Spent Material Extractives from Hemp Hydrodistillation as an Underexplored Source of Antimicrobial Cannabinoids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Terpene Profile of Hemp Essential Oil
2.2. Cannabinoid Profile of Hemp Extracts
2.3. Cannabinoid Composition of Hemp Extracts
2.4. Fatty Acid Composition of Hemp Extracts
2.5. Antimicrobial Activity of Hemp Essential Oil and Extracts
3. Materials and Methods
3.1. Materials
3.2. Preparation of Essential Oil and Solvent Extracts
3.3. Analytical Methods
3.3.1. Terpene Profile of Hemp Essential Oil (GC–MS)
3.3.2. Cannabinoid Profile and Composition
3.3.3. Fatty Acid Composition of Hemp Extracts (GC–MS)
3.4. Antimicrobial Assays
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luca, S.V.; Roehrer, S.; Kleigrewe, K.; Minceva, M. Approach for simultaneous cannabidiol isolation and pesticide removal from hemp extracts with liquid-liquid chromatography. Ind. Crop. Prod. 2020, 155, 112726. [Google Scholar] [CrossRef]
- Moscariello, C.; Matassa, S.; Esposito, G.; Papirio, S. From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resour. Conserv. Recycl. 2021, 175, 105864. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Lupidi, G.; Nabissi, M.; Petrelli, R.; Ngahang Kamte, S.L.; Cappellacci, L.; Fiorini, D.; Sut, S.; Dall’Acqua, S. The crop-residue of fiber hemp cv. Futura 75: From a waste product to a source of botanical insecticides. Environ. Sci. Pollut. Res. 2018, 25, 10515–10525. [Google Scholar] [CrossRef] [PubMed]
- Serventi, L.; Flores, G.A.; Cusumano, G.; Barbaro, D.; Tirillini, B.; Venanzoni, R.; Angelini, P.; Acquaviva, A.; Di Simone, S.C.; Orlando, G. Comparative investigation of antimicrobial and antioxidant effects of the extracts from the inflorescences and leaves of the Cannabis sativa L. cv. strawberry. Antioxidants 2023, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Appendino, G.; Gibbons, S.; Giana, A.; Pagani, A.; Grassi, G.; Stavri, M.; Smith, E.; Rahman, M.M. Antibacterial cannabinoids from Cannabis sativa: A structure− activity study. J. Nat. Prod. 2008, 71, 1427–1430. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B.; Marcu, J. Cannabis pharmacology: The usual suspects and a few promising leads. Adv. Pharmacol. 2017, 80, 67–134. [Google Scholar] [PubMed]
- Alhadid, A.; Luca, S.V.; Nasrallah, S.; Minceva, M. Experimental investigation and thermodynamic modeling of cannabidiol solubility in plant oils and hydrophobic eutectic systems. J. Mol. Liq. 2023, 372, 121172. [Google Scholar] [CrossRef]
- Dos Santos, R.G.; Hallak, J.E.; Crippa, J.A.S. Neuropharmacological effects of the main phytocannabinoids: A narrative review. In Cannabinoids and Neuropsychiatric Disorders; Springer: Berlin/Heidelberg, Germany, 2021; pp. 29–45. [Google Scholar]
- Russo, C.; Lavorgna, M.; Nugnes, R.; Orlo, E.; Isidori, M. Comparative assessment of antimicrobial, antiradical and cytotoxic activities of cannabidiol and its propyl analogue cannabidivarin. Sci. Rep. 2021, 11, 22494. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Gupta, A. A review on exploring the antibacterial activity of cannabinoids with respect to biofilm formation. J. Integr. Health Sci. 2020, 8, 101–104. [Google Scholar]
