA-23, blaNDM-1, tet (B), aac(6′)-Ib, blaVEB, blaGES |
UJA A41 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, SXT | blaCTX-M, blaOXA-23, blaNDM-1, tet (B), blaVEB, blaGES |
UJA A42 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, SXT | blaCTX-M, blaOXA-23, blaNDM-1, tet (B), aac(6′)-Ib, blaVEB, blaGES |
UJA A50 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, SXT | blaCTX-M, blaOXA-23, blaNDM-1, tet (B), dfrA 12, aac(6′)-Ib, blaVEB, blaGES |
UJA A51 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, SXT | blaCTX-M, blaIMP, blaOXA-23, blaNDM-1, dfrA 12, blaVEB, blaGES |
UJA A52 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, SXT | blaOXA-23, blaNDM-1, tet (B), dfrA 12, blaVEB, blaGES |
UJA A53 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, MEM, DOR, GM, AMK, CIP, LEV, SXT | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 12, blaVEB, blaGES |
UJA A58 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, SXT, CS | dfrA 12 |
UJA A62 | TZP, CAZ, FEP, ATM, GM, TOBRA, AMK, CIP, LEV | blaOXA-23, blaNDM-1, tet (B), dfrA 12, |
UJA A64 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, tet (B), aac(6′)-Ib, blaVEB, blaGES |
UJA A66 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, tet (B), dfrA 12, aac(6′)-Ib, oqxA, blaVEB, blaGES |
UJA A68 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, tet (B), tet (A), dfrA 12, aac(6′)-Ib, mdfA, oqxA, blaVEB, blaGES |
UJA A69 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, TOBRA, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, blaVEB, blaGES |
UJA A70 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, blaVEB, blaGES |
UJA A92 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, blaVEB, blaGES |
UJA A101 | TZP, CAZ, FEP, ATM, GM, TOBRA, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, blaVEB, blaGES |
UJA A107 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, blaVEB, blaGES |
UJA A108 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, blaVEB, blaGES |
UJA A110 | TZP, CAZ, FEP, ATM, MEM, GM, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, blaVEB, blaGES |
UJA A115 | AMP, TIC, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, AMK, CIP, LEV, SXT | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, blaVEB, blaGES |
UJA A117 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, blaVEB, blaGES |
UJA A119 | TZP, CAZ, FEP, ATM, GM, TOBRA, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, blaVEB, blaGES |
