Development of Xanthoangelol-Derived Compounds with Membrane-Disrupting Effects against Gram-Positive Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro Antibacterial and Hemolytic Activity
2.3. Plasma Stability and Bactericidal Activity in Mammalian Fluids
2.4. In Vitro Cytotoxicity Evaluation
2.5. In Vitro Time-Kill Kinetics
2.6. Resistance Development Studies
2.7. Antibiofilm Activity Studies
2.8. Antimicrobial Mechanism Studies
2.8.1. Fluorescence and Electron Scanning Microscopy
2.8.2. Cytoplasmic Membrane Depolarization
2.8.3. Cell Membrane Permeabilization
2.8.4. Reactive Oxygen Species (ROS) Measurement
2.8.5. Leakage of DNA and Protein
3. Materials and Methods
3.1. Chemistry
3.1.1. 1-(5-Hydroxy-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-6-yl)ethan-1-one (3)
3.1.2. 1-(5-(3-Bromopropoxy)-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-6-yl)ethan-1-one (4)
3.1.3. General Procedure for the Preparation of 5a–5h
3-((6-Acetyl-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-5-yl)oxy)-N,N,N-triethylpropan-1-aminium (5a)
1-(5-(3-(Ethylamino)propoxy)-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-6-yl)ethan-1-one (5b)
1-(5-(3-(Diethylamino)propoxy)-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-6-yl)ethan-1-one(5c)
1-(5-(3-(2,6-Dimethylmorpholino)propoxy)-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-6-yl)ethan-1-one (5d)
1-(4-(3-((6-Acetyl-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-5-yl)oxy)propyl)piperazin-1-yl)ethan-1-one (5e)
1-(5-(3-((2-(Dimethylamino)ethyl)amino)propoxy)-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-6-yl)ethan-1-one (5f)
1-(5-(3-((3-(Dimethylamino)-2,2-dimethylpropyl)(methyl)amino)propoxy)-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-6-yl)ethan-1-one (5g)
1-(2-Methyl-2-(4-methylpent-3-en-1-yl)-5-(3-((3-(pyrrolidin-1-yl)propropoxy)-2H-chromen-6-yl)ethan-1-one (5h)
3.1.4. 1-(5-Hydroxy-2,8-dimethyl-2,8-bis(4-methylpent-3-en-1-yl)-2H,8H-pyrano[2,3-f]chromen-6-yl)ethan-1-one (7)
3.1.5. (E)-1-(5-(3-Bromopropoxy)-8-(4-methoxypent-3-en-1-yl)-2,8-dimethyl-2-(4-methylpent-3-en-1-yl)-2H,8H-pyrano[2,3-f]chromen-6-yl)ethan-1-one (8)
3.1.6. General Procedure for the Preparation of 9a–9h
3-((6-Acetyl-2,8-dimethyl-2,8-bis(4-methylpent-3-en-1-yl)-2H,8H-pyrano[2,3-f]chromen-5-yl)oxy)-N,N,N-triethylpropan-1-aminium (9a)
1-(3-((6-Acetyl-2,8-dimethyl-2,8-bis(4-methylpent-3-en-1-yl)-2H,8H-pyrano[2,3-f]chromen-5-yl)oxy)propyl)pyridin-1-ium (9b)
1-(5-(3-(Diethylamino)propoxy)-2,8-dimethyl-2,8-bis(4-methylpent-3-en-1-yl)-2H,8H-pyrano[2,3-f]chromen-6-yl)ethan-1-one (9c)
1-(5-(3-(2,6-Dimethylmorpholino)propoxy)-2,8-dimethyl-2,8-bis(4-methylpent-3-en-1-yl)-2H,8H-pyrano[2,3-f]chromen-6-yl)ethan-1-one (9d)
2-(3-((6-Acetyl-2,8-dimethyl-2,8-bis(4-methylpent-3-en-1-yl)-2H,8H-pyrano[2,3-f]chromen-5-yl)oxy)propyl)isothiouronium (9e)
1-(2,8-Dimethyl-5-(3-(methyl(2-(methylamino)ethyl)amino)propoxy)-2,8-bis(4-methylpent-3-en-1-yl)-2H,8H-pyrano[2,3-f]chromen-6-yl)ethan-1-one (9f)