- Gaweł-Bęben, K.; Czech, K.; Luca, S.V. Cannabidiol and minor phytocannabinoids: A preliminary study to assess their anti-melanoma, anti-melanogenic, and anti-tyrosinase properties. Pharmaceuticals 2023, 16, 648. [Google Scholar] [CrossRef]
- Iseppi, R.; Brighenti, V.; Licata, M.; Lambertini, A.; Sabia, C.; Messi, P.; Pellati, F.; Benvenuti, S. Chemical characterization and evaluation of the antibacterial activity of essential oils from fibre-type Cannabis sativa L. (Hemp). Molecules 2019, 24, 2302. [Google Scholar] [CrossRef] [PubMed]
- Fiorini, D.; Scortichini, S.; Bonacucina, G.; Greco, N.G.; Mazzara, E.; Petrelli, R.; Torresi, J.; Maggi, F.; Cespi, M. Cannabidiol-enriched hemp essential oil obtained by an optimized microwave-assisted extraction using a central composite design. Ind. Crop. Prod. 2020, 154, 112688. [Google Scholar] [CrossRef]
- Micalizzi, G.; Vento, F.; Alibrando, F.; Donnarumma, D.; Dugo, P.; Mondello, L. Cannabis Sativa L.: A comprehensive review on the analytical methodologies for cannabinoids and terpenes characterization. J. Chromatogr. A 2020, 1637, 461864. [Google Scholar] [CrossRef] [PubMed]
- Eschlwech, F.; Ruedenauer, F.; Leonhardt, S.D.; Minceva, M.; Luca, S.V. Liquid-liquid chromatography separation of hemp terpenes with repellent properties against Hyalomma marginatum: A multi-methodological approach. Ind. Crop. Prod. 2023, 197, 116562. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Santini, G.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; Canale, A.; Maggi, F. The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind. Crop. Prod. 2018, 122, 308–315. [Google Scholar] [CrossRef]
- Luca, S.V.; Zengin, G.; Sinan, K.I.; Skalicka-Woźniak, K.; Trifan, A. Post-distillation by-products of aromatic plants from Lamiaceae family as rich sources of antioxidants and enzyme inhibitors. Antioxidants 2023, 12, 210. [Google Scholar] [CrossRef] [PubMed]
- Schofs, L.; Sparo, M.D.; Sanchez Bruni, S.F. The antimicrobial effect behind Cannabis sativa. Pharmacol. Res. Perspect. 2021, 9, e00761. [Google Scholar] [CrossRef]
- Hong, H.; Sloan, L.; Saxena, D.; Scott, D.A. The antimicrobial properties of cannabis and cannabis-derived compounds and relevance to CB2-targeted neurodegenerative therapeutics. Biomedicines 2022, 10, 1959. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.; Neira Agonh, D.; Lehmann, C. Antibacterial effects of phytocannabinoids. Life 2022, 12, 1394. [Google Scholar] [CrossRef] [PubMed]
- Fathordoobady, F.; Singh, A.; Kitts, D.D.; Pratap Singh, A. Hemp (Cannabis sativa L.) extract: Anti-microbial properties, methods of extraction, and potential oral delivery. Food Rev. Int. 2019, 35, 664–684. [Google Scholar] [CrossRef]
- Gabarin, A.; Yarmolinsky, L.; Budovsky, A.; Khalfin, B.; Ben-Shabat, S. Cannabis as a source of approved drugs: A new look at an old problem. Molecules 2023, 28, 7686. [Google Scholar] [CrossRef]
- Karas, J.A.; Wong, L.J.; Paulin, O.K.; Mazeh, A.C.; Hussein, M.H.; Li, J.; Velkov, T. The antimicrobial activity of cannabinoids. Antibiotics 2020, 9, 406. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mahato, D.K.; Kamle, M.; Borah, R.; Sharma, B.; Pandhi, S.; Tripathi, V.; Yadav, H.S.; Devi, S.; Patil, U. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother. Res. 2021, 35, 6010–6029. [Google Scholar] [CrossRef] [PubMed]
