General Characteristics and Current State of Antibiotic Resistance in Pediatric Urinary Tract Infection—A Single Center Experience
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of Study Population (Age, Sex, Origin, Presence/Absence of CAKUT)
2.2. Number of UTIs
2.3. Types of Uropathogens
- Intercept (2.3): The log odds of the pathogen type being GNE vs. Fungous when all predictors are at their reference levels. The RRR is approximately 9.97, meaning that the developing UTI with uropathogens from the GNE group is about 10 times more likely than Fungous in the baseline scenario, and this is statistically significant (p-value = 0.0002);
- Age (0.01): The RRR of 1.01 indicates a negligible increase in the likelihood of developing UTI with a bacteria GNE group with increasing age. This effect is not statistically significant (p-value = 0.94);
- Sex—Female (−0.14): A small negative effect. The RRR of 0.874 indicates that females are slightly less likely to have GNE compared to males, but this is not statistically significant (p-value = 0.882);
- CAKUT-positive (−1.4): A large negative effect. The RRR of 0.25 indicates a large reduction in the likelihood of GNE for individuals with CAKUT, though this effect is not statistically significant (p-value = 0.136);
- Environment—Rural (−1.4): A large negative effect. The RRR of 0.25 suggests a lower likelihood of GNE in rural environments, but it is not statistically significant (p-value = 0.203);
- Patient effect (2.3): A substantial positive effect. The RRR of 9.97 indicates a very high likelihood of GNE associated with the random outcome given by the patient effect. This is statistically significant (p-value = 0.0002). If a child is to develop UTI, it would most probably have a GNE bacteria.
- Intercept (1.1): The log-odds of the pathogen type being GNP vs. Fungous when all predictors are at their reference levels. The RRR is about 3.00, which indicates a higher likelihood of developing GNP-UTI as a baseline scenario compared to fungal infection;
- Age (0.08): A positive effect. The RRR of 1.079 indicates a slight increase in the likelihood of developing a GNP-UTI with age. This effect is not statistically significant (p-value = 0.403);
- Sex—Female (−1.67): A large negative effect. The RRR of 0.19 indicates a significant reduction in the likelihood of developing GNP-UTI for females, but this effect is not statistically significant (p-value = 0.143);
- CAKUT-positive (−1.9): A large negative effect. The RRR of 0.15 indicates a reduction in the likelihood of GNP for individuals with CAKUT, though this effect is not statistically significant (p-value = 0.1749);
- Environment—Rural (−1.3): A large negative effect. The RRR of 0.273 suggests a lower likelihood of GNP in rural environments, but it is not statistically significant (p-value = 0.317);
- Patient effect (1.1): A positive effect. The RRR of 3.00 indicates a higher likelihood of GNP associated with the random patient effect. This is not statistically significant (p-value = 0.111).
- Intercept (1.3): The log odds of the pathogen type being GP vs. Fungous when all predictors are at their reference levels. The RRR is about 3.67, which is statistically significant (p-value = 0.049);
- Age (0.08): A positive effect. The RRR of 1.08 indicates a slight increase in the likelihood of developing GP-UTI with age. This effect is not statistically significant (p-value = 0.362);
- Sex—Female (0.03): A negligible effect. The RRR of 1.03 suggests little to no difference between females and males in the likelihood of GP, and this effect is not statistically significant (p-value = 0.973);
- CAKUT-positive (−1.2): A negative effect. The RRR of 0.30 indicates a significant reduction in the likelihood of GP for individuals with CAKUT, though this effect is not statistically significant (p-value = 0.266);
- Environment—Rural (−2.1): A large negative effect. The RRR of 0.12 suggests a much lower likelihood of GP in rural environments, but it is not statistically significant (p-value = 0.080);
- Patient effect (1.3): A positive effect. The RRR of 3.67 indicates a higher likelihood of GP associated with the random patient effect. This is significant (p-value = 0.049).
2.4. Uropathogens’ Antibiotic Resistance
3. Discussion
3.1. Baseline Characteristics of Study Population
3.2. Number of UTIs
3.3. Types of Uropathogens
3.4. Uropathogens’ Antibiotic Resistance
3.5. Limitations
4. Materials and Methods
4.1. Study Design
- Age between 0 months and 18 years;
- Positive urine culture during hospital admission.