1-(5-(3-((3-(Diethylamino)propyl)amino)propoxy)-2,8-dimethyl-2,8-bis(4-methylpent-3-en-1-yl)-2H,8H-pyrano[2,3-f]chromen-6-yl)ethan-1-one (9g)
1-(2,8-Dimethyl-2,8-bis(4-methylpent-3-en-1-yl)-5-(3-((3-(4-methylpiperazin-1-yl)propyl)amino)propoxy)-2H,8H-pyrano [2,3-f]chromen-6-yl)ethan-1-one (9h)
3.2. Biological Evaluation
3.2.1. In Vitro Antibacterial Activity Assay
3.2.2. Hemolysis Assay
3.2.3. Bactericidal Activity in Plasma and Complex Mammalian Fluids
3.2.4. Bactericidal Time-Kill Assay
3.2.5. Resistance Development Assay
3.2.6. Biofilm Inhibition and Disruption Assay
3.2.7. Membrane Depolarization Assay
3.2.8. Cell Membrane Permeabilization Assay
3.2.9. DAPI/PI Fluorescence Assay
3.2.10. Scanning Electron Microscopy (SEM)
3.2.11. ROS Assay
3.2.12. Protein and DNA Leakage Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nataraj, B.H.; Mallappa, R.H. Antibiotic Resistance Crisis: An Update on Antagonistic Interactions between Probiotics and Methicillin-Resistant Staphylococcus aureus (MRSA). Curr. Microbiol. 2021, 78, 2194–2211. [Google Scholar] [CrossRef] [PubMed]
- Lakemeyer, M.; Zhao, W.; Mandl, F.A.; Hammann, P.; Sieber, S.A. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew. Chem. (Int. Ed. Engl.) 2018, 57, 14440–14475. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.A.; Wright, G.D. The past, present, and future of antibiotics. Sci. Transl. Med. 2022, 14, eabo7793. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. The Science of Antibiotic Discovery. Cell 2020, 181, 29–45. [Google Scholar] [CrossRef]
- Windels, E.M.; Michiels, J.E.; Van den Bergh, B.; Fauvart, M.; Michiels, J. Antibiotics: Combatting Tolerance To Stop Resistance. mBio 2019, 10, e02095-19. [Google Scholar] [CrossRef]
- Aggarwal, R.; Mahajan, P.; Pandiya, S.; Bajaj, A.; Verma, S.K.; Yadav, P.; Kharat, A.S.; Khan, A.U.; Dua, M.; Johri, A.K. Antibiotic resistance: A global crisis, problems and solutions. Crit. Rev. Microbiol. 2024, 1–26. [Google Scholar] [CrossRef]
- Årdal, C.; Balasegaram, M.; Laxminarayan, R.; McAdams, D.; Outterson, K.; Rex, J.H.; Sumpradit, N. Antibiotic development—Economic, regulatory and societal challenges. Nat. Rev. Microbiol. 2020, 18, 267–274. [Google Scholar] [CrossRef]
- Liu, Y.; Li, R.; Xiao, X.; Wang, Z. Antibiotic adjuvants: An alternative approach to overcome multi-drug resistant Gram-negative bacteria. Crit. Rev. Microbiol. 2019, 45, 301–314. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Bragg, R.R.; Meyburgh, C.M.; Lee, J.Y.; Coetzee, M. Potential Treatment Options in a Post-antibiotic Era. Adv. Exp. Med. Biol. 2018, 1052, 51–61. [Google Scholar] [CrossRef]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919–3931. [Google Scholar] [PubMed]
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Lu, T.K. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications. Antibiotics 2020, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.; Black, D.S.; Walsh, W.R.; Kumar, N. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides. Int. J. Mol. Sci. 2020, 21, 7047. [Google Scholar] [CrossRef] [PubMed]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef] [PubMed]