- Luca, S.V.; Kittl, T.; Minceva, M. Supercritical CO2 extraction of hemp flowers: A systematic study to produce terpene-rich and terpene-depleted cannabidiol fractions. Ind. Crop. Prod. 2022, 187, 115395. [Google Scholar] [CrossRef]
- Pieracci, Y.; Ascrizzi, R.; Terreni, V.; Pistelli, L.; Flamini, G.; Bassolino, L.; Fulvio, F.; Montanari, M.; Paris, R. Essential oil of Cannabis sativa L: Comparison of yield and chemical composition of 11 hemp genotypes. Molecules 2021, 26, 4080. [Google Scholar] [CrossRef] [PubMed]
- Menghini, L.; Ferrante, C.; Carradori, S.; D’Antonio, M.; Orlando, G.; Cairone, F.; Cesa, S.; Filippi, A.; Fraschetti, C.; Zengin, G. Chemical and bioinformatics analyses of the anti-leishmanial and anti-oxidant activities of hemp essential oil. Biomolecules 2021, 11, 272. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Sikora, V.; Dincheva, I.; Kačániová, M.; Astatkie, T.; Semerdjieva, I.B.; Latkovic, D. Industrial, CBD, and wild hemp: How different are their essential oil profile and antimicrobial activity? Molecules 2020, 25, 4631. [Google Scholar] [CrossRef] [PubMed]
- Berman, P.; Futoran, K.; Lewitus, G.M.; Mukha, D.; Benami, M.; Shlomi, T.; Meiri, D. A new ESI-LC/MS approach for comprehensive metabolic profiling of phytocannabinoids in Cannabis. Sci. Rep. 2018, 8, 14280. [Google Scholar] [CrossRef]
- Borille, B.T.; Ortiz, R.S.; Mariotti, K.C.; Vanini, G.; Tose, L.V.; Filgueiras, P.R.; Marcelo, M.C.; Ferrão, M.F.; Anzanello, M.J.; Limberger, R.P. Chemical profiling and classification of cannabis through electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry and chemometrics. Anal. Methods 2017, 9, 4070–4081. [Google Scholar] [CrossRef]
- Barhdadi, S.; Courselle, P.; Deconinck, E.; Vanhee, C. The analysis of cannabinoids in e-cigarette liquids using LC-HRAM-MS and LC-UV. J. Pharm. Biomed. Anal. 2023, 230, 115394. [Google Scholar] [CrossRef]
- Piccolella, S.; Formato, M.; Pecoraro, M.T.; Crescente, G.; Pacifico, S. Discrimination of CBD-, THC-and CBC-type acid cannabinoids through diagnostic ions by UHPLC-HR-MS/MS in negative ion mode. J. Pharm. Biomed. Anal. 2021, 201, 114125. [Google Scholar] [CrossRef] [PubMed]
- Motiejauskaitė, D.; Ullah, S.; Kundrotaitė, A.; Žvirdauskienė, R.; Bakšinskaitė, A.; Barčauskaitė, K. Isolation of biologically active compounds from Cannabis sativa L. inflorescences by using different extraction solvents and evaluation of antimicrobial activity. Antioxidants 2023, 12, 998. [Google Scholar] [CrossRef] [PubMed]
- Muscarà, C.; Smeriglio, A.; Trombetta, D.; Mandalari, G.; La Camera, E.; Grassi, G.; Circosta, C. Phytochemical characterization and biological properties of two standardized extracts from a non-psychotropic Cannabis sativa L. cannabidiol (CBD)-chemotype. Phytother. Res. 2021, 35, 5269–5281. [Google Scholar] [CrossRef] [PubMed]
- Kriese, U.; Schumann, E.; Weber, W.; Beyer, M.; Brühl, L.; Matthäus. Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica 2004, 137, 339–351. [Google Scholar] [CrossRef]
- Aiello, A.; Pizzolongo, F.; Scognamiglio, G.; Romano, A.; Masi, P.; Romano, R. Effects of supercritical and liquid carbon dioxide extraction on hemp (Cannabis sativa L.) seed oil. Int. J. Food Sci. Technol. 2020, 55, 2472–2480. [Google Scholar] [CrossRef]