4.2. Data Collection
4.3. Urine Sampling
- Gram-negative bacteria (GNE) belonging to the Enterobacteriaceae family, represented by E. coli, Klebsiella spp. (K. pneumoniae, K. oxytoca), Enterobacter spp. (E. aerogenes, E. cloacae), Proteus spp. (P. mirabilis), Citrobacter spp. (C. amalonaticus), Serratia spp. (S. marcescens), Raoultella spp. (R. ornithinolytica), and Morganella spp. (M. morganii);
- Gram-negative bacteria (GNP) belonging to Pseudomonas spp. (represented by P. aeruginosa, P. fluorescens), Stenotrophomonas spp. (S. maltophilia), and Ralstonia spp. (R. pickettii);
- Gram-positive bacteria (GP): Staphylococcus aureus, Streptococcus spp. (S. agalactiae), Enterococcus spp. (E. faecium), and Kocuria kristinae.
- Fungous: Candida albicans, Candida tropicalis.
4.4. Antimicrobial Susceptibility
4.5. Statistical Analysis
5. Conclusions
Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- A‘t Hoen, L.; Bogaert, G.; Radmayr, C.; Dogan, H.S.; Nijman, R.J.; Quaedackers, J.; Rawashdeh, Y.F.; Silay, M.S.; Tekgul, S.; Bhatt, N.R.; et al. Update of the EAU/ESPU guidelines on urinary tract infections in children. J. Pediatr. Urol. 2021, 17, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Deng, J.; Zhou, G.; Li, S.; Liu, G. Risk factors for recurrent urinary tract infection in children with neurogenic bladder following clean intermittent catheterization. Urology 2022, 164, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Tullus, K.; Shaikh, N. Urinary tract infections in children. Lancet 2020, 395, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.J.; Kennedy, W.A., II; Shortliffe, L.D. Urinary tract infection in children: When to worry. Urol. Clin. N. Am. 2010, 37, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.L.; Shortliffe, L.D. Pediatric urinary tract infections. Pediatr. Clin. N. Am. 2006, 53, 379–400. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.B.; Subcommittee on Urinary Tract Infection; Steering Committee on Quality Improvement and Management. Urinary tract infection: Clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics 2011, 128, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Duicu, C.; Cozea, I.; Delean, D.; Aldea, A.A.; Aldea, C. Antibiotic resistance patterns of urinary tract pathogens in children from Central Romania. Exp. Ther. Med. 2021, 22, 748. [Google Scholar] [CrossRef] [PubMed]
- Borcan, A.M.; Radu, G.; Simoiu, M.; Costea, E.L.; Rafila, A. A Five-Year Analysis of Antibiotic Resistance Trends among Bacteria Identified in Positive Urine Samples in a Tertiary Care Hospital from Bucharest, Romania. Antibiotics 2024, 13, 160. [Google Scholar] [CrossRef] [PubMed]
- Isac, R.; Basaca, D.G.; Olariu, I.C.; Stroescu, R.F.; Ardelean, A.M.; Steflea, R.M.; Gafencu, M.; Chirita-Emandi, A.; Bagiu, I.C.; Horhat, F.G.; et al. Antibiotic resistance patterns of uropathogens causing urinary tract infections in children with congenital anomalies of kidney and urinary tract. Children 2021, 8, 585. [Google Scholar] [CrossRef] [PubMed]
- Miron, V.D.; Filimon, C.; Cabel, T.; Mihăescu, R.I.; Bar, G.; Leu, D.; Craiu, M. Urinary tract infections in children: Clinical and antimicrobial resistance data from Bucharest area, Romania. Germs 2021, 11, 583. [Google Scholar] [CrossRef] [PubMed]
- Ionuț, P.R.; Cosmin, P.R.; Andrei, E.; Petrisor, G. Prevalence Spectrum and Antibiotic Resistance in Uncomplicated Urinary Tract Infections in Romanian Population: From Guideline to Clinical Practice. Rom. J. Urol. 2021, 20, 17. [Google Scholar]
- National Collaborating Centre for Women’s and Children’s Health. Urinary Tract Infection in Children: Diagnosis, Treatment and Long-Term Management. 2007. Available online: http://guidance.nice.org.uk/CG54 (accessed on 17 May 2024).
- Ammenti, A.; Alberici, I.; Brugnara, M.; Chimenz, R.; Guarino, S.; La Manna, A.; La Scola, C.; Maringhini, S.; Marra, G.; Materassi, M.; et al. Updated Italian recommendations for the diagnosis, treatment and follow-up of the first febrile urinary tract infection in young children. Acta Paediatr. 2020, 109, 236–247. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2015; Available online: https://www.who.int/antimicrobial-resistance/global-action-plan/en/ (accessed on 19 June 2024).