- Koehbach, J.; Craik, D.J. The Vast Structural Diversity of Antimicrobial Peptides. Trends Pharmacol. Sci. 2019, 40, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Mahlapuu, M.; Björn, C.; Ekblom, J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol. 2020, 40, 978–992. [Google Scholar] [CrossRef] [PubMed]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front. Cell. Infect. Microbiol. 2021, 11, 668632. [Google Scholar] [CrossRef]
- Rima, M.; Rima, M.; Fajloun, Z.; Sabatier, J.M.; Bechinger, B.; Naas, T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics 2021, 10, 1095. [Google Scholar] [CrossRef]
- Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019, 39, 831–859. [Google Scholar] [CrossRef]
- Ciumac, D.; Gong, H.; Hu, X.; Lu, J.R. Membrane targeting cationic antimicrobial peptides. J. Colloid Interface Sci. 2019, 537, 163–185. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Y.; Song, Z.; Tan, Z.; Cheng, J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv. Drug Deliv. Rev. 2021, 170, 261–280. [Google Scholar] [CrossRef]
- Sierra, J.M.; Viñas, M. Future prospects for Antimicrobial peptide development: Peptidomimetics and antimicrobial combinations. Expert Opin. Drug Discov. 2021, 16, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Wade, J.D.; Liu, S. De Novo Design of Flavonoid-Based Mimetics of Cationic Antimicrobial Peptides: Discovery, Development, and Applications. Acc. Chem. Res. 2021, 54, 104–119. [Google Scholar] [CrossRef]
- Wang, M.; Feng, X.; Gao, R.; Sang, P.; Pan, X.; Wei, L.; Lu, C.; Wu, C.; Cai, J. Modular Design of Membrane-Active Antibiotics: From Macromolecular Antimicrobials to Small Scorpionlike Peptidomimetics. J. Med. Chem. 2021, 64, 9894–9905. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, H.; Liu, J.; Zhong, R.; Li, H.; Fang, S.; Liu, S.; Lin, S. Synthesis and biological evaluation of indole-based peptidomimetics as antibacterial agents against Gram-positive bacteria. Eur. J. Med. Chem. 2021, 226, 113813. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.Z.; Feng, Y.; Pollard, J.; Chin, J.N.; Rybak, M.J.; Bucki, R.; Epand, R.F.; Epand, R.M.; Savage, P.B. Ceragenins: Cholic acid-based mimics of antimicrobial peptides. Acc. Chem. Res. 2008, 41, 1233–1240. [Google Scholar] [CrossRef]
- Isaksson, J.; Brandsdal, B.O.; Engqvist, M.; Flaten, G.E.; Svendsen, J.S.; Stensen, W. A synthetic antimicrobial peptidomimetic (LTX 109): Stereochemical impact on membrane disruption. J. Med. Chem. 2011, 54, 5786–5795. [Google Scholar] [CrossRef]
- Scott, R.W.; DeGrado, W.F.; Tew, G.N. De novo designed synthetic mimics of antimicrobial peptides. Curr. Opin. Biotechnol. 2008, 19, 620–627. [Google Scholar] [CrossRef]