- Petrović, M.; Debeljak, Ž.; Kezić, N.; Džidara, P. Relationship between cannabinoids content and composition of fatty acids in hempseed oils. Food Chem. 2015, 170, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Da Porto, C.; Decorti, D.; Tubaro, F. Fatty acid composition and oxidation stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical carbon dioxide. Ind. Crop. Prod. 2012, 36, 401–404. [Google Scholar] [CrossRef]
- Da Porto, C.; Voinovich, D.; Decorti, D.; Natolino, A. Response surface optimization of hemp seed (Cannabis sativa L.) oil yield and oxidation stability by supercritical carbon dioxide extraction. J. Supercrit. Fluids 2012, 68, 45–51. [Google Scholar] [CrossRef]
- Kuete, V.; Efferth, T. Cameroonian medicinal plants: Pharmacology and derived natural products. Front. Pharmacol. 2010, 1, 123. [Google Scholar] [CrossRef]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Mezrioui, N.; Setzer, W.; Abbad, A.; Hassani, L. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Ind. Crop. Prod. 2019, 137, 396–400. [Google Scholar] [CrossRef]
- Zengin, G.; Menghini, L.; Di Sotto, A.; Mancinelli, R.; Sisto, F.; Carradori, S.; Cesa, S.; Fraschetti, C.; Filippi, A.; Angiolella, L. Chromatographic analyses, in vitro biological activities, and cytotoxicity of Cannabis sativa L. essential oil: A multidisciplinary study. Molecules 2018, 23, 3266. [Google Scholar] [CrossRef] [PubMed]
- Jokić, S.; Jerković, I.; Pavić, V.; Aladić, K.; Molnar, M.; Kovač, M.J.; Vladimir-Knežević, S. Terpenes and cannabinoids in supercritical CO2 extracts of industrial hemp inflorescences: Optimization of extraction, antiradical and antibacterial activity. Pharmaceuticals 2022, 15, 1117. [Google Scholar] [CrossRef] [PubMed]
- Luca, S.V.; Braumann, L.; Gerigk, M.; Frank, O.; Minceva, M. Separation of minor cannabinoids from hemp extract with trapping multiple dual mode liquid-liquid chromatography. J. Chromatogr. A 2021, 1658, 462608. [Google Scholar] [CrossRef] [PubMed]
- Blaskovich, M.A.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J. The antimicrobial potential of cannabidiol. Commun. Biol. 2021, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Wassmann, C.S.; Højrup, P.; Klitgaard, J.K. Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria. Sci. Rep. 2020, 10, 4112. [Google Scholar] [CrossRef]
- Farha, M.A.; El-Halfawy, O.M.; Gale, R.T.; MacNair, C.R.; Carfrae, L.A.; Zhang, X.; Jentsch, N.G.; Magolan, J.; Brown, E.D. Uncovering the hidden antibiotic potential of cannabis. ACS Infect. Dis. 2020, 6, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Aqawi, M.; Sionov, R.V.; Gallily, R.; Friedman, M.; Steinberg, D. Anti-bacterial properties of cannabigerol toward Streptococcus mutans. Front. Microbiol. 2021, 12, 656471. [Google Scholar] [CrossRef] [PubMed]
- Luz-Veiga, M.; Amorim, M.; Pinto-Ribeiro, I.; Oliveira, A.L.; Silva, S.; Pimentel, L.L.; Rodríguez-Alcalá, L.M.; Madureira, R.; Pintado, M.; Azevedo-Silva, J. Cannabidiol and cannabigerol exert antimicrobial activity without compromising skin microbiota. Int. J. Mol. Sci. 2023, 24, 2389. [Google Scholar] [CrossRef] [PubMed]