- Versporten, A.; Bielicki, J.; Drapier, N.; Sharland, M.; Goossens, H.; ARPEC Project Group; Calle, G.M.; Garrahan, J.P.; Clark, J.; Cooper, C.; et al. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: Developing hospital-quality indicators of antibiotic prescribing for children. J. Antimicrob. Chemother. 2016, 71, 1106–1117. [Google Scholar] [CrossRef]
- Zarb, P.; Goossens, H. European surveillance of antimicrobial consumption (ESAC) value of a point-prevalence survey of antimicrobial use across europe. Drugs 2011, 71, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Samanci, S.; Pinarbasi, A.S. Microbial etiology and antibiotic resistance in urinary tract infections in children; view from an area where antibiotics are overused. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 16. [Google Scholar]
- Shaikh, N.; Morone, N.E.; Bost, J.E.; Farrell, M.H. Prevalence of urinary tract infection in childhood: A meta-analysis. Pediatr. Infect. Dis. J. 2008, 27, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.; Dogan, H.S.; Hoebeke, P.; Kočvara, R.; Nijman, R.J.; Radmayr, C.; Tekgül, S.; European Association of Urology; European Society for Pediatric Urology. Urinary tract infections in children: EAU/ESPU guidelines. Eur. Urol. 2015, 67, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Deltourbe, L.; Mariano, L.L.; Hreha, T.N.; Hunstad, D.A.; Ingersoll, M.A. The impact of biological sex on diseases of the urinary tract. Mucosal Immunol. 2022, 15, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.; Westwood, M.; Watt, I.; Cooper, J.; Kleijnen, J. Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: A systematic review. BMC Pediatr. 2005, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Autore, G.; Bernardi, L.; Ghidini, F.; La Scola, C.; Berardi, A.; Biasucci, G.; Marchetti, F.; Pasini, A.; Capra, M.E.; Castellini, C.; et al. Antibiotic prophylaxis for the prevention of urinary tract infections in children: Guideline and recommendations from the Emilia-Romagna Pediatric Urinary Tract Infections (UTI-Ped-ER) study group. Antibiotics 2023, 12, 1040. [Google Scholar] [CrossRef] [PubMed]
- Miyakita, H.; Hayashi, Y.; Mitsui, T.; Okawada, M.; Kinoshita, Y.; Kimata, T.; Koikawa, Y.; Sakai, K.; Satoh, H.; Tokunaga, M.; et al. Guidelines for the medical management of pediatric vesicoureteral reflux. Int. J. Urol. 2020, 27, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Mattoo, T.K.; Shaikh, N.; Nelson, C.P. Contemporary Management of Urinary Tract Infection in Children. Pediatrics 2021, 147, e2020012138, Erratum in Pediatrics 2022, 150, e2022059259. [Google Scholar] [CrossRef] [PubMed]
- Alsaywid, B.S.; Alyami, F.A.; Alqarni, N.; Neel, K.F.; Almaddah, T.O.; Abdulhaq, N.M.; Alajmani, L.B.; Hindi, M.O.; Alshayie, M.A.; Alsufyani, H.; et al. Urinary tract infection in children: A narrative review of clinical practice guidelines. Urol. Ann. 2023, 15, 113–132. [Google Scholar] [PubMed]
- Montagnani, C.; Tersigni, C.; D’Arienzo, S.; Miftode, A.; Venturini, E.; Bortone, B.; Bianchi, L.; Chiappini, E.; Forni, S.; Gemmi, F.; et al. Resistance patterns from urine cultures in children aged 0 to 6 years: Implications for empirical antibiotic choice. Infect. Drug Resist. 2021, 23, 2341–2348. [Google Scholar] [CrossRef] [PubMed]
- Reza Mortazavi-Tabatabaei, S.; Ghaderkhani, J.; Nazari, A.; Sayehmiri, K.; Sayehmiri, F.; Pakzad, I. Pattern of antibacterial resistance in urinary tract infections: A systematic review and meta-analysis. Int. J. Prev. Med. 2019, 10, 169. [Google Scholar]
- Ladhani, S.; Gransden, W. Increasing antibiotic resistance among urinary tract isolates. Arch. Dis. Child. 2003, 88, 444–445. [Google Scholar] [CrossRef] [PubMed]