- Shen, B.Y.; Wang, M.M.; Xu, S.M.; Gao, C.; Wang, M.; Li, S.; Ampomah-Wireko, M.; Chen, S.C.; Yan, D.C.; Qin, S.; et al. Antibacterial efficacy evaluation and mechanism probe of small lysine chalcone peptide mimics. Eur. J. Med. Chem. 2022, 244, 114885. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Baba, K. Antitumor and antimetastatic activities of Angelica keiskei roots, part 1: Isolation of an active substance, xanthoangelol. Int. J. Cancer 2003, 106, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Sumiyoshi, M.; Taniguchi, M.; Baba, K.; Kimura, Y. Antitumor and antimetastatic actions of xanthoangelol and 4-hydroxyderricin isolated from Angelica keiskei roots through the inhibited activation and differentiation of M2 macrophages. Phytomed. Int. J. Phytother. Phytopharm. 2015, 22, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Ohkura, N.; Nakakuki, Y.; Taniguchi, M.; Kanai, S.; Nakayama, A.; Ohnishi, K.; Sakata, T.; Nohira, T.; Matsuda, J.; Baba, K.; et al. Xanthoangelols isolated from Angelica keiskei inhibit inflammatory-induced plasminogen activator inhibitor 1 (PAI-1) production. BioFactors 2011, 37, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, M.; Kawabata, K.; Miyashita, M.; Okumura, M.; Yamamoto, N.; Takahashi, M.; Ashida, H.; Ohigashi, H. Inhibitory effects of 4-hydroxyderricin and xanthoangelol on lipopolysaccharide-induced inflammatory responses in RAW264 macrophages. J. Agric. Food Chem. 2014, 62, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Inamori, Y.; Baba, K.; Tsujibo, H.; Taniguchi, M.; Nakata, K.; Kozawa, M. Antibacterial activity of two chalcones, xanthoangelol and 4-hydroxyderricin, isolated from the root of Angelica keiskei KOIDZUMI. Chem. Pharm. Bull. 1991, 39, 1604–1605. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Kellogg, J.J.; Kvalheim, O.M.; Cech, R.A.; Cech, N.B. Integration of Biochemometrics and Molecular Networking to Identify Antimicrobials in Angelica keiskei. Planta Medica 2018, 84, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Meier, D.; Hernández, M.V.; van Geelen, L.; Muharini, R.; Proksch, P.; Bandow, J.E.; Kalscheuer, R. The plant-derived chalcone Xanthoangelol targets the membrane of Gram-positive bacteria. Bioorg. Med. Chem. 2019, 27, 115151. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Caputo, G.A. Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 49–66. [Google Scholar] [CrossRef]
- Palermo, E.F.; Kuroda, K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl. Microbiol. Biotechnol. 2010, 87, 1605–1615. [Google Scholar] [CrossRef]
- Gokhale, S.; Xu, Y.; Joy, A. A library of multifunctional polyesters with “peptide-like” pendant functional groups. Biomacromolecules 2013, 14, 2489–2493. [Google Scholar] [CrossRef] [PubMed]