- Kosgodage, U.S.; Matewele, P.; Awamaria, B.; Kraev, I.; Warde, P.; Mastroianni, G.; Nunn, A.V.; Guy, G.W.; Bell, J.D.; Inal, J.M. Cannabidiol is a novel modulator of bacterial membrane vesicles. Front. Cell. Infect. Microbiol. 2019, 9, 324. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Kahlmeter, G.; Guinea, J.; Meletiadis, J.; the Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). How to: Perform antifungal susceptibility testing of microconidia-forming dermatophytes following the new reference EUCAST method E. Def 11.0, exemplified by Trichophyton. Clin. Microbiol. Infect. 2021, 27, 55–60. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, ix–xv. [Google Scholar]
Extract | Code | Unit | Yield |
---|---|---|---|
Hemp flower essential oil | HEO | mL/100 g | 0.7 ± 0.1 a |
Total (unprocessed) hemp flower extract | HTE | g/100 g | 7.3 ± 0.3 b |
Spent (processed) hemp flower extract | HSE | 8.2 ± 0.4 c | |
Hydrodistillation water extract | HWE | 6.4 ± 0.2 d |
No. | Compound | LRI a | LRI b | Relative Abundance (%) c |
---|---|---|---|---|
1 | α-Pinene | 936 | 936 | 2.80 ± 0.04 |
2 | β-Pinene | 980 | 978 | 0.73 ± 0.00 |
3 | β-Myrcene * | 989 | 989 | 1.09 ± 0.02 |
4 | Limonene * | 1032 | 1033 | 0.24 ± 0.00 |
5 | Eugenol | 1035 | 1034 | 0.41 ± 0.01 |
6 | Linalool * | 1099 | 1103 | 0.55 ± 0.01 |
7 | Fenchyl alcohol | 1124 | 1117 | 0.32 ± 0.01 |
8 | cis-p-Menth-2-en-1-ol | 1131 | 1121 | 0.24 ± 0.00 |
9 | trans-p-Menth-2-en-1-ol | 1140 | 1140 | 0.32 ± 0.01 |
10 | Camphor | 1150 | 1148 | 0.12 ± 0.00 |
11 | Borneol | 1178 | 1177 | 0.24 ± 0.01 |
12 | Terpinen-4-ol | 1185 | 1180 | 0.13 ± 0.01 |
13 | p-Cymen-8-ol | 1199 | 1185 | 0.49 ± 0.02 |
14 | α-Terpineol | 1198 | 1198 | 0.46 ± 0.05 |
15 | Copaene | 1376 | 1378 | 0.20 ± 0.01 |
16 | (Z)-β-Caryophyllene | 1414 | 1409 | 0.20 ± 0.01 |
17 | γ-Elemene | 1418 | 1430 | 0.33 ± 0.01 |
18 | (E)-β-Caryophyllene * | 1431 | 1428 | 17.17 ± 0.24 |
19 | α-Bergamotene | 1438 | 1435 | 1.87 ± 0.03 |
20 | allo-Aromadendrene | 1443 | 1444 | 0.49 ± 0.01 |
21 | (E)-β-Farnesene | 1453 | 1456 | 1.59 ± 0.03 |
22 | α-Humulene * | 1467 | 1458 | 6.12 ± 0.53 |
23 | γ-Muurolene | 1472 | 1476 | 0.25 ± 0.02 |
24 | α-Guaiene | 1482 | 1499 | 0.34 ± 0.06 |
25 | Selina-4(14),7(11)-diene | 1485 | 1497 | 0.60 ± 0.08 |
26 | β-Selinene | 1495 | 1486 | 0.80 ± 0.03 |
27 | α-Selinene | 1501 | 1497 | 2.85 ± 0.01 |
28 | β-Bisabolene | 1511 | 1509 | 5.14 ± 0.05 |
29 | δ-Cadinene | 1520 | 1519 | 0.73 ± 0.02 |
30 | γ-Patchoulene | 1525 | 1522 | 0.47 ± 0.01 |
31 | β-Sesquiphellandrene | 1530 | 1525 | 1.06 ± 0.03 |
32 | α-Cadinene | 1544 | 1530 | 1.48 ± 0.03 |
33 | Selina-3,7(11)-diene | 1549 | 1542 | 0.76 ± 0.02 |
34 | Selina-4(15),7(11)-diene | 1554 | 1532 | 0.38 ± 0.01 |
35 | Germancrene B | 1563 | 1157 | 1.48 ± 0.03 |
36 | (E)-Nerolidol | 1568 | 1560 | 0.15 ± 0.01 |
37 | Spathulenol | 1575 | 1573 | 0.42 ± 0.02 |
38 | β-Caryophyllene oxide * | 1597 | 1581 | 8.22 ± 0.13 |
39 | Aromadendrene oxide | 1606 | 1650 | 2.87 ± 0.04 |
40 | cis-(Z)-α-Bisabolene epoxide | 1613 | 1619 | 0.85 ± 0.01 |
41 | Humulene epoxide | 1619 | 1610 | 0.41 ± 0.02 |
42 | Cubenol | 1625 | 1614 | 2.70 ± 0.04 |
43 | γ-Eudesmol | 1638 | 1642 | 4.02 ± 0.06 |
44 | Caryophylla-4(12),8(13)-dien-5α-ol | 1648 | 1640 | 2.29 ± 0.02 |