UJA A120 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, AMK, CIP, LEV | blaCTX-M, blaOXA-23, blaNDM-1, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, blaVEB, blaGES |
Isolate | Antimicrobial Resistance | Genetic Determinants |
---|---|---|
UJA E4 | AMP, CXM, CIP, LEV, SXT, NAL, NOR | blaCTX-M, blaIMP, blaTEM, tet (A), sul1, mdfA |
UJA E7 | AMP, AMC, CXM, GM, TOBRA, AMK, CIP, LEV, NOR, SXT | blaCTX-M, blaIMP, blaVim-2, blaOXA-23, blaNDM-1, blaPSE, blaTEM, tet (B), dfrA 12, aac(6′)-Ib, mdfA |
UJA E8 | AMP, CXM, CTX, CIP, SXT | blaCTX-M, blaVim-2, blaTEM, mdfA |
UJA E9 | AMP, AMC CXM, CIP, LEV, SXT, CHL | blaCTX-M, blaOXA-23, blaNDM-1, blaPSE, tet (B), tet (A), sul1, mdfA |
UJA E12 | AMP, AMC, CXM, FEP, GM, TOBRA, CIP, LEV, SXT, FT, CHL, FOS | blaCTX-M, blaIMP, blaPSE, tet (A), dfrA 12, sul1, aac(6′)-Ib, mdfA |
UJA E13 | AMP, AMC, CXM, CTX, FEP, TOBRA, CIP, SXT | blaCTX-M, blaVim-2, blaNDM-1, blaPSE, blaTEM, tet A, sul1, aac(6′)-Ib, mdfA |
UJA E15 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP | blaCTX-M, blaVim-2, blaPSE, blaTEM, tet (B), sul1, aac(6′)-Ib, mdfA |
UJA E17 | AMP, TZP, CXM, FEP, GM, TOBRA, CIP, LEV | blaCTX-M, blaVim-2, blaNDM-1, blaPSE, blaTEM, sul1, aac(6′)-Ib, mdfA |
UJA E19 | AMP, AMC, CXM, GM, TOBRA, NOR, CIP, LEV, SXT | blaCTX-M, blaIMP, blaVim-2, blaNDM-1, blaPSE, blaTEM, tet B, tet A, dfrA 12, sul1, aac(6′)-Ib, mdfA |
UJA E24 | AMP, AMC, CXM, CTX, GM, CIP, SXT, FOS | blaCTX-M, blaIMP, blaNDM-1, blaPSE, blaTEM, dfrA 12, sul1, aac(6′)-Ib, mdfA |
UJA E26 | AMP, AMC, CXM, TOBRA, NOR, CIP, LEV, SXT, FOS | blaCTX-M, blaPSE, dfrA 12, sul1, aac(6′)-Ib, mdfA |
UJA E63 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP | blaCTX-M, blaIMP, dfrA 12, aac(6′)-Ib, mdfA |
UJA E71 | AMP, AMC, TZP, CXM, FEP, TOBRA, CIP, LEV | blaCTX-M, blaIMP, dfrA 12, blaVEB |
UJA E79 | AMP, CXM, CTX, FEP, TOBRA, CIP, FOS, ATM | blaCTX-M, blaIMP, dfrA 15, dfrA 12, mdfA, blaGES |
UJA E82 | AMP, AMC, TZP, CXM, GM, TOBRA, NOR, CIP, LEV, SXT | blaCTX-M, blaIMP, blaVim-2, blaPSE, dfrA 12, sul1, aac(6′)-Ib, mdfA |
UJA E83 | AMP, AMC, CXM, TOBRA, NIT, NOR, CIP, LEV, SXT | blaCTX-M, blaVim-2, tet (B), dfrA 12 |
UJA E84 | AMP, CXM, CTX, FEP, ATM, CIP, SXT | blaCTX-M, blaIMP, blaPSE, tet (B), dfrA 12, aac(6′)-Ib, mdfA, blaGES |
UJA E87 | AMP, AMC, CXM, CTX, FEP, CIP, ATM | blaCTX-M, blaPSE, tet (A), dfrA 15, dfrA 12, sul1, mdfA |
UJA E88 | AMP, AMC, CXM, CTX, FEP, GM, TOBRA, CIP | blaCTX-M, blaVim-2, dfrA 12, aac(6′)-Ib, mdfA |