- Balighian, E.; Burke, M. Urinary Tract Infections in Children. Pediatr. Rev. 2018, 39, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Copp, H.L. Work-up of Pediatric Urinary Tract Infection. Urol. Clin. N. Am. 2015, 42, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.C. Urinary tract infections in children: Knowledge updates and a salute to the future. Pediatr. Rev. 2015, 36, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Baker, M.D. Racial and ethnic differences in the rates of urinary tract infections in febrile infants in the emergency department. Pediatr. Emerg. Care 2006, 22, 485–487. [Google Scholar] [CrossRef] [PubMed]
- Breinbjerg, A.; Jørgensen, C.S.; Frøkiær, J.; Tullus, K.; Kamperis, K.; Rittig, S. Risk factors for kidney scarring and vesicoureteral reflux in 421 children after their first acute pyelonephritis, and appraisal of international guidelines. Pediatr. Nephrol. 2021, 36, 2777–2787. [Google Scholar] [CrossRef] [PubMed]
- Autore, G.; Neglia, C.; Di Costanzo, M.; Ceccoli, M.; Vergine, G.; La Scola, C.; Malaventura, C.; Falcioni, A.; Iacono, A.; Crisafi, A.; et al. Clinical Outcome of Discordant Empirical Therapy and Risk Factors Associated to Treatment Failure in Children Hospitalized for Urinary Tract Infections. Children 2022, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.; Abram, T.B.; Megged, O. Impact of inadequate empirical antibiotic treatment on outcome of non-critically ill children with bacterial infections. BMC Pediatr. 2024, 24, 324. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, C.M.; Bryant, K.A.; Bosley, K.; Pharm, D. Therapeutics of Pediatric Urinary Tract Infections. Arch. Med. 2015, 7, 1–8. [Google Scholar]
- Bradley, J.S.; Jackson, M.A.; The Committee on Infectious Diseases. The Use of Systemic and Topical Fluoroquinolones. Pediatrics 2011, 128, e1034–e1045. [Google Scholar] [CrossRef] [PubMed]
- Parzen-Johnson, S.; Sun, S.; Scardina, T.; Patel, S.J. Fluoroquinolone Use Among Hospitalized Children: Diagnosis-Based Stratification to Identify Stewardship Targets. Open Forum Infect. Dis. 2023, 10, ofad297. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, G.M. Clinical pharmacology of fluoroquinolones in infants and children. World J. Clin. Med. Images 2023, 2, 30–39. [Google Scholar]
- Rusu, A.; Munteanu, A.-C.; Arbănași, E.-M.; Uivarosi, V. Overview of Side-Effects of Antibacterial Fluoroquinolones: New Drugs versus Old Drugs, a Step Forward in the Safety Profile? Pharmaceutics 2023, 15, 804. [Google Scholar] [CrossRef] [PubMed]
- Adefurin, A.; Sammons, H.; Jacqz-Aigrain, E.; Choonara, I. Ciprofloxacin safety in paediatrics: A systematic review. Arch. Dis. Child. 2011, 96, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Goroftei, L.; Matache, E.R.; Răileanu, C.R.; Peptine, L.; Ilie, L.; Mihalache, T.; Grigore, I.; Lisă, L.E.; Nechita, A.; Gurău, G.; et al. Antibiotic resistance in urinary tract infection in children. Tech. BioChemMed 2023, 4, 25–32. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Tekkanat Tazegun, Z.; Aydin, E.; Dulger, M. Bacterial uropathogens causing urinary tract infection and their resistance patterns among children in Turkey. Iran. Red Crescent Med. J. 2016, 18, e26610. [Google Scholar] [CrossRef] [PubMed]
- Meletis, G. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 2016, 3, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Y.; Chao, M.; Hao, Z. Prevalence, pathogenic bacterial profile and antimicrobial susceptibility pattern of urinary tract infection among children with congenital anomalies of the kidney and urinary tract. Infect. Drug Resist. 2023, 31, 4101–4112. [Google Scholar] [CrossRef]
- Kawalec, A.; Jozefiak, J.; Kilis-Pstrusinska, K. Urinary Tract Infection and Antimicrobial Resistance Patterns: 5-Year Experience in a Tertiary Pediatric Nephrology Center in the Southwestern Region of Poland. Antibiotics 2023, 12, 1454. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- RC Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2013. Available online: https://www.R-project.org/ (accessed on 17 May 2024).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. Available online: https://www.stats.ox.ac.uk/pub/MASS4/ (accessed on 17 May 2024).