- Tew, G.N.; Scott, R.W.; Klein, M.L.; Degrado, W.F. De novo design of antimicrobial polymers, foldamers, and small molecules: From discovery to practical applications. Acc. Chem. Res. 2010, 43, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Qin, S.; Yan, D.; Shen, B.; Zhang, T.; Wang, M.; Li, S.; Ampomah-Wireko, M.; Bai, M.; Zhang, E.; et al. Development of Aromatic-Linked Diamino Acid Antimicrobial Peptide Mimics with Low Hemolytic Toxicity and Excellent Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). J. Med. Chem. 2023, 66, 7756–7771. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Hou, E.; Cheng, W.; Yan, X.; Zhang, T.; Li, S.; Yao, H.; Liu, J.; Guo, Y. Membrane-Targeting Neolignan-Antimicrobial Peptide Mimic Conjugates to Combat Methicillin-Resistant Staphylococcus aureus (MRSA) Infections. J. Med. Chem. 2022, 65, 16879–16892. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Xu, T.; Cui, L.; Xue, Z.; Liu, J.; Yang, R.; Qin, S.; Guo, Y. Discovery of Amphiphilic Xanthohumol Derivatives as Membrane-Targeting Antimicrobials against Methicillin-Resistant Staphylococcus aureus. J. Med. Chem. 2023, 66, 962–975. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Yu, Q.; Liang, W.; Li, H.; Liu, J.; Li, H.; Chen, Y.; Fang, S.; Zhong, R.; Liu, S.; et al. Membrane-Active Nonivamide Derivatives as Effective Broad-Spectrum Antimicrobials: Rational Design, Synthesis, and Biological Evaluation. J. Med. Chem. 2022, 65, 16754–16773. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, J.; Liu, C.F.; Li, H.; Luo, J.; Fang, S.; Chen, Y.; Zhong, R.; Liu, S.; Lin, S. Design, Synthesis, and Biological Evaluation of Membrane-Active Bakuchiol Derivatives as Effective Broad-Spectrum Antibacterial Agents. J. Med. Chem. 2021, 64, 5603–5619. [Google Scholar] [CrossRef]
- Klein, B.J.; Vann, K.R.; Andrews, F.H.; Wang, W.W.; Zhang, J.; Zhang, Y.; Beloglazkina, A.A.; Mi, W.; Li, Y.; Li, H.; et al. Structural insights into the π-π-π stacking mechanism and DNA-binding activity of the YEATS domain. Nat. Commun. 2018, 9, 4574. [Google Scholar] [CrossRef]
- Kapuscinski, J. DAPI: A DNA-specific fluorescent probe. Biotech. Histochem. Off. Publ. Biol. Stain Comm. 1995, 70, 220–233. [Google Scholar] [CrossRef]
- Lin, S.; Liu, J.; Li, H.; Liu, Y.; Chen, Y.; Luo, J.; Liu, S. Development of Highly Potent Carbazole Amphiphiles as Membrane-Targeting Antimicrobials for Treating Gram-Positive Bacterial Infections. J. Med. Chem. 2020, 63, 9284–9299. [Google Scholar] [CrossRef]
- Xu, T.; Yan, X.; Kang, A.; Yang, L.; Li, X.; Tian, Y.; Yang, R.; Qin, S.; Guo, Y. Development of Membrane-Targeting Fluorescent 2-Phenyl-1H-phenanthro[9,10-d]imidazole-Antimicrobial Peptide Mimic Conjugates against Methicillin-Resistant Staphylococcus aureus. J. Med. Chem. 2024, 67, 9302–9317. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P.; Bayir, H.; Belousov, V.; Chang, C.J.; Davies, K.J.A.; Davies, M.J.; Dick, T.P.; Finkel, T.; Forman, H.J.; Janssen-Heininger, Y.; et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 2022, 4, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Cui, P.; Liu, X. Antibacterial Activity and Mechanism of Madecassic Acid against Staphylococcus aureus. Molecules 2023, 28, 1895. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, C.; Shi, C.; Aliakbarlu, J.; Cui, H.; Lin, L. Antibacterial mechanisms of clove essential oil against Staphylococcus aureus and its application in pork. Int. J. Food Microbiol. 2022, 380, 109864. [Google Scholar] [CrossRef]
