A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections
Abstract
:1. Introduction
2. Results
2.1. Optimization Parameters for Antibacterial Production
2.2. Validation of the Model
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain and Growth Condition
4.2. Detection of Bacteriocin
4.3. Antibacterial Activity of Bacteriocin
4.4. Experimental Design
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbosa, J.; Caetano, T.; Mendo, S. Class I and class II lanthipeptides produced by Bacillus spp. J. Nat. Prod. 2015, 78, 2850–2866. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, N.; Stuckey, D.C.; Ariff, A.B.; Faizal Wong, F.W. Novel approaches to purifying bacteriocin: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2453–2465. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T.; Selsted, M.E.; Szklarek, D.; Harwig, S.S.; Daher, K.; Bainton, D.F.; Lehrer, R.I. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Investig. 1985, 76, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Arciola, C.R.; Ravaioli, S.; Mirzaei, R.; Dolzani, P.; Montanaro, L.; Daglia, M.; Campoccia, D. Biofilms in Periprosthetic Orthopedic Infections Seen through the Eyes of Neutrophils: How Can We Help Neutrophils? Int. J. Mol. Sci. 2023, 24, 16669. [Google Scholar] [CrossRef] [PubMed]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’toole, P.W.; Pot, B.; Vandamme, P.; Walter, J. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Dang, J.; Zhang, L.; Wu, Y.; Liu, B.; Lü, X. Purification, characterization and bactericidal mechanism of a broad spectrum bacteriocin with antimicrobial activity against multidrug-resistant strains produced by Lactobacillus coryniformis XN8. Food Control 2016, 67, 53–62. [Google Scholar] [CrossRef]
- Hashem, Z.; Abd El-Baky, R.M. In vitro inhibition of uropathogenic Escherichia coli biofilm formation by probiotic Lactobacilli isolated from healthy breast fed infants. Nov. Res. Microbiol. J. 2021, 5, 1091–1105. [Google Scholar]
- El-Mokhtar, M.A.; Hassanein, K.M.; Ahmed, A.S.; Gad, G.F.; Amin, M.M.; Hassanein, O.F. Antagonistic activities of cell-free supernatants of Lactobacilli against extended-spectrum β-lactamase producing Klebsiella pneumoniae and Pseudomonas aeruginosa. Infect. Drug Resist. 2020, 13, 543–552. [Google Scholar] [CrossRef]
- Akhtar, S.; Nawaz, S.K. Antimicrobial activity of Lactobacillus pentosus against the Bacillus cereus and Klebsiella pneumoniae strains. New Microbiol. 2023, 46, 207–212. [Google Scholar] [PubMed]
- Wang, Y.; Qin, Y.; Zhang, Y.; Wu, R.; Li, P. Antibacterial mechanism of plantaricin LPL-1, a novel class IIa bacteriocin against Listeria monocytogenes. Food Control 2019, 97, 87–93. [Google Scholar] [CrossRef]
- Siezen, R.J.; Tzeneva, V.A.; Castioni, A.; Wels, M.; Phan, H.T.K.; Rademaker, J.L.W.; Starrenburg, M.J.C.; Kleerebezem, M.; Molenaar, D.; Vlieg, J.E.T.V.H. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol. 2010, 12, 758–773.16. [Google Scholar] [CrossRef] [PubMed]
- Carpi, F.M.; Coman, M.M.; Silvi, S.; Picciolini, M.; Verdenelli, M.C.; Napolioni, V. Comprehensive pan-genome analysis of Lactiplantibacillus plantarum complete genomes. J. Appl. Microbiol. 2022, 132, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Arrioja-Bretón, D.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control 2020, 115, 107286. [Google Scholar] [CrossRef]