Female | Male | p-Value | |||||
---|---|---|---|---|---|---|---|
N | Median | IQR | N | Median | IQR | ||
Age (years) | 81 | 5 | 12 | 60 | 2 | 7 | 0.03 *† |
Origin environment | 81 | 60 | |||||
Urban | 47 | 58.02% | 28 | 46.66% | |||
Rural | 34 | 41.97% | 32 | 53.33% | |||
UTI count | 81 | 1 | 0 | 60 | 1 | 1 | 0.40 ‡ |
Presence/Absence of CAKUT | 81 | 60 | |||||
No malformation | 72 | 88.88% | 51 | 85% | |||
CAKUT | 9 | 11.11% | 9 | 15% |
No Malformation | CAKUT | p-Value | |||||
---|---|---|---|---|---|---|---|
N | Median | IQR | N | Median | IQR | ||
Age (years) | 123 | 2 | 10 | 18 | 7 | 13 | 0.47 † |
Sex | 123 | 18 | |||||
Female | 72 | 58.53% | 9 | 50% | |||
Male | 51 | 41.46% | 9 | 50% | |||
Origin environment | 123 | 18 | |||||
Urban | 63 | 51.31% | 12 | 66.66% | |||
Rural | 60 | 48.78% | 6 | 33.33% | |||
UTI count | 123 | 1 | 1 | 18 | 1 | 0 | 0.24 ‡ |
UTI Count | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 12 |
Presence/absence of CAKUT No malformation CAKUT | 106 | 24 | 3 | 3 | 2 | 1 | 1 | 1 |
92 (86.79%) | 21 (87.5%) | 3 | 3 | 2 | 1 | - | 1 | |
14 (13.20%) | 3 (12.5%) | - | - | - | - | 1 | - | |
Sex Female Male | 106 | 24 | 3 | 3 | 2 | 1 | 1 | 1 |
64 (60.37%) | 12 | 2 | 2 | - | - | - | 1 | |
42 (39.62%) | 12 | 1 | 1 | 2 | 1 | 1 | - | |
Origin environment Urban Rural | 106 | 24 | 3 | 3 | 2 | 1 | 1 | 1 |
60 (56.60%) | 11 | 2 | 1 | 1 | - | - | - | |
46 (43.39%) | 13 | 1 | 2 | 1 | 1 | 1 | 1 |
No Malformation | CAKUT | Fisher’s Exact Test p-Value | |||
---|---|---|---|---|---|
N = 184 | % | N = 26 | % | ||
Fungous: Candida spp. | 4 | 2.17% | 2 | 7.69% | 0.16 |
GNE | 147 | 79.89% | 19 | 73.07% | |
E. Coli | 95 | 51.63% | 11 | 42.3% | 0.41 |
Klebsiella spp. | 33 | 22.44% | 4 | 15.38% | 1 |
Proteus spp. | 2 | 1.08% | - | - | 1 |
Enterobacter spp. | 12 | 6.52% | 1 | 3.84% | 1 |
M. morganii | 4 | 2.17% | - | - | 1 |
R. ornithinolytica | - | - | 2 | 7.69% | 0.01 * |
Citrobacter spp. | 1 | 0.54% | 1 | 3.84% | 0.23 |
GNP | 11 | 5.97% | 1 | 3.84% | |
Pseudomonas spp. | 9 | 4.89% | 1 | 3.84% | 1 |
S. maltophilia | 2 | 1.08% | - | - | 1 |
GP | 22 | 11.95% | 4 | 15.38% | |
Enterococcus spp. | 14 | 7.6% | 4 | 15.38% | 0.25 |
Staphylococcus spp. | 7 | 3.8% | - | - | 0.6 |
K. kristinae | 1 | 0.54% | - | - | 1 |
Category Predictor | Estimate | Standard Error | Relative Risk Ratio | Z-Value | p-Value |
---|---|---|---|---|---|
GNE | |||||
GNE Intercept | 2.30 | 0.62 | 9.97 | 3.71 | 0.0002 * |
GNE Age | 0.01 | 0.08 | 1.01 | 0.07 | 0.941 |
GNE Sex—Female | −0.14 | 0.91 | 0.87 | −0.15 | 0.882 |
GNE CAKUT-Positive | −1.40 | 0.94 | 0.25 | −1.49 | 0.136 |
GNE Environment—Rural | −1.40 | 1.10 | 0.25 | −1.27 | 0.203 |
GNE Patient Effect | 2.30 | 0.62 | 9.97 | 3.71 | 0.0002 * |
GNP | |||||
GNP Intercept | 1.10 | 0.69 | 3.00 | 1.59 | 0.111 |
GNP Age | 0.08 | 0.09 | 1.08 | 0.84 | 0.403 |
GNP Sex—Female | −1.67 | 1.14 | 0.19 | −1.46 | 0.143 |
GNP CAKUT-Positive | −1.90 | 1.40 | 0.15 | −1.36 | 0.175 |