Compd. | Gram-Positive Bacteria | HC50 | SI | |||||||
---|---|---|---|---|---|---|---|---|---|---|
S. a. 25923 | S. a. 31007 | S. a 43300 | B. s. 9372 | E. f. 29212 | S. e. 12228 | E. f. 51299 | E. f. 51559 | |||
5a | 8 | 128 | 64 | 64 | 64 | 64 | 16 | 16 | 571.5 | 8.9 |
5b | 16 | 16 | 16 | 8 | 8 | 8 | 32 | 32 | 118.4 | 7.4 |
5c | 32 | 32 | 32 | 16 | 32 | 16 | 128 | 64 | 324.1 | 10.1 |
5d | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 746.5 | <5.8 |
5e | 128 | 128 | 128 | 64 | 32 | 64 | 128 | 128 | 62.3 | 0.49 |
5f | 16 | 16 | 8 | 8 | 8 | 8 | 32 | 32 | 127.7 | 16.0 |
5g | 8 | 8 | 8 | 8 | 8 | 4 | 32 | 16 | 183.1 | 22.9 |
5h | 8 | 8 | 8 | 8 | 8 | 4 | 32 | 32 | 84.7 | 4.3 |
9a | 2 | 4 | 4 | 1 | 4 | 2 | 4 | 4 | 40.4 | 10.1 |
9b | 2 | 4 | 1 | 2 | 2 | 32 | 4 | 4 | 26.6 | 26.6 |
9c | 2 | 2 | 4 | 2 | 1 | 1 | 8 | 4 | 187.6 | 46.9 |
9d | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >1280 | >10 |
9e | 8 | 128 | 64 | 64 | 64 | 128 | >128 | >128 | >1280 | >20 |
9f | 4 | 4 | 4 | 8 | 8 | 8 | 4 | 8 | 40.3 | 10.1 |
9g | 2 | 4 | 4 | 2 | 1 | 1 | 32 | 32 | 34.9 | 8.7 |
9h | 2 | 2 | 2 | 2 | 1 | 0.5 | 8 | 4 | 98.0 | 49.0 |
Van | 1 | 1 | 2 | 0.5 | 2 | 2 | 128 | 128 | ND | ND |
Cos | 128 | 128 | 128 | 16 | 128 | 64 | >128 | >128 | ND | ND |
Compd. | Gram-Negative Bacteria | |||
---|---|---|---|---|
K. p. 10031 | A. b. 19606 | E. c. 25922 | P. a. 27853 | |
5a | 128 | >128 | >128 | >128 |
5b | 16 | 16 | 32 | >128 |
5c | 16 | 32 | 128 | 32 |
5d | 128 | 128 | >128 | >128 |
5e | >128 | 128 | >128 | >128 |
5f | 8 | 8 | 8 | 32 |
5g | 4 | 8 | 16 | 128 |
5h | 8 | 4 | 8 | 16 |
9a | >128 | 128 | >128 | >128 |
9b | 32 | 32 | 128 | >128 |
9c | >128 | >128 | >128 | >128 |
9d | >128 | >128 | >128 | >128 |
9e | >128 | >128 | >128 | >128 |
9f | 16 | 64 | 128 | >128 |
9g | 8 | 4 | 4 | 32 |
9h | 8 | 4 | 4 | 16 |
Van | 128 | 16 | 128 | >128 |
Cos | 1 | 1 | 0.5 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Liu, F.; Leng, Y.; Zhang, M.; Zhang, L.; Wang, X.; Wang, Y. Development of Xanthoangelol-Derived Compounds with Membrane-Disrupting Effects against Gram-Positive Bacteria. Antibiotics 2024, 13, 744. https://doi.org/10.3390/antibiotics13080744
Yang S, Liu F, Leng Y, Zhang M, Zhang L, Wang X, Wang Y. Development of Xanthoangelol-Derived Compounds with Membrane-Disrupting Effects against Gram-Positive Bacteria. Antibiotics. 2024; 13(8):744. https://doi.org/10.3390/antibiotics13080744
Chicago/Turabian StyleYang, Siyu, Fangquan Liu, Yue Leng, Meiyue Zhang, Lei Zhang, Xuekun Wang, and Yinhu Wang. 2024. "Development of Xanthoangelol-Derived Compounds with Membrane-Disrupting Effects against Gram-Positive Bacteria" Antibiotics 13, no. 8: 744. https://doi.org/10.3390/antibiotics13080744
APA StyleYang, S., Liu, F., Leng, Y., Zhang, M., Zhang, L., Wang, X., & Wang, Y. (2024). Development of Xanthoangelol-Derived Compounds with Membrane-Disrupting Effects against Gram-Positive Bacteria. Antibiotics, 13(8), 744. https://doi.org/10.3390/antibiotics13080744