Multidrug-Resistant Staphylococcus aureus Colonizing Pigs and Farm Workers in Rio de Janeiro State, Brazil: Potential Interspecies Transmission of Livestock-Associated MRSA (LA-MRSA) ST398
Abstract
:1. Introduction
2. Results
2.1. Description of the Farms and Deographic Data of the Farm Workers
2.2. Pigs and Farm Workers Colonized with Multidrug-Resistant S. aureus
2.3. Antimicrobial Resistance
2.4. Genomic Characterization of MDR Strains
2.5. Phylogenetic Analyses
2.5.1. Core Genome Single-Nucleotide Polymorphism (cgSNP) Analysis
2.5.2. Core Genome Multilocus Sequence Typing (cgMLST)
3. Discussion
4. Materials and Methods
4.1. Study Design and Period
4.2. Setting
4.3. Sample Collection
4.4. Demogratphics and Management Pratices Data
4.5. Bacterial Isolation and Identification
4.6. Antimicrobial Susceptibility Testing
4.7. Whole Genome Sequencing (WGS) for Characterization of MDR Isolates
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, X.; Wang, S. Antibiotic resistance in environment of animal farms. Chin. J. Biotechnol. 2018, 34, 1234–1245. [Google Scholar] [CrossRef]
- Muurinen, J.; Richert, J.; Wickware, C.L.; Richert, B.; Johnson, T.A. Swine growth promotion with antibiotics or alternatives can increase antibiotic resistance gene mobility potential. Sci. Rep. 2021, 11, 5485. [Google Scholar] [CrossRef]
- Barrett, J.R.; Innes, G.K.; Johnson, K.A.; Lhermie, G.; Ivanek, R.; Greiner Safi, A.; Lansing, D. Consumer perceptions of antimicrobial use in animal husbandry: A scoping review. PLoS ONE 2021, 16, e0261010. [Google Scholar] [CrossRef] [PubMed]
- Innes, G.K.; Markos, A.; Dalton, K.R.; Gould, C.A.; Nachman, K.E.; Fanzo, J.; Barnhill, A.; Frattaroli, S.; Davis, M.F. How animal agriculture stakeholders define, perceive, and are impacted by antimicrobial resistance: Challenging the Wellcome Trust’s Reframing Resistance principles. Agric. Hum. Values 2021, 38, 893–909. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial resistance: A One Health perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Musoke, D.; Namata, C.; Lubega, G.B.; Niyongabo, F.; Gonza, J.; Chidziwisano, K.; Nalinya, S.; Nuwematsiko, R.; Morse, T. The role of environmental health in preventing antimicrobial resistance in low- and middle-income countries. Environ. Health Prev. Med. 2021, 26, 100. [Google Scholar] [CrossRef] [PubMed]
- Otto, M. Community-associated MRSA: What makes them special? Int. J. Med. Microbiol. 2013, 303, 324–330. [Google Scholar] [CrossRef] [PubMed]
- CDC. Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. Available online: www.cdc.gov/DrugResistance/Biggest-Threats.html (accessed on 10 March 2024).
- WHO. Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024; Available online: www.who.int/publications/i/item/9789240093461 (accessed on 2 June 2024).
