The Antimicrobial Peptide Capitellacin: Chemical Synthesis of Analogues to Probe the Role of Disulphide Bridges and Their Replacement with Vinyl Sulphides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Disulphide Library Design
2.2. Synthesis of Linear and Disulphide Analogues 3–6
2.3. Biological Investigation of Analogues 1, 3–6
2.4. Circular Dichroism Investigation of Analogues 1, 3–6
2.5. Vinyl Sulphide Library Design
2.6. Synthesis of Vinyl Sulphide Analogues 7–11
2.7. Biological Investigation of Analogues 7–11
2.8. Circular Dichroism Investigation of Analogues 7–11
3. Material and Methods
3.1. General Information
3.2. Peptide Synthesis
3.3. MIC (Minimum Inhibitory Concentration) Assay—Bacteria
3.4. MIC (Minimum Inhibitory Concentration) Assay—Fungus
3.5. Circular Dichroism (CD)
3.6. NMR Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; ISBN 978-92-4-156474-8. [Google Scholar]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Krieger, J.; Li, D.; Papanikolaou, D. Missing Novelty in Drug Development*. Rev. Financ. Stud. 2022, 35, 636–679. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Haney, E.F.; Gill, E.E. The Immunology of Host Defence Peptides: Beyond Antimicrobial Activity. Nat. Rev. Immunol. 2016, 16, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Teixeira, C.; Gomes, P.; Martins, M.C.L. Clinical Application of AMPs. In Antimicrobial Peptides: Basics for Clinical Application; Matsuzaki, K., Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2019; pp. 281–298. ISBN 9789811335884. [Google Scholar]
- Falanga, A.; Lombardi, L.; Franci, G.; Vitiello, M.; Iovene, M.R.; Morelli, G.; Galdiero, M.; Galdiero, S. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria. Int. J. Mol. Sci. 2016, 17, 785. [Google Scholar] [CrossRef] [PubMed]
- Otero-Gonzáiez, A.J.; Magalhães, B.S.; Garcia-Villarino, M.; López-Abarrategui, C.; Sousa, D.A.; Dias, S.C.; Franco, O.L. Antimicrobial Peptides from Marine Invertebrates as a New Frontier for Microbial Infection Control. FASEB J. 2010, 24, 1320–1334. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, B.J.; BüLLESBACH, E.E.; Fievet, J.; Bachère, E.; Gross, P.S. A New Class (Penaeidin Class 4) of Antimicrobial Peptides from the Atlantic White Shrimp (Litopenaeus setiferus) Exhibits Target Specificity and an Independent Proline-Rich-Domain Function. Biochem. J. 2004, 381, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikova, T.V.; Shenkarev, Z.O.; Nadezhdin, K.D.; Balandin, S.V.; Zhmak, M.N.; Kudelina, I.A.; Finkina, E.I.; Kokryakov, V.N.; Arseniev, A.S. Recombinant Expression, Synthesis, Purification, and Solution Structure of Arenicin. Biochem. Biophys. Res. Commun. 2007, 360, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Sperstad, S.V.; Haug, T.; Blencke, H.-M.; Styrvold, O.B.; Li, C.; Stensvåg, K. Antimicrobial Peptides from Marine Invertebrates: Challenges and Perspectives in Marine Antimicrobial Peptide Discovery. Biotechnol. Adv. 2011, 29, 519–530. [Google Scholar] [CrossRef]