- Yilmaz, B.; Bangar, S.P.; Echegaray, N.; Suri, S.; Tomasevic, I.; Lorenzo, J.M.; Melekoglu, E.; Rocha, J.M.; Ozogul, F. The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. Microorganisms 2022, 10, 826. [Google Scholar] [CrossRef] [PubMed]
- Fidanza, M.; Panigrahi, P.; Kollmann, T.R. Lactiplantibacillus plantarum-Nomad and Ideal Probiotic. Front. Microbiol. 2021, 12, 712236. [Google Scholar] [CrossRef] [PubMed]
- Hoteit, M.; Yaghi, J.; El Khoury, A.; Daou, R.; Hindieh, P.; Assaf, J.C.; Al Dawi, J.; El Khoury, J.; Al Jawaldeh, A. Prevalence and Antibiotic Resistance of Staphylococcus aureus and Escherichia coli Isolated from Bovine Raw Milk in Lebanon: A study on Antibiotic Usage, Antibiotic Residues, and Assessment of Human Health Risk Using the One Health Approach. Antibiotics 2022, 11, 1815. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. [Google Scholar] [CrossRef]
- Åkesson, A.; Hedströum, S.Å.; Ripa, T. Bacillus cereus: A significant pathogen in postoperative and post-traumatic wounds on orthopaedic wards. Scand. J. Infect. Dis. 1991, 23, 71–77. [Google Scholar] [CrossRef]
- Dubouix, A.; Bonnet, E.; Alvarez, M.; Bensafi, H.; Archambaud, M.; Chaminade, B.; Chabanon, G.; Marty, N. Bacillus cereus infections in traumatology-orthopaedics department: Retrospective investigation and improvement of healthcare practices. J. Infect. 2005, 50, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Gallo, P.H.; Melton-Kreft, R.; Nistico, L.; Sotereanos, N.G.; Sewecke, J.J.; Stoodley, P.; Ehrlich, G.D.; Costerton, J.W.; Kathju, S. Demonstration of Bacillus cereus in orthopaedic-implant-related infection with use of a multi-primer polymerase chain reaction-mass spectrometric assay: Report of two cases. J. Bone Jt. Surg. Am. Vol. 2011, 93, e85. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Meštrović, T.; Juzbašić, M.; Tomas, M.; Erić, S.; Horvat Aleksijević, L.; Bekić, S.; Schwarz, D.; Matić, S.; Neuberg, M.; et al. Antimicrobial Peptides—Mechanisms of Action, Anti-microbial Effects and Clinical Applications. Antibiotics 2022, 11, 1417. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramos, A.; Madi-Moussa, D.; Coucheney, F.; Drider, D. Current Knowledge of the Mode of Action and Immunity Mechanisms of LAB-Bacteriocins. Microorganisms 2021, 9, 2107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, L.; Luo, Y.; Cao, X.; Liu, W.; Song, G.; Zhang, Z. LuxS quorum sensing system me-diating Lactobacillus plantarum probiotic characteristics. Arch. Microbiol. 2021, 203, 4141–4148. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zhao, C.; Cai, X.; Zeng, M.; Liu, Z. Enhancing the AI-2/LuxS quorum sensing system in Lactiplantibacillus plantarum: Effect on the elimination of biofilms grown on seafoods. Int. J. Food Microbiol. 2023, 389, 110102. [Google Scholar] [CrossRef] [PubMed]
- Man, L.L.; Xiang, D.J. LuxS-mediated quorum sensing system in Lactobacillus plantarum NMD-17 from koumiss: Induction of plantaricin MX in co-cultivation with certain lactic acid bacteria. Folia Microbiol. 2021, 66, 855–871. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhang, D. Antibacterial effects of bacteriocins isolated from Lactobacillus rhamnosus (ATCC 53103) in a rabbit model of knee implant infection. Exp. Ther. Med. 2018, 15, 2985–2989. [Google Scholar] [CrossRef] [PubMed]