GNP Environment—Rural | −1.30 | 1.30 | 0.27 | −1.00 | 0.317 |
GNP Patient Effect | 1.10 | 0.69 | 3.00 | 1.59 | 0.111 |
GP | |||||
GP Intercept | 1.30 | 0.66 | 3.67 | 1.97 | 0.049 * |
GP Age | 0.08 | 0.08 | 1.08 | 0.91 | 0.362 |
GP Sex—Female | 0.03 | 1.00 | 1.03 | 0.03 | 0.973 |
GP CAKUT-Positive | −1.20 | 1.08 | 0.30 | −1.11 | 0.266 |
GP Environment—Rural | −2.10 | 1.20 | 0.12 | −1.75 | 0.080 |
GP Patient Effect | 1.30 | 0.66 | 3.67 | 1.97 | 0.049 * |
Antibiotic | GNE Resistance | GNP Resistance | GP Resistance |
---|---|---|---|
Ampicillin | 78.47% | 100% | 33.33% |
Ampicillin/Sulbactam | 85.71% | - | - |
Amoxicillin | 100% | - | - |
Amoxicillin/Clavulanic Acid | 30.19% | - | 41.67% |
Oxacillin | - | - | 62.5% |
Meropenem | 5.77% | 8.33% | 0% |
Imipenem | 3.18% | 16.67% | - |
Ertapenem | 1.97% | 0% | |
Piperacillin/Tazobactam | 12.82% | 8.33% | 0% |
Ticarcillin/Clavulanic Acid | - | 12.5% | 0% |
Cefepime | 20.86% | 25% | - |
Cefotaxime | 34.65% | - | 50% |
Ceftazidime | 29.81% | 25% | 50% |
Ceftriaxone | 1.3% | - | - |
Gentamicin | 34.38% | 8.33% | 18.18% |
Amikacin | 2.4% | 8.33% | - |
Ciprofloxacin | 38.27% | 25% | 26.92% |
Levofloxacin | 2.06% | 100% | - |
Norfloxacin | 50% | ||
Clindamycin | - | - | 42.86% |
Erythromycin | - | - | 82.61% |
Nitrofurantoin | 18.59% | 100% | - |
Nalidixic acid | 33.33% | - | 30% |
Fosfomycin | 8.47% | 0% | - |
Trimethoprim/Sulphamethoxazole | 61.49% | 100% | - |
Vancomycin | - | - | 8.7% |
Linezolid | - | - | 4.17% |
Colistin | 50% | 0% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isac, R.; Doros, G.; Stolojanu, C.-A.; Steflea, R.M.; Stroescu, R.F.; Olariu, I.-C.; Micsescu-Olah, A.-M.; Gafencu, M. General Characteristics and Current State of Antibiotic Resistance in Pediatric Urinary Tract Infection—A Single Center Experience. Antibiotics 2024, 13, 684. https://doi.org/10.3390/antibiotics13080684
Isac R, Doros G, Stolojanu C-A, Steflea RM, Stroescu RF, Olariu I-C, Micsescu-Olah A-M, Gafencu M. General Characteristics and Current State of Antibiotic Resistance in Pediatric Urinary Tract Infection—A Single Center Experience. Antibiotics. 2024; 13(8):684. https://doi.org/10.3390/antibiotics13080684
Chicago/Turabian StyleIsac, Raluca, Gabriela Doros, Cristiana-Alexandra Stolojanu, Ruxandra Maria Steflea, Ramona Florina Stroescu, Ioana-Cristina Olariu, Andrada-Mara Micsescu-Olah, and Mihai Gafencu. 2024. "General Characteristics and Current State of Antibiotic Resistance in Pediatric Urinary Tract Infection—A Single Center Experience" Antibiotics 13, no. 8: 684. https://doi.org/10.3390/antibiotics13080684
APA StyleIsac, R., Doros, G., Stolojanu, C.-A., Steflea, R. M., Stroescu, R. F., Olariu, I.-C., Micsescu-Olah, A.-M., & Gafencu, M. (2024). General Characteristics and Current State of Antibiotic Resistance in Pediatric Urinary Tract Infection—A Single Center Experience. Antibiotics, 13(8), 684. https://doi.org/10.3390/antibiotics13080684