- Yao, T.; Lu, J.; Ye, L.; Wang, J. Molecular Characterization and Immune Analysis of a Defensin from Small Abalone, Haliotis diversicolor. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2019, 235, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Panteleev, P.V.; Tsarev, A.V.; Safronova, V.N.; Reznikova, O.V.; Bolosov, I.A.; Sychev, S.V.; Shenkarev, Z.O.; Ovchinnikova, T.V. Structure Elucidation and Functional Studies of a Novel β-Hairpin Antimicrobial Peptide from the Marine Polychaeta Capitella teleta. Mar. Drugs 2020, 18, 620. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Furunaka, H.; Miyata, T.; Tokunaga, F.; Muta, T.; Iwanaga, S.; Niwa, M.; Takao, T.; Shimonishi, Y. Tachyplesin, a Class of Antimicrobial Peptide from the Hemocytes of the Horseshoe Crab (Tachypleus tridentatus). Isolation and Chemical Structure. J. Biol. Chem. 1988, 263, 16709–16713. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, D.V.; Emelianova, A.A.; Kalashnikova, M.B.; Panteleev, P.V.; Balandin, S.V.; Serebrovskaya, E.O.; Belogurova-Ovchinnikova, O.Y.; Ovchinnikova, T.V. Comparative in Vitro Study on Cytotoxicity of Recombinant β-Hairpin Peptides. Chem. Biol. Drug Des. 2018, 91, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Shepperson, O.A.; Hanna, C.C.; Brimble, M.A.; Harris, P.W.R.; Cameron, A.J. Total Synthesis of Novel Antimicrobial β-Hairpin Capitellacin via Rapid Flow-Based SPPS Assembly and Regioselective On-Resin Disulfide Cyclisation. Int. J. Pept. Res. Ther. 2021, 28, 32. [Google Scholar] [CrossRef]
- Safronova, V.N.; Panteleev, P.V.; Sukhanov, S.V.; Toropygin, I.Y.; Bolosov, I.A.; Ovchinnikova, T.V. Mechanism of Action and Therapeutic Potential of the β-Hairpin Antimicrobial Peptide Capitellacin from the Marine Polychaeta Capitella teleta. Mar. Drugs 2022, 20, 167. [Google Scholar] [CrossRef] [PubMed]
- Mironov, P.A.; Paramonov, A.S.; Reznikova, O.V.; Safronova, V.N.; Panteleev, P.V.; Bolosov, I.A.; Ovchinnikova, T.V.; Shenkarev, Z.O. Dimerization of the β-Hairpin Membrane-Active Cationic Antimicrobial Peptide Capitellacin from Marine Polychaeta: An NMR Structural and Thermodynamic Study. Biomolecules 2024, 14, 332. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, K.; Nakayama, M.; Fukui, M.; Otaka, A.; Funakoshi, S.; Fujii, N.; Bessho, K.; Miyajima, K. Role of Disulfide Linkages in Tachyplesin-Lipid Interactions. Biochemistry 1993, 32, 11704–11710. [Google Scholar] [CrossRef]
- Yonezawa, A.; Kuwahara, J.; Fujii, N.; Sugiura, Y. Binding of Tachyplesin I to DNA Revealed by Footprinting Analysis: Significant Contribution of Secondary Structure to DNA Binding and Implication for Biological Action. Biochemistry 1992, 31, 2998–3004. [Google Scholar] [CrossRef]
- Ramamoorthy, A.; Thennarasu, S.; Tan, A.; Gottipati, K.; Sreekumar, S.; Heyl, D.L.; An, F.Y.P.; Shelburne, C.E. Deletion of All Cysteines in Tachyplesin I Abolishes Hemolytic Activity and Retains Antimicrobial Activity and Lipopolysaccharide Selective Binding. Biochemistry 2006, 45, 6529–6540. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.J.; Park, Y.A.; Kanneganti, N.P.; Mukkisa, H.R.; Crisman, L.L.; Davis, S.E.; Vandenbosch, J.L.; Scaglione, J.B.; Heyl, D.L. Modified Cysteine-Deleted Tachyplesin (CDT) Analogs as Linear Antimicrobial Peptides: Influence of Chain Length, Positive Charge, and Hydrophobicity on Antimicrobial and Hemolytic Activity. Int. J. Pept. Res. Ther. 2014, 20, 519–530. [Google Scholar] [CrossRef]
- Yang, N.; Liu, X.; Teng, D.; Li, Z.; Wang, X.; Mao, R.; Wang, X.; Hao, Y.; Wang, J. Antibacterial and Detoxifying Activity of NZ17074 Analogues with Multi-Layers of Selective Antimicrobial Actions against Escherichia coli and Salmonella enteritidis. Sci. Rep. 2017, 7, 3392. [Google Scholar] [CrossRef]