- Lallukka, M.; Gamna, F.; Gobbo, V.A.; Prato, M.; Najmi, Z.; Cochis, A.; Rimondini, L.; Ferraris, S.; Spriano, S. Surface Functionalization of Ti6Al4V-ELI Alloy with Antimicrobial Peptide Nisin. Nanomaterials 2022, 12, 4332. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Gu, L.; Lv, Y.; Li, J.; Yang, Y.; Meng, X. Cell-Free Supernatant of Lactiplantibacillus plantarum 90: A Clean Label Strategy to Improve the Shelf Life of Ground Beef Gel and Its Bacteriostatic Mechanism. Foods 2023, 12, 4053. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Li, L.; Zheng, H.; Xiong, Z.; Hou, J.; Wang, L. Genome-Based Identification and Characterization of Bacteriocins Selectively Inhibiting Staphylococcus aureus in Fermented Sausages. Probiotics Antimicrob. Proteins, 2024; published online. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhao, Y.; Hou, Y.; Yang, Y.; Yue, B.; Zhang, X. Unraveling the antimicrobial potential of Lactiplantibacillus plantarum strains TE0907 and TE1809 sourced from Bufo gargarizans: Advancing the frontier of probiotic-based therapeutics. Front. Microbiol. 2024, 15, 1347830. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, J.; Zhou, X.; Dai, J.; Zhang, J.; Huang, Y.; Xu, N. The Combined Use of Tea Polyphenols and Lactobacillus plantarum ST8SH Bacteriocin in a Rabbit Model of Infection Following Femoral Fracture with Internal Fixation. Med. Sci. Monit. 2019, 25, 312–317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Letizia, F.; Albanese, G.; Testa, B.; Vergalito, F.; Bagnoli, D.; Di Martino, C.; Carillo, P.; Verrillo, L.; Succi, M.; Sorrentino, E.; et al. In Vitro Assessment of Bio-Functional Properties from Lacti-plantibacillus plantarum Strains. Curr. Issues Mol. Biol. 2022, 44, 2321–2334. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef] [PubMed]
- Seddik, H.A.; Bendali, F.; Gancel, F.; Fliss, I.; Spano, G.; Drider, D. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimicrob. Proteins 2017, 9, 111–122. [Google Scholar] [CrossRef]
- Liu, Y.W.; Liong, M.T.; Tsai, Y.C. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J. Microbiol. 2018, 56, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-H.; Pan, T.-M. Optimization of antimicrobial substances produced from Lactobacillus paracasei subsp. paracasei NTU 101 (DSM 28047) and Lactobacillus plantarum NTU 102 by response surface methodology. J. Food Sci. Technol. 2015, 52, 6010–6016. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.; Bukhari, S.A.; Shahid, M.; Sahar, T.; Naheed, S. Strain improvement of newly isolated Lactobacillus acidophilus MS1 for enhanced bacteriocin production. Turk. J. Biochem. 2018, 43, 323–332. [Google Scholar] [CrossRef]
- Fazal-ur-Rehman, M. Methodological trends in preparation of activated carbon from local sources and their impacts on production: A review. Chem. Int. 2018, 4, 109–119. [Google Scholar]
- Ghezali, S.; Mahdad-Benzerdjeb, A.; Ameri, M.; Bouyakoub, A.Z. Adsorption of 2, 4, 6-trichlorophenol on bentonite modified with benzyldimethyltetradecylammonium chloride. Chem. Int. 2018, 4, 24–32. [Google Scholar]
- Gul, S.; Hameed, A. UV spectroscopic method for determination of phenytoin in bulk and injection forms. Chem. Int. 2018, 4, 177–182. [Google Scholar]