45 | Caryophylla-4(12),8(13)-dien-5β-ol | 1651 | 1634 | 1.70 ± 0.08 |
46 | α-Cadinol | 1657 | 1647 | 0.53 ± 0.03 |
47 | β-Eudesmol | 1670 | 1651 | 5.79 ± 0.05 |
48 | epi-α-Bisabolol | 1677 | 1682 | 3.49 ± 0.07 |
49 | α-Bisabolol * | 1692 | 1685 | 8.20 ± 0.12 |
50 | Cannabidiol * | – | – | 1.75 ± 0.03 |
Total | 95.82 ± 1.35 | |||
Hydrocarbon monoterpenes | 4.86 ± 0.02 | |||
Oxygenated monoterpenes | 3.33 ± 0.10 | |||
Hydrocarbon sesquiterpenes | 44.33 ± 0.62 | |||
Oxygenated sesquiterpenes | 41.61 ± 0.64 |
No | Proposed Identity | TR (min) | HRMS (m/z) | MF | HRMS/MS (m/z) | Sample | Ref. |
---|---|---|---|---|---|---|---|
1 | Cannabichromanonic acid | 4.1 | 377.1974 | C21H28O6 | 301.1463, 283.1369, 273.1480, 255.1386, 245.1524 | HTE, HSE | [29] |
2 | Cannabielsoic acid | 5.2 | 375.2153 | C22H30O5 | 357.2051, 339.1941, 297.1521, 275.1269, 245.1509, 233.1140, 219.0995, 207.1004 | HTE, HSE, HWE | [29,30] |
3 | Cannabinodiolic acid | 5.9 | 355.1892 | C22H26O4 | 323.1605, 313.1776, 299.1625, 273.1465, 253.0850, 239.1048, 225.0896, 211.0977, 197.0944, 187.0741 | HTE, HSE, HWE | [29,30,32] |
4 | Cannabitriolic acid | 7.0 | 391.2091 | C22H30O6 | 301.1454, 283.1310, 273.1460, 255.1353, 245.1510, 235.0933, 217.0834 | HTE, HSE, HWE | [29] |
5 | Cannabidivarinic acid * | 8.2 | 331.1893 | C20H26O4 | 313,1781, 295.0933, 273.1487, 255.1346, 215.1534, 193.1198, 173.0941, 145.0996, 141.0894 | HTE, HSE, HWE | [29,30,32] |
6 | Cannabitriol | 10.2 | 347.2195 | C21H30O4 | 291.1574, 271.1515, 245.1521, 231.1353, 217.1195, 207.1053, 201.0889, 193.1195 | HTE, HSE, HWE | [29,30] |
7 | Cannabinodiol | 11.6 | 311.1995 | C21H26O2 | 281.1500, 231.1358, 225.0907, 217, 1210, 213.0901, 199.0744, 193.1200, 173.0945, 165.0893, 145.0978 | HTE, HSE, HWE | [29,30] |
8 | Epoxycannabigerol | 12.7 | 333.2339 | C21H32O3 | 273.1846, 259.1678, 247.1653, 193.1203, 177.1216, 135.1143, 123.0422 | HTE, HSE, HWE | [29,30] |
9 | Cannabidivarin * | 13.9 | 287.2002 | C19H26O2 | 231.1375, 219.136, 203.1074, 189.0911, 179.059, 165.0907, 123.0439 | HTE, HSE, HWE | [29,30,31] |
10 | Cannabielsoin | 15.3 | 331.2249 | C21H30O3 | 271.1670, 231.1360, 193.1204, 135.0426, 109.1000 | HTE, HSE, HWE | [29,30,31] |
11 | Δ9/Δ8-Tetrahydrocannabinolic acid | 16.5 | 345.2059 | C21H28O4 | 327.1949, 297.1498, 285.1515, 268.1521, 229.0866, 211.0762, 197.0623 | HTE, HSE, HWE | [29,30,31,32] |
12 | Hydroxycannabinol | 18.2 | 327.1978 | C21H26O3 | 313.2111, 287.1663, 271.1692, 259.1686, 247.1362, 231.1355, 211.0768, 201.0899, 193.1208 | HTE, HSE, HWE | [30] |
13 | Cannabicoumaronic acid | 20.6 | 373.1988 | C22H28O5 | 299.1685, 273.1462, 233.1158, 193.1122, 183.0999, 147.0787, 127.0376 | HTE, HSE | [29] |
14 | Cannabidiolic acid * | 21.5 | 359.2201 | C22H30O4 | 341.2096, 299.1638, 285.1469, 273.1474, 261.1467, 233.1159, 219.1001 | HTE, HSE, HWE | [29,30,32] |
15 | Cannabidiol * | 22.6 | 315.2311 | C21H30O2 | 273.1825, 259.1677, 247.1676, 231.1373, 217.1209, 207.21363, 193.1209, 177.1189, 165.0901, 151.0744, 137.0588, 135.1155, 123.0424, 107.0844 | HTE, HSE, HWE | [29,30,31,32] |
16 | Cannabinol * | 26.1 | 311.2001 | C21H26O2 | 273.1866, 259.1670, 241.1544, 231.1374, 217.1217, 193.1213, 135.1154, 123.0433, 107.0848 | HTE, HSE, HWE | [29,30,31,32] |