- Hoegenhaug, K.H.; Mygind, P.H.; Kruse, T.; Segura, D.R.; Sandvang, D.H.; Neve, S. Antimicrobial Peptide Variants and Polynucleotides Encoding Same. U.S. Patent US8835604B2, 16 September 2014. [Google Scholar]
- Fázio, M.A.; Oliveira, V.X.; Bulet, P.; Miranda, M.T.M.; Daffre, S.; Miranda, A. Structure–Activity Relationship Studies of Gomesin: Importance of the Disulfide Bridges for Conformation, Bioactivities, and Serum Stability. Pept. Sci. 2006, 84, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Holland-Nell, K.; Meldal, M. Maintaining Biological Activity by Using Triazoles as Disufide Bond Mimetics. Angew. Chem. Int. Ed. 2011, 50, 5204–5206. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Xing, B.; Loh, T.-P. Allenamides as Orthogonal Handles for Selective Modification of Cysteine in Peptides and Proteins. Angew. Chem. Int. Ed. 2014, 53, 7491–7494. [Google Scholar] [CrossRef] [PubMed]
- Brimble, M.A.; Cameron, A.J.; Harris, P.W. On-Resin Preparation of Allenamidyl Peptides: A Versatile Chemoselective Conjugation and Intramolecular Cyclisation Tool. Angew. Chem. Int. Ed. 2020, 132, 18210–18217. [Google Scholar]
- Muttenthaler, M.; Andersson, A.; de Araujo, A.D.; Dekan, Z.; Lewis, R.J.; Alewood, P.F. Modulating Oxytocin Activity and Plasma Stability by Disulfide Bond Engineering. J. Med. Chem. 2010, 53, 8585–8596. [Google Scholar] [CrossRef] [PubMed]
- Kourra, C.M.B.; Cramer, N. Converting Disulfide Bridges in Native Peptides to Stable Methylene Thioacetals. Chem. Sci. 2016, 7, 7007–7012. [Google Scholar] [CrossRef] [PubMed]
- Szijj, P.A.; Bahou, C.; Chudasama, V. Minireview: Addressing the Retro-Michael Instability of Maleimide Bioconjugates. Drug Discov. Today Technol. 2018, 30, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Pedzisa, L.; Li, X.; Rader, C.; Roush, W.R. Assessment of Reagents for Selenocysteine Conjugation and the Stability of Selenocysteine Adducts. Org. Biomol. Chem. 2016, 14, 5141–5147. [Google Scholar] [CrossRef] [PubMed]
- Fehlbaum, P.; Bulet, P.; Chernysh, S.; Briand, J.P.; Roussel, J.P.; Letellier, L.; Hetru, C.; Hoffmann, J.A. Structure-Activity Analysis of Thanatin, a 21-Residue Inducible Insect Defense Peptide with Sequence Homology to Frog Skin Antimicrobial Peptides. Proc. Natl. Acad. Sci. USA 1996, 93, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- Vetterli, S.U.; Zerbe, K.; Müller, M.; Urfer, M.; Mondal, M.; Wang, S.-Y.; Moehle, K.; Zerbe, O.; Vitale, A.; Pessi, G.; et al. Thanatin Targets the Intermembrane Protein Complex Required for Lipopolysaccharide Transport in Escherichia coli. Sci. Adv. 2018, 4, eaau2634. [Google Scholar] [CrossRef] [PubMed]
- Henriques, S.T.; Peacock, H.; Benfield, A.H.; Wang, C.K.; Craik, D.J. Is the Mirror Image a True Reflection? Intrinsic Membrane Chirality Modulates Peptide Binding. J. Am. Chem. Soc. 2019, 141, 20460–20469. [Google Scholar] [CrossRef] [PubMed]
- Kamber, B.; Hartmann, A.; Eisler, K.; Riniker, B.; Rink, H.; Sieber, P.; Rittel, W. The Synthesis of Cystine Peptides by Iodine Oxidation of S-Trityl-Cysteine and S-Acetamidomethyl-Cysteine Peptides. Helv. Chim. Acta 1980, 63, 899–915. [Google Scholar] [CrossRef]