- Hassen, E.B.; Asmare, A.M. Predictive performance modeling of Habesha brewery wastewater treatment plant using artificial neural networks. Chem. Int. 2019, 5, 87. [Google Scholar]
- Iqbal, M.; Abbas, M.; Adil, M.; Nazir, A.; Ahmad, I. Aflatoxins biosynthesis, toxicity and intervention strategies: A review. Chem. Int. 2019, 5, 168–191. [Google Scholar] [CrossRef]
- Nikodimos, Y.; Hagos, B.; Dereje, D.; Hussen, M. Voltammetric study of secnidazole and its determination in pharmaceutical tablet using 1, 4-benzoquinone modified carbon paste electrode. Chem. Int. 2018, 4, 43–51. [Google Scholar]
- Prema, P.; Smila, D.; Palavesam, A.; Immanuel, G. Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain. Food Bioprocess Technol. 2010, 3, 379–386. [Google Scholar] [CrossRef]
- Kaur, R.; Tiwari, S. Isolation, identification and characterization of Pediococcus pentosaceus LB44 and Weissella confusa LM85 for the presence of bacteriocin-like inhibitory substances (BLIS). Microbiology 2016, 85, 540–547. [Google Scholar] [CrossRef]
- Hata, T.; Tanaka, R.; Ohmomo, S. Isolation and characterization of plantaricin ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1. Int. J. Food Microbiol. 2010, 137, 94–99. [Google Scholar] [CrossRef]
- Prema, P.; Viji, P. Antibacterial activity of a probiotic Lactobacillus plantarum against urinary tract infection causing pathogens. World J. Pharm. 2015, 4, 2032–2041. [Google Scholar]
- Georgieva, R.; Koleva, P.; Nikolova, D.; Yankov, D.; Danova, S. Growth parameters of probiotic strain Lactobacillus plantarum, isolated from traditional white cheese. Biotechnol. Biotechnol. Equip. 2009, 23, 861–865. [Google Scholar] [CrossRef]
- Smetanková, J.; Hladíková, Z.; Valach, F.; Zimanová, M.; Kohajdová, Z.; Greif, G.; Greifová, M. Influence of aerobic and anaerobic conditions on the growth and metabolism of selected strains of Lactobacillus plantarum. Acta Chim. Slovaca 2012, 5, 204–210. [Google Scholar] [CrossRef]
- Callewaert, R.; De Vuyst, L. Bacteriocin production with Lactobacillus amylovorus DCE 471 is improved and stabilized by fed-batch fermentation. Appl. Environ. Microbiol. 2000, 66, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.; Shahid, M.; Sahar, T.; Naheed, S.; Arif, M.; Iqbal, M.; Nazir, A. Development of regression model for bacteriocin production from local isolate of Lactobacillus acidophilus MS1 using Box-Behnken design. Biocatal. Agric. Biotechnol. 2020, 24, 101542. [Google Scholar] [CrossRef]
- Borah, T.; Gogoi, B.; Khataniar, A.; Gogoi, M.; Das, A.; Borah, D. Probiotic characterization of indigenous Bacillus velezensis strain DU14 isolated from Apong, a traditionally fermented rice beer of Assam. Biocatal. Agric. Biotechnol. 2019, 18, 101008. [Google Scholar] [CrossRef]
- Upendra, R.S.; Khandelwal, P.; Ahmed, M.R. Bacteriocin production optimization applying RSM and hybrid (ANN-GA) method for the indigenous culture of Pediococcus pentosaceus Sanna 14. J. Appl. Pharm. Sci. 2021, 11, 050–060. [Google Scholar] [CrossRef]
- Thirumurugan, A.; Ramachandran, S.; Gobikrishnan, S. Optimization of medium components for maximizing the bacteriocin production by Lactobacillus plantarum ATM11 using statistical design. Int. Food Res. J. 2015, 22, 1272. [Google Scholar]