UJA E89 | AMP, CXM, GM, TOBRA, NOR, CIP, LEV, FOS | blaCTX-M, blaVim-2, tet (A), dfrA 12, aac(6′)-Ib, mdfA |
UJA E90 | AMP, AMC, CXM, CTX, GM, CIP, SXT, FOS | blaCTX-M, tet (B), tet (A), dfrA 12, mdfA |
UJA E91 | AMP, AMC, CXM, CTX, GM, CIP, SXT, FOS | blaCTX-M, dfrA 12 |
UJA E93 | AMP, AMC, TZP, GM, TOBRA, CIP, LEV, CXM, ETP, SXT | blaCTX-M, blaPSE, tet (A), dfrA 15, dfrA 12, sul1, aac(6′)-Ib |
UJA E94 | AMP, CXM, FEP, GM, TOBRA, CIP, LEV | blaCTX-M, mdfA |
UJA E96 | AMP, AMC, CXM, FEP, GM, TOBRA, AMK, CIP, LEV SXT | blaCTX-M, blaPSE, tet (A), dfrA 12, sul1, aac(6′)-Ib, mdfA |
Isolate | Antimicrobial Resistance | Genetic Determinants |
---|---|---|
UJA K1 | AMP, AMC, TZP, CXM, CTX, FEP, ATM, IMP, GM, TOBRA, AMK, CIP, NIT, FOS, SXT | blaCTX-M, blaTEM, tet (A), dfrA 12, aac(6′)-Ib, mdfA, oqxA |
UJA K2 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, IMP, MEM, TOBRA, AMK, CIP, LEV, ETP, SXT | aac(6′)-Ib |
UJA K3 | AMP, AMC, TZP, CXM, CAZ, CTX, ATM, GM, TOBRA, AMK, CIP, LEV, ETP, FOS, SXT | blaIMP, tet (A), dfrA 15, dfrA 12, aac(6′)-Ib |
UJA K5 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, IMP, MEM, TOBRA, AMK, CIP, LEV, ETP, SXT | blaTEM, tet (A), tet (E), dfrA 15, dfrA 12, aac(6′)-Ib, oqxA |
UJA K6 | AMP, CXM, CAZ, CTX, GM, TOBRA, FOS, SXT | blaCTX-M, tet (A), tet (E), dfrA 15, dfrA 12, oqxA |
UJA K7 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, TOBRA, CIP, LEV, SXT | blaCTX-M, blaPSE, blaTEM, tet A, tet (E), dfrA 12, aac(6′)-Ib, oqxA |
UJA K8 | AMP, AMC, TZP, CXM, CAZ, CTX, GM, TOBRA, CIP, LEV, NIT, FOS, SXT | blaCTX-M, blaTEM, tet (A), tet (E), dfrA 12, aac(6′)-Ib, oqxA |
UJA K9 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, IMP, MEM, TOBRA, AMK, CIP, LEV, SXT | blaTEM, dfrA 12, sul1, aac(6′)-Ib, oqxA |
UJA K10 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, GM, TOBRA, CIP, LEV, TGC, ETP, SXT | blaCTX-M, blaTEM, tet (A), aac(6′)-Ib, oqxA |
UJA K11 | AMP, CXM, CAZ, CTX, FEP, GM, TOBRA, AMK, ETP | blaTEM, dfrA 12, oqxA |
UJA K12 | AMP, AMC, TZP, CXM, CIP, LEV, ETP | blaCTX-M, blaTEM, tet (A), dfrA 12, aac(6′)-Ib, mdfA, oqxA |
UJA K13 | AMP, AMC, TZP, FEP, CIP, LEV, SXT, | blaTEM, dfrA 15, oqxA |
UJA K14 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, IMP, MEM, TOBRA, AMK, CIP, LEV, ETP, SXT | blaTEM, dfrA 15, dfrA 12, sul1, aac(6′)-Ib, oqxA |
UJA K15 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, IMP, MEM, TOBRA, AMK, CIP, LEV, ETP, SXT | dfrA 15, dfrA 12, sul1, aac(6′)-Ib, oqxA, blaVEB |