- Edwards, I.A.; Elliott, A.G.; Kavanagh, A.M.; Blaskovich, M.A.T.; Cooper, M.A. Structure–Activity and −Toxicity Relationships of the Antimicrobial Peptide Tachyplesin-1. ACS Infect. Dis. 2017, 3, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Harwig, S.S.L.; Waring, A.; Yang, H.J.; Cho, Y.; Tan, L.; Lehrer, R.I. Intramolecular Disulfide Bonds Enhance the Antimicrobial and Lytic Activities of Protegrins at Physiological Sodium Chloride Concentrations. Eur. J. Biochem. 1996, 240, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Alvarado, M.; Blanco, F.J.; Serrano, L. De Novo Design and Structural Analysis of a Model β-Hairpin Peptide System. Nat. Struct. Biol. 1996, 3, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.W.; Kallenbach, N.R. Stabilization of the Ribonuclease S-Peptide α-Helix by Trifluoroethanol. Proteins Struct. Funct. Bioinform. 1986, 1, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Brahms, S.; Brahms, J. Determination of Protein Secondary Structure in Solution by Vacuum Ultraviolet Circular Dichroism. J. Mol. Biol. 1980, 138, 149–178. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to Study Proteins by Circular Dichroism. Biochim. Biophys. Acta BBA–Proteins Proteom. 2005, 1751, 119–139. [Google Scholar] [CrossRef] [PubMed]
- Alsina, J.; Albericio, F. Solid-Phase Synthesis of C-Terminal Modified Peptides. Pept. Sci. 2003, 71, 454–477. [Google Scholar] [CrossRef] [PubMed]
- Gras-Masse, H.S.; Jolivet, M.E.; Audibert, F.M.; Beachey, E.H.; Chedid, L.A.; Tartar, A.L. Influence of CONH2 or COOH as C-Terminus Groups on the Antigenic Characters of Immunogenic Peptides. Mol. Immunol. 1986, 23, 1391–1395. [Google Scholar] [CrossRef] [PubMed]
- Schwyzer, R. Peptide–Membrane Interactions and a New Principle in Quantitative Structure–Activity Relationships. Biopolymers 1991, 31, 785–792. [Google Scholar] [CrossRef] [PubMed]
- De Franceschi, I.; Mertens, C.; Badi, N.; Du Prez, F. Uniform Soluble Support for the Large-Scale Synthesis of Sequence-Defined Macromolecules. Polym. Chem. 2022, 13, 5616–5624. [Google Scholar] [CrossRef]
- Simon, M.D.; Heider, P.L.; Adamo, A.; Vinogradov, A.A.; Mong, S.K.; Li, X.; Berger, T.; Policarpo, R.L.; Zhang, C.; Zou, Y.; et al. Rapid Flow-Based Peptide Synthesis. ChemBioChem 2014, 15, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.R.; Lakusta, J.; Lundgren, R.J.; Derda, R. Allene Functionalized Azobenzene Linker Enables Rapid and Light-Responsive Peptide Macrocyclization. Bioconjug. Chem. 2016, 27, 509–514. [Google Scholar] [CrossRef]
- Hwang, T.L.; Shaka, A.J. Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients. J. Magn. Reson. Ser. A 1995, 112, 275–279. [Google Scholar] [CrossRef]
- Augustyns, K.; Kraas, W.; Jung, G. Investigation on the Stability of the Dde Protecting Group Used in Peptide Synthesis: Migration to an Unprotected Lysine1. J. Pept. Res. 1998, 51, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, J.E. Rules for Ring Closure. J. Chem. Soc. Chem. Commun. 1976, 18, 734–736. [Google Scholar] [CrossRef]
- Abdel Monaim, S.A.H.; Ramchuran, E.J.; El-Faham, A.; Albericio, F.; de la Torre, B.G. Converting Teixobactin into a Cationic Antimicrobial Peptide (AMP). J. Med. Chem. 2017, 60, 7476–7482. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.-K.; Guo, Y.; He, Y.; Wang, F.-L.; Chang, H.-N.; Wang, Y.-J.; Wu, F.-M.; Tian, C.-L.; Liu, L. Diaminodiacid-Based Solid-Phase Synthesis of Peptide Disulfide Bond Mimics. Angew. Chem. Int. Ed. 2013, 52, 9558–9562. [Google Scholar] [CrossRef] [PubMed]