- Zhou, X.X.; Pan, Y.J.; Wang, Y.B.; Li, W.F. Optimization of medium composition for nisin fermentation with response surface methodology. J. Food Sci. 2008, 73, M245–M249. [Google Scholar] [CrossRef]
- Golneshin, A.; Gor, M.-C.; Williamson, N.; Vezina, B.; Van, T.T.H.; May, B.K.; Smith, A.T. Discovery and characterisation of circular bacteriocin plantacyclin B21AG from Lactiplantibacillus plantarum B21. Heliyon 2020, 6, e04715. [Google Scholar] [CrossRef]
- Xu, C.; Fu, Y.; Liu, F.; Liu, Z.; Ma, J.; Jiang, R.; Song, C.; Jiang, Z.; Hou, J. Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320. LWT 2021, 137, 110338. [Google Scholar] [CrossRef]
- Leslie, V.A.; Alarjani, K.M.; Malaisamy, A.; Balasubramanian, B. Bacteriocin producing microbes with bactericidal activity against multidrug resistant pathogens. J. Infect. Public Health 2021, 14, 1802–1809. [Google Scholar] [CrossRef]
- Kim, N.-N.; Kim, W.J.; Kang, S.-S. Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella typhimurium. Food Control 2019, 98, 274–280. [Google Scholar] [CrossRef]
- Kumar, M.; Dhaka, P.; Vijay, D.; Vergis, J.; Mohan, V.; Kumar, A.; Kurkure, N.V.; Barbuddhe, S.B.; Malik, S.; Rawool, D.B. Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli. Int. J. Antimicrob. Agents 2016, 48, 265–270. [Google Scholar] [CrossRef]
- Kang, M.-S.; Lim, H.-S.; Oh, J.-S.; Lim, Y.-j.; Wuertz-Kozak, K.; Harro, J.M.; Shirtliff, M.E.; Achermann, Y. Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus. Pathog. Dis. 2017, 75, ftx009. [Google Scholar] [CrossRef]
- Ahn, K.B.; Baik, J.E.; Park, O.-J.; Yun, C.-H.; Han, S.H. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans. PLoS ONE 2018, 13, e0192694. [Google Scholar] [CrossRef]
- Park, S.-Y.; Lee, H.-J.; Kim, H.-S.; Kim, D.-H.; Lee, S.-W.; Yoon, H.-Y. Anti-Staphylococcal Activity of Ligilactobacillus animalis SWLA-1 and Its Supernatant against Multidrug-Resistant Staphylococcus pseudintermedius in Novel Rat Model of Acute Osteomyelitis. Antibiotics 2023, 12, 1444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, X.; Zhao, Y.; Sun, Y.; Gu, Q. Purification and characterisation of plantaricin ZJ008, a novel bacteriocin against Staphylococcus spp. from Lactobacillus plantarum ZJ008. Food Chem. 2014, 165, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Song, J.; Zeng, W.; Wang, H.; Zhang, Y.; Xin, J.; Suo, H. A broad-spectrum novel bacteriocin produced by Lactobacillus plantarum SHY 21–2 from yak yogurt: Purification, antimicrobial characteristics and antibacterial mechanism. LWT 2021, 142, 110955. [Google Scholar] [CrossRef]
- Zhu, X.; Shen, L.; Liu, J.; Zhang, C.; Gu, Q. Purification of a Bacteriocin from Lactobacillus plantarum ZJ217 Active Against Methicillin-Resistant Staphylococcus aureus. Int. J. Food Eng. 2015, 11, 51–59. [Google Scholar] [CrossRef]
- Halder, D.; Mandal, M.; Chatterjee, S.S.; Pal, N.K.; Mandal, S. Indigenous probiotic Lactobacillus isolates presenting antibiotic like activity against human pathogenic bacteria. Biomedicines 2017, 5, 31. [Google Scholar] [CrossRef]
- Pato, U.; Yusuf, Y.; Fitriani, S.; Jonnadi, N.N.; Wahyuni, M.S.; Feruni, J.A.; Jaswir, I. Inhibitory activity of crude bacteriocin produced by lactic acid bacteria isolated from dadih against Listeria monocytogenes. Biodivers. J. Biol. Divers. 2020, 21, 1295–1302. [Google Scholar] [CrossRef]