UJA K16 | AMP, AMC, CXM, FEP, GM, TOBRA, CIP, LEV, SXT | blaCTX-M, blaVim-2, blaNDM-1, blaPSE, dfrA 12, sul1, aac(6′)-Ib, |
UJA K21 | AMP, AMC, CXM, TZP, CAZ, FEP, CTX, IMP, MEM, GM, TOBRA, CIP, LEV, SXT | blaCTX-M, blaVim-2, blaPSE, blaTEM, tet (A), dfrA15, dfrA 12, sul1, aac(6′)-Ib |
UJA K22 | AMP, AMC, TZP, CXM, FEP, GM, TOBRA, CIP | blaCTX-M, blaVim-2, blaOXA-23, blaNDM-1, blaPSE, dfrA 12, sul1, aac(6′)-Ib |
UJA K30 | AMP, CXM, CTX, GM, TOBRA, NIT, CIP, SXT, FOS | blaCTX-M, blaVim-2, blaPSE, blaTEM, tet (A), dfrA15, sul1, aac(6′)-Ib |
UJA K32 | AMP, AMC, CXM, GM, TOBRA, NOR, CIP, LEV, SXT | blaCTX-M, blaVim-2, tet (A), dfrA 12, aac(6′)-Ib |
UJA K33 | AMP, CXM, CTX, GM, TOBRA, NIT, CIP, SXT, FOS | blaCTX-M, blaVim-2, blaPSE, blaTEM, sul1, aac(6′)-Ib |
UJA K34 | AMP, AMC, TZP, CXM, FEP, GM, TOBRA, CIP, LEV, SXT | blaCTX-M, blaVim-2, blaOXA-23, blaNDM-1, blaTEM, tet A, aac(6′)-Ib |
UJA K44 | AMP, AMC, TZP, CXM, FEP, GM, TOBRA, CIP, LEV, SXT | blaCTX-M, tet (A), aac(6′)-Ib, oqxA |
UJA K55 | AMP, AMC, CXM, FEP, GM, TOBRA, CIP, LEV, SXT | blaCTX-M, blaVim-2, dfrA 12, aac(6′)-Ib, oqxA |
UJA K59 | AMP, AMC, TZP, CXM, IMP, ETP, TOBRA, NIT, NOR, CIP, LEV, SXT, FOS | blaCTX-M, blaVim-2, tet (B), dfrA 12, aac(6′)-Ib, oqxA |
UJA K61 | AMP, AMC, TZP, CXM, FEP, GM, TOBRA, CIP, LEV | blaCTX-M, blaVim-2, dfrA 12, aac(6′)-Ib, oqxA |
UJA K65 | AMP, AMC, TZP, CXM, FEP, GM, TOBRA, CIP, LEV, TGC, SXT | blaCTX-M, blaVim-2, tet (B), tet (A), dfrA 12, aac(6′)-Ib, oqxA, blaGES |
UJA K72 | AMP, AMC, TZP, CXM, FOX, CAZ, CTX, ETP, GM, TOBRA, NIT, NOR, CIP, LEV, SXT, FOS, NAL | blaCTX-M, blaVim-2, tet (A), dfrA 12, aac(6′)-Ib, oqxA |
UJA K74 | AMP, AMC, CXM, CAZ, CTX, FEP, GM, TOBRA, CIP, LEV, SXT | blaCTX-M, blaVim-2, dfrA 12, aac(6′)-Ib, oqxA |
UJA K76 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, IMP, TOBRA, CIP, LEV, SXT | blaCTX-M, blaVim-2, tet (D), dfrA 15, dfrA 12, aac(6′)-Ib |
UJA K77 | AMP, AMC, TZP, CXM, FOX, CAZ, CTX, FEP, ETP, GM, TOBRA, CIP, LEV, SXT | blaCTX-M, blaVim-2, blaPSE, dfrA 12, sul1, aac(6′)-Ib |
UJA K80 | AMP, AMC, CXM, TOBRA, NOR, CIP, LEV, SXT, FOS | blaCTX-M, blaVim-2, blaPSE, tet (A), dfrA 15, dfrA 12, sul1, aac(6′)-Ib |
UJA K98 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, IMP, MEM, GM, TOBRA, CIP, LEV, SXT | blaCTX-M, blaPSE, dfrA 12, sul1, aac(6′)-Ib, mdfA |
UJA K109 | AMP, AMC, TZP, CXM, FEP, GM, TOBRA, CIP, LEV | blaCTX-M, tet (A), tet (E), dfrA 12, aac(6′)-Ib |