- Edwards, I.A.; Elliott, A.G.; Kavanagh, A.M.; Zuegg, J.; Blaskovich, M.A.T.; Cooper, M.A. Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides. ACS Infect. Dis. 2016, 2, 442. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yang, J.; Han, J.; Gao, L.; Liu, H.; Lu, Z.; Zhao, H.; Bie, X. Insights into the Antimicrobial Activity and Cytotoxicity of Engineered α-Helical Peptide Amphiphiles. J. Med. Chem. 2016, 59, 10946–10962. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement; CLSI Document M100-S16; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006. [Google Scholar]
- National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved standard-second edition M27-A2; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2002; Volume 22. [Google Scholar]
Minimum Inhibitory Concentrations (µM) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Compounds | |||||||||
1 (Recombinant) a | 1 (Synthetic) | 3 | 4 | 5 | 6 | PMB * | AMX * | AMB * | |
Gram positive | |||||||||
S. aureus ATCC 25913 | - | >64 | >64 | >64 | >64 | >64 | - | 2 | - |
S. aureus ATCC 25923 | 8 | - | - | - | - | - | - | - | - |
Gram negative | |||||||||
E. coli ATCC 25922 | 0.5 | 1 | 4 | >64 | 1 | 4 | 0.125 | - | - |
P. aeruginosa SVB-B9 T | - | 4 | 8 | >64 | 16 | 64 | 0.125 | - | - |
P. aeruginosa PAO1 | 2 | - | - | - | - | - | - | - | - |
Fungi | |||||||||
C. albicans SC5314 R | - | 64 | >64 | >64 | >64 | >64 | - | - | 1 |
Minimum Inhibitory Concentrations (µM) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compounds | ||||||||||
1 (Synthetic) | 5 (‘bullet’) | 7 (‘Lys5’) | 8 (‘Dap5’) | 9 (‘Lys18’) | 10 (‘Dap18’) | 11 (‘Lys18-d-Cys5’) | PMB * | AMX * | AMB * | |
Gram positive | ||||||||||
S. aureus ATCC 25913 | >64 | >64 | >64 | >64 | >64 | >64 | - | 2 | - | |
S. aureus ATCC 25923 | 8 | - | - | - | - | - | - | - | - | |
Gram negative | ||||||||||
E. coli ATCC 25922 | 1 | 1 | 8 | 8 | 4 | 8 | >64 | 0.125 | - | - |
P. aeruginosa SVB-B9 T | 4 | 16 | 32 | 32 | 32 | 32 | >64 | 0.125 | - | - |
P. aeruginosa PAO1 | 2 | - | - | - | - | - | - | - | - | |
Fungi | ||||||||||
C. albicans SC5314 R | 64 | >64 | >64 | >64 | >64 | >64 | >64 | - | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shepperson, O.A.; Harris, P.W.R.; Brimble, M.A.; Cameron, A.J. The Antimicrobial Peptide Capitellacin: Chemical Synthesis of Analogues to Probe the Role of Disulphide Bridges and Their Replacement with Vinyl Sulphides. Antibiotics 2024, 13, 615. https://doi.org/10.3390/antibiotics13070615
Shepperson OA, Harris PWR, Brimble MA, Cameron AJ. The Antimicrobial Peptide Capitellacin: Chemical Synthesis of Analogues to Probe the Role of Disulphide Bridges and Their Replacement with Vinyl Sulphides. Antibiotics. 2024; 13(7):615. https://doi.org/10.3390/antibiotics13070615
Chicago/Turabian StyleShepperson, Oscar A., Paul W. R. Harris, Margaret A. Brimble, and Alan J. Cameron. 2024. "The Antimicrobial Peptide Capitellacin: Chemical Synthesis of Analogues to Probe the Role of Disulphide Bridges and Their Replacement with Vinyl Sulphides" Antibiotics 13, no. 7: 615. https://doi.org/10.3390/antibiotics13070615
APA StyleShepperson, O. A., Harris, P. W. R., Brimble, M. A., & Cameron, A. J. (2024). The Antimicrobial Peptide Capitellacin: Chemical Synthesis of Analogues to Probe the Role of Disulphide Bridges and Their Replacement with Vinyl Sulphides. Antibiotics, 13(7), 615. https://doi.org/10.3390/antibiotics13070615