- Tagg, J.; McGiven, A. Assay system for bacteriocins. Appl. Microbiol. 1971, 21, 943. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.; Behnken, D.W. Some new three level designs for the study of quantitative variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
Independent Variables | Coded Values | ||
---|---|---|---|
−1 | 0 | +1 | |
A: Temperature (°C) | 25 | 35 | 45 |
B: Initial pH | 5.5 | 6.5 | 7.5 |
C: Incubation time (h) | 24 | 48 | 72 |
Runs | A: Temperature (°C) | B: Initial pH | C: Incubation Time (h) | Inhibitory Activity (AU/mL) | Residual Values | |
---|---|---|---|---|---|---|
Experimental Value | Predicted Value | |||||
1 | 25 | 5.5 | 48 | 1250 | 1115.63 | 134.37 |
2 | 35 | 6.5 | 48 | 650 | 740.63 | −90.63 |
3 | 45 | 7.5 | 48 | 450 | 359.38 | 90.62 |
4 | 35 | 7.5 | 72 | 850 | 984.38 | −134.38 |
5 | 45 | 6.5 | 24 | 350 | 534.38 | −184.38 |
6 | 35 | 6.5 | 48 | 850 | 809.38 | 40.62 |
7 | 35 | 5.5 | 72 | 650 | 690.63 | −40.63 |
8 | 25 | 6.5 | 24 | 850 | 665.63 | 184.37 |
9 | 35 | 6.5 | 48 | 900 | 850 | 50 |
10 | 35 | 6.5 | 48 | 375 | 281.25 | 93.75 |
11 | 45 | 5.5 | 48 | 450 | 543.75 | −93.75 |
12 | 45 | 6.5 | 72 | 550 | 600 | −50 |
13 | 25 | 6.5 | 72 | 3550 | 3530 | 20 |
14 | 35 | 5.5 | 24 | 3400 | 3530 | −130 |
15 | 35 | 6.5 | 48 | 3650 | 3530 | 120 |
16 | 35 | 7.5 | 24 | 3450 | 3530 | −80 |
17 | 25 | 7.5 | 48 | 3600 | 3530 | 70 |
Variation Source | SS | Df | MS | F Value | p Value |
---|---|---|---|---|---|
Model | 2.928 × 107 | 9 | 3.254 × 106 | 120.25 | <0.0001 |
A-temperature | 31,250 | 1 | 31,250 | 1.15 | 0.3182 |
B-initial pH | 1.313 × 105 | 1 | 1.313 × 105 | 4.85 | 0.0634 |
C-incubation time | 78.13 | 1 | 78.13 | 2.887 × 10−3 | 0.9586 |
AB | 2.500 × 105 | 1 | 2.500 × 105 | 9.24 | 0.0189 |
AC | 22,500 | 1 | 22,500 | 0.83 | 0.3921 |
BC | 97,656.25 | 1 | 97,656.25 | 3.61 | 0.0992 |
A2 | 7.246 × 106 | 1 | 7.246 × 106 | 267.81 | <0.0001 |
B2 | 8.468 × 106 | 1 | 8.468 × 106 | 312.95 | <0.0001 |
C2 | 1.003 × 107 | 1 | 1.003 × 107 | 370.55 | <0.0001 |
Residual | 1.894 × 105 | 7 | 27,058.04 | ||
Lack of Fit | 1.464 × 105 | 3 | 48,802.08 | 4.54 | 0.0890 |
Pure Error | 43,000 | 4 | 10,750.00 | ||
Corr. total | 2.947 × 107 | 16 | |||
R2 = 0.9936 | R2Adj = 0.9853 | R2Pred = 0.9182 | C.V. % = 10.83 | Mean = 1519.12 | Std. Dev. = 164.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prema, P.; Ali, D.; Nguyen, V.-H.; Pradeep, B.V.; Veeramanikandan, V.; Daglia, M.; Arciola, C.R.; Balaji, P. A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections. Antibiotics 2024, 13, 437. https://doi.org/10.3390/antibiotics13050437
Prema P, Ali D, Nguyen V-H, Pradeep BV, Veeramanikandan V, Daglia M, Arciola CR, Balaji P. A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections. Antibiotics. 2024; 13(5):437. https://doi.org/10.3390/antibiotics13050437
Chicago/Turabian StylePrema, Paulpandian, Daoud Ali, Van-Huy Nguyen, Bhathini Vaikuntavasan Pradeep, Veeramani Veeramanikandan, Maria Daglia, Carla Renata Arciola, and Paulraj Balaji. 2024. "A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections" Antibiotics 13, no. 5: 437. https://doi.org/10.3390/antibiotics13050437
APA StylePrema, P., Ali, D., Nguyen, V. -H., Pradeep, B. V., Veeramanikandan, V., Daglia, M., Arciola, C. R., & Balaji, P. (2024). A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections. Antibiotics, 13(5), 437. https://doi.org/10.3390/antibiotics13050437