17 | Dehydrocannabifuran | 29.7 | 309.1829 | C21H24O2 | 294.1607, 281.1576, 253.1205, 238.0974, 235.1106, 225.1198 | HTE, HSE | [29,30] |
18 | Δ9/Δ8-Tetrahydrocannabinol * | 32.2 | 315.2304 | C21H30O2 | 273.1844, 259.1680, 247.1673, 231.1377, 217.125, 207.1355, 193.1211, 135.1158, 123.0433, 107.847 | HTE, HSE, HWE | [29,30,31,32] |
19 | Cannabicoumaronone | 33.3 | 329.2095 | C21H28O3 | 287.1522, 273.1444, 259.1655, 247.1320, 229.0827, 209.1138, 153.0543 | HTE, HSE | [30] |
20 | Cannabicyclol * | 38.1 | 315.2308 | C21H30O2 | 273.1792, 259.1681, 247.1697, 233.1519, 217.1224, 207.1359, 193.1208, 177.1217, 135.1160, 123.0431 | HTE, HSE, HWE | [29,30,31] |
21 | Cannabichromene * | 39.1 | 315.2316 | C21H30O2 | 259.1659, 247.1670, 231.1372, 217.1351, 193.1193, 177.1175, 165.0884, 151.0731, 135.1141, 123.0420 | HTE, HSE | [29,30,31] |
Sample | HTE | HSE | HWE |
---|---|---|---|
Cannabinoid | wt.% | ||
Cannabidivarinic acid | – | – | – |
Cannabidivarin | 0.35 ± 0.01 a | 0.21 ± 0.05 b | 0.02 ± 0.00 c |
Cannabidiolic acid | 1.11 ± 0.01 a | 0.06 ± 00 b | 0.01 ± 0.00 c |
Cannabigerolic acid | – | – | – |
Cannabigerol | 0.07 ± 0.00 a | 0.38 ± 0.00 b | 0.01 ± 0.00 c |
Cannabidiol | 7.02 ± 0.02 a | 15.93 ± 0.02 b | 0.76 ± 0.00 c |
Tetrahydrocannabivarin | 0.11 ± 0.00 a | 0.02 ± 0.00 b | - |
Cannabinol | 0.54 ± 0.02 a | 0.55 ± 0.01 a | 0.04 ± 0.00 b |
Δ9-Tetrahydrocannabinol | 0.25 ± 0.02 a | 0.29 ± 0.01 b | 0.01 ± 0.00 c |
Δ8-Tetrahydrocannabinol | 0.23 ± 0.01 a | 0.02 ± 0.00 b | - |
Cannabicyclol | 0.02 ± 0.00 a | 0.06 ± 0.00 b | 0.01 ± 0.00 c |
Cannabichromene | 0.02 ± 0.00 a | 0.02 ± 0.00 a | - |
Δ9-Tetrahydrocannabinolic acid | 0.03 ± 0.00 a | 0.02 ± 0.00 b | - |
Sample | HTE | HSE | HWE |
---|---|---|---|
Fatty acid | wt.% | ||
Myristic acid (C14:0) | 0.09 ± 0.00 a | 0.17 ± 0.01 b | - |
Palmitic acid (C16:0) | 0.88 ± 0.03 a | 0.86 ± 0.01 a | 0.03 ± 0.01 b |
Stearic acid (C18:0) | 0.09 ± 0.00 a | 0.10 ± 0.00 b | - |
Oleic acid (C18:1) | 0.29 ± 0.01 a | 0.36 ± 0.01 b | - |
Linoleic acid (C18:2) | 1.52 ± 0.08 a | 1.75 ± 0.07 b | 0.03 ± 0.01 c |
Linolenic acid (C18:3) | 1.39 ± 0.08 a | 1.26 ± 0.09 a | 0.14 ± 0.00 b |
Arachidic acid (C20:1) | 0.58 ± 0.02 a | 0.89 ± 0.03 b | - |
Behenic acid (C22:0) | 0.13 ± 0.01 a | 0.20 ± 0.02 b | - |
Extract | HEO | HSE | HTE | HWE | Antibiotics |
---|---|---|---|---|---|
Microorganism | MIC [mg/L] | ||||
Gram-positive bacteria | |||||
Staphylococcus aureus | 62.5 a | 0.98 b | 0.98 b | 31.3 c | 0.98 # |
Staphylococcus aureus * | 1000 a | 3.9 b | 3.9 b | 125 c | 0.98 # |
Staphylococcus epidermidis | 1000 a | 3.9 b | 3.9 b | 125 c | 0.12 # |
Micrococcus luteus | 15.6 a | 1.95 b | 3.9 c | 62.5 d | 1.95 # |
Enterococcus faecalis | 2000 a | 7.8 b | 7.8 b | 250 c | 0.24 # |
Bacillus cereus | 500 a | 1.95 b | 3.9 c | 62.5 d | 0.98 # |
Streptococcus pneumoniae | 125 a | 31.3 b | 62.5 c | 62.5 c | 0.24 # |
Streptococcus pyogenes | 250 a | 31.3 b | 62.5 c | 1000 d | 0.24 # |
Streptococcus mutans | 250 a | 125 b | 125 b | 2000 c | 0.98 # |
Gram-negative bacteria | |||||
Helicobacter pylori | 15.6 a | 7.8 b | 7.8 b | 62.5 c | 0.98 $ |
Salmonella Typhimurium | >2000 | >2000 | >2000 | >2000 | 0.06 § |
Escherichia coli | >2000 | >2000 | >2000 | >2000 | 0.02 § |
Proteus mirabilis | >2000 | >2000 | >2000 | >2000 | 0.03 § |