UJA K112 | AMP, AMC, CXM, CTX, FEP, GM, TOBRA, NIT, CIP, SXT, ATM | dfrA 15, dfrA 12, sul1, aac(6′)-Ib |
UJA K114 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, GM, TOBRA, CIP, LEV, SXT | blaCTX-M, blaPSE, tet (A), dfrA 15, dfrA 12, sul1, aac(6′)-Ib |
UJA K116 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, IMP, MEM, GM, TOBRA, CIP, LEV, TGC, SXT | blaCTX-M, blaPSE, dfrA 12, sul1, aac(6′)-Ib |
UJA K118 | AMP, AMC, TZP, CXM, CAZ, CTX, FEP, IMP, MEM, GM, TOBRA, CIP, LEV, TGC, SXT | blaCTX-M, blaPSE, tet (A), dfrA 12, aac(6′)-Ib |
Isolate | Antimicrobial Resistance | Genetic Determinants |
---|---|---|
UJA P3 | IMP, MEM, CIP, LEV, FOS | blaOXA-23, tet (B) |
UJA P28 | TZP, CAZ, FEP, GM, CIP, LEV, TZC | blaCTX-M |
UJA P29 | AMP, TIC, PIP, TZP, CTX, FEP, IMP, MEM, CIP, LEV, TGC, MINO, SXT | blaCTX-M, blaVim-2, dfrA 12, aac(6′)-Ib |
UJA P36 | SAM, AMC, CFL, CXM, FOX, CTX, FEP, IMP, MEM, ETP, GM, CIP, LEV, TGC, SXT | blaVim-2 |
UJA P37 | AMC, PIP, TZP, CAZ, CTX, FEP, IMP, MEM, DOR, GM, AMK, LEV, TGC, MINO, SXT | dfrA 12 |
UJA P45 | TZP, IMP, MEM, GM, CIP, LEV | blaCTX-M, dfrA 12, aac(6′)-Ib |
UJA P48 | TZP, CAZ, FEP IMP, MEM | dfrA 12 |
UJA P54 | SAM, PIP, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, DOR, GM, AMK, CIP, LEV, TGC, MINO, SXT | dfrA 12 |
UJA P78 | TZP, CAZ, FEP ATM, IMP, MEM, GM, AMK, CIP, LEV | blaCTX-M, dfrA 12, aac(6′)-Ib |
UJA P95 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, CIP, LEV | dfrA 12 |
UJA P99 | PIP, TZP, CAZ, CTX, FEP, ATM, IMP, MEM, GM, CIP, LEV | tet (B), dfrA 12, aac(6′)-Ib |
UJA P100 | TZP, CAZ, FEP, IMP, MEM, GM, AMK, CIP, LEV | dfrA 12, aac(6′)-Ib |
UJA P102 | TZP, CAZ, FEP, ATM, IMP, MEM, GM, CIP, LEV | blaCTX-M, tet (B), dfrA 12, aac(6′)-Ib, mdfA |
UJA P103 | TZP, CAZ, FEP, IMP, MEM, LEV | |
UJA P104 | TZP, CAZ, FEP, ATM, IMP, MEM, CIP, LEV | |
UJA P105 | TZP, CAZ, FEP, IMP, MEM, CIP, LEV | |
UJA P106 | TZP, CAZ, FEP, IMP, MEM, GM, CIP, LEV, TZC | blaPSE, tet (B), tet (E), dfrA 12, sul1, aac(6′)-Ib, mdfA |
UJA P111 | CAZ, FEP, ATM, TOBRA, CIP, LEV | tet (A), dfrA 12, blaPSE |
UJA P113 | TZP, CAZ, FEP, GM, CIP, LEV, TZC | tet (A), dfrA 12 |
Gene | Sequence | Product Size (bp) | References |
---|---|---|---|
blaTEM | 5′-ATTCTTGAAGACGAAAGGGC-3′ 5′-ACGCTCAGTGGAACGAAAAG-3′ | 1150 | [62] |
blaPSE | 5′-GGCAATCACACTCGATGATGCGT-3′ 5′-GGCTCAATCCGGTCTAGACGAGT-3′ | 156 | [63] |
blaCTX-M | 5′-GGTTAAAAAATCACTGCGTC-3′ 5′-TTGGTGACGATTTTAGCCGC-3′ | 540 | [64] |
blaCTX-M2 | 5′-ATGATGACTCAGAGCATTCG-3′ 5′-TGGGTTACGATTTTCGCCGC-3′ | 859–876 | [65] |
blaVIM | 5′-GTTTGGTCGCCATATCGCAAC-3′ 5′-ATTGCGCAGCACCAGGATAG-3′ | 801 | [66] |
blaIMP | 5′-GAAGGCGTTTATGTTCATAC-3′ 5′-GTATGTTTCAAGAGTGATGC-3′ | 640 | [66] |
blaNDM | 5′-GCAGCTTGTCGGCCATGCGGGC-3′ 5′-GGTCGCGAAGCTGAGCACCGCAT-3′ | 621 | [67] |
blaOXA | 5′-AGCCGTTAAAATTAAGCCC-3′ 5′-CTTGATTGAAGGATTGGGCG-3′ | 438 | [68] |
blaPER | 5′-AATTTGGGCTTAGGGCAGAA-3′ 5′-ATGAATGTCATTATAAAAGC-3′ | 933 | [69] |
blaVEB | 5′-CGACTTCCATTTCCCGATGC-3′ 5′-GGACTCTGCAACAAATACGC-3′ | 642 | [70] |
blaGES | 5′ -ATGCGCTTCATTCACGCAC-3′ 5′-CTATTTGTCCGTGCTCAGG-3′ | 860 | [71] |
aac(6′)-Ib | 5′-AACAGCCTCAGCAGCCGGTTA-3′ 5′-TTCGCCGCAATCATCCCTAGC-3′ | 482 | [72] |
tet (A) | 5′-GTAATTCTGAGCACTGTCGC-3′ 5′-CTGCCTGGACAACATTGCTT-3′ | 210 | [73] |
tet (B) | 5′-CTCAGTATTCCAAGCCTTTG-3′ 5′-CTAAGCACTTGTCTCCTGTT-3′ | 659 | [73] |
tet (C) | 5′-TCTAACAATGCGCTCATCGT-3′ 5′-GGTTGAAGGCTCTCAAGGGC-3′ | 418 | [73] |
tet (D) | 5′-ATTACACTGCTGGACGCGAT-3′ 5′-CTGATCAGCAGACAGATTGC-3′ | 787 | [73] |
tet (E) | 5′-GTGATGATGGCACTGGTCAT-3′ 5′-CTCTGCTGTACATCGCTCTT-3′ | 278 | [73] |
tet (G) | 5′-GCTGCGCACCTGAAACTCCA-3′ 5′-AACCTCGTTCAACAGCTCTA-3′ | 468 | [73] |
sul1 | 5′-GGTGACGGTGTTCGGCATTC-3′ 5′-GCGAGGGTTTCCGAGAAGGTG-3′ | 436 | [62] |
dfrA12 | 5′-GGTGSGCAGAAGATTTTTCGC-3′ 5′-TGGGAAGAAGGCGTCACCCTC-3′ | 462 | [62] |
dfrA15 | 5′-GTGAAACTATCACTAATGG-3′ 5′-TTAACCCTTTTGCCAGATTT-3′ | 473 | [62] |
mdfA | 5′-CATTGGCAGCGATCTCCTTT-3′ 5′-TTATAGTCACGACCGACTTCTTTCA-3′ | 103 | [74] |
oxqA | 5′-CTCGGCGCGATGATGCT-3′ 5′-CCACTCTTCACGGGAGACGA-3′ | 670 | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, L.; Cobo, A.; Frías, M.P.; Gálvez, A.; Ortega, E. The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. Antibiotics 2024, 13, 429. https://doi.org/10.3390/antibiotics13050429
Morales L, Cobo A, Frías MP, Gálvez A, Ortega E. The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. Antibiotics. 2024; 13(5):429. https://doi.org/10.3390/antibiotics13050429
Chicago/Turabian StyleMorales, Laura, Antonio Cobo, María Pilar Frías, Antonio Gálvez, and Elena Ortega. 2024. "The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain" Antibiotics 13, no. 5: 429. https://doi.org/10.3390/antibiotics13050429
APA StyleMorales, L., Cobo, A., Frías, M. P., Gálvez, A., & Ortega, E. (2024). The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. Antibiotics, 13(5), 429. https://doi.org/10.3390/antibiotics13050429