Klebsiella pneumoniae | >2000 | >2000 | >2000 | >2000 | 0.12 § |
Pseudomonas aeruginosa | >2000 | >2000 | >2000 | >2000 | 0.49 § |
Yeasts | |||||
Candida albicans | 1000 a | 2000 b | 250 c | >2000 | 0.49 ß |
Candida parapsilosis | 500 a | 2000 b | 250 c | 2000 b | 0.24 ß |
Candida glabrata | 500 a | >2000 | 250 b | >2000 | 0.24 ß |
Trichophyton rubrum | 125 a | 125 a | 31.3 b | 1000 c | 0.0049 & |
Trichophyton mentagrophytes | 125 a | 31.3 b | 31.3 b | 250 c | 0.0012 & |
Compound | CBG | CBD | CBN | CBC | Antibiotics |
---|---|---|---|---|---|
Microorganism | MIC [mg/L] | ||||
Gram-positive bacteria | |||||
Staphylococcus aureus | 1.95 a | 0.49 b | 1.95 a | 3.95 c | 0.98 # |
Staphylococcus aureus * | 1.95 a | 1.95 a | 1.95 a | 15.6 b | 0.98 # |
Staphylococcus epidermidis | 1.95 a | 1.95 a | 1.95 a | 1.95 a | 0.12 # |
Micrococcus luteus | 1.95 a | 0.98 b | 0.98 b | 0.98 b | 1.95 # |
Enterococcus faecalis | 3.9 a | 1.95 b | 1.95 b | 0.98 c | 0.24 # |
Bacillus cereus | 1.95 a | 0.98 b | 1.95 a | 7.8 c | 0.98 # |
Streptococcus pneumoniae | 31.3 a | 31.3 a | 62.5 b | 62.5 b | 0.24 # |
Streptococcus pyogenes | 31.3 a | 31.3 a | 62.5 b | 62.5 b | 0.24 # |
Streptococcus mutans | 31.3 a | 31.3 a | 62.5 b | 62.5 b | 0.98 # |
Gram-negative bacteria | |||||
Helicobacter pylori | 0.49 a | 0.98 b | 0.98 b | 15.6 c | 0.98 $ |
Salmonella Typhimurium | >2000 | >2000 | >2000 | >2000 | 0.06 § |
Escherichia coli | >2000 | >2000 | >2000 | >2000 | 0.02 § |
Proteus mirabilis | >2000 | >2000 | >2000 | >2000 | 0.03 § |
Klebsiella pneumoniae | >2000 | >2000 | >2000 | >2000 | 0.12 § |
Pseudomonas aeruginosa | >2000 | >2000 | >2000 | >2000 | 0.49 § |
Yeasts | |||||
Candida albicans | 500 a | 500 a | 1000 b | 500 a | 0.49 ß |
Candida parapsilosis | 1000 a | 1000 a | 1000 a | 500 b | 0.24 ß |
Candida glabrata | 250 a | 1000 b | 1000 b | 1000 b | 0.24 ß |
Trichophyton rubrum | 1000 a | 1000 a | 1000 a | 1000 a | 0.0049 & |
Trichophyton mentagrophytes | 1000 a | 1000 a | 1000 a | 1000 a | 0.0012 & |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luca, S.V.; Wojtanowski, K.; Korona-Głowniak, I.; Skalicka-Woźniak, K.; Minceva, M.; Trifan, A. Spent Material Extractives from Hemp Hydrodistillation as an Underexplored Source of Antimicrobial Cannabinoids. Antibiotics 2024, 13, 485. https://doi.org/10.3390/antibiotics13060485
Luca SV, Wojtanowski K, Korona-Głowniak I, Skalicka-Woźniak K, Minceva M, Trifan A. Spent Material Extractives from Hemp Hydrodistillation as an Underexplored Source of Antimicrobial Cannabinoids. Antibiotics. 2024; 13(6):485. https://doi.org/10.3390/antibiotics13060485
Chicago/Turabian StyleLuca, Simon Vlad, Krzysztof Wojtanowski, Izabela Korona-Głowniak, Krystyna Skalicka-Woźniak, Mirjana Minceva, and Adriana Trifan. 2024. "Spent Material Extractives from Hemp Hydrodistillation as an Underexplored Source of Antimicrobial Cannabinoids" Antibiotics 13, no. 6: 485. https://doi.org/10.3390/antibiotics13060485
APA StyleLuca, S. V., Wojtanowski, K., Korona-Głowniak, I., Skalicka-Woźniak, K., Minceva, M., & Trifan, A. (2024). Spent Material Extractives from Hemp Hydrodistillation as an Underexplored Source of Antimicrobial Cannabinoids. Antibiotics, 13(6), 485. https://doi.org/10.3390/antibiotics13060485