- Back, S.H.; Eom, H.S.; Lee, H.H.; Lee, G.Y.; Park, K.T.; Yang, S.J. Livestock-associated methicillin-resistant Staphylococcus aureus in Korea: Antimicrobial resistance and molecular characteristics of LA-MRSA strains isolated from pigs, pig farmers, and farm environment. J. Vet. Sci. 2020, 21, e2. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australas J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Wu, J.; Chen, S.; Jin, Y.; Long, J.; Duan, G.; Yang, H. Transmission of livestock-associated methicillin-resistant Staphylococcus aureus between animals, environment, and humans in the farm. Environ. Sci. Pollut. Res. Int. 2023, 30, 86521–86539. [Google Scholar] [CrossRef]
- Avberšek, J.; Golob, M.; Papić, B.; Dermota, U.; Grmek Košnik, I.; Kušar, D.; Ocepek, M.; Zdovc, I. Livestock-associated methicillin-resistant Staphylococcus aureus: Establishing links between animals and humans on livestock holdings. Transbound. Emerg. Dis. 2021, 68, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.C.; Thapaliya, D.; Bhatta, S.; Mackey, S.; Engohang-Ndong, J.; Carrel, M. Geographic distribution of livestock-associated Staphylococcus aureus in the United States. Microbes Infect. 2018, 20, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.W.; Chiang, P.H.; Huang, Y.C. Livestock-associated methicillin-resistant Staphylococcus aureus ST9 in pigs and related personnel in Taiwan. PLoS ONE 2014, 9, e88826. [Google Scholar] [CrossRef] [PubMed]
- Bouiller, K.; Bertrand, X.; Hocquet, D.; Chirouze, C. Human infection of methicillin-susceptible Staphylococcus aureus CC398: A review. Microorganisms 2020, 8, 1737. [Google Scholar] [CrossRef]
- Chen, H.; Yin, Y.; Li, X.; Li, S.; Gao, H.; Wang, X.; Zhang, Y.; Liu, Y.; Wang, H. Whole-genome analysis of livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 strains isolated from patients with bacteremia in China. J. Infect. Dis. 2020, 221, S220–S228. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Lozano, C.; Zarazaga, M.; Simón, C.; Höfle, U.; Sieber, R.N.; Latorre-Fernández, J.; Stegger, M.; Torres, C. Comparative genomics of Staphylococcus aureus strains from wild birds and pig farms elucidates levels of mobilomes, antibiotic pressure and host adaptation. J. Glob. Antimicrob. Resist. 2024, 36, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Price, L.B.; Stegger, M.; Hasman, H.; Aziz, M.; Larsen, J.; Andersen, P.S.; Pearson, T.; Waters, A.E.; Foster, J.T.; Schupp, J.; et al. Staphylococcus aureus CC398: Host adaptation and emergence of methicillin resistance in livestock. mBio 2012, 3, e00305-11. [Google Scholar] [CrossRef] [PubMed]
- Rabello, R.F.; Bonelli, R.R.; Penna, B.A.; Albuquerque, J.P.; Souza, R.M.; Cerqueira, A.M.F. Antimicrobial resistance in farm animals in brazil: An update overview. Animals 2020, 10, 552. [Google Scholar] [CrossRef]
- Burns, A.; Shore, A.C.; Brennan, G.I.; Coleman, D.C.; Egan, J.; Fanning, S.; Galligan, M.; Gibbons, J.; Gutierrez, M.; Malhotra-Kumar, S.; et al. A longitudinal study of Staphylococcus aureus colonization in pigs in Ireland. Vet. Microbiol. 2014, 174, 504–513. [Google Scholar] [CrossRef]
- Sun, J.; Yang, M.; Sreevatsan, S.; Davies, P.R. Prevalence and characterization of Staphylococcus aureus in growing pigs in the USA. PLoS ONE 2015, 10, e0143670. [Google Scholar] [CrossRef]
- Nobrega, D.B.; De Buck, J.; Naqvi, S.A.; Liu, G.; Naushad, S.; Saini, V.; Barkema, H.W. Comparison of treatment records and inventory of empty drug containers to quantify antimicrobial usage in dairy herds. J. Dairy Sci. 2017, 100, 9736. [Google Scholar] [CrossRef] [PubMed]
- Velasco, V.; Vergara, J.L.; Bonilla, A.M.; Muñoz, J.; Mallea, A.; Vallejos, D.; Quezada-Aguiluz, M.; Campos, J.; Rojas-García, P. Prevalence and characterization of Staphylococcus aureus strains in the pork chain supply in Chile. Foodborne Pathog. Dis. 2018, 15, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Eom, H.S.; Back, S.H.; Lee, H.H.; Lee, G.Y.; Yang, S.J. Prevalence and characteristics of livestock-associated methicillin-susceptible Staphylococcus aureus in the pork production chain in Korea. J. Vet. Sci. 2019, 20, e69. [Google Scholar] [CrossRef] [PubMed]
- Sakr, A.; Brégeon, F.; Mège, J.L.; Rolain, J.M.; Blin, O. Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Front. Microbiol. 2018, 9, 2419. [Google Scholar] [CrossRef]
- Reynaga, E.; Navarro, M.; Vilamala, A.; Roure, P.; Quintana, M.; Garcia-Nuñez, M.; Figueras, R.; Torres, C.; Lucchetti, G.; Sabrià, M. Prevalence of colonization by methicillin-resistant Staphylococcus aureus ST398 in pigs and pig farm workers in an area of Catalonia, Spain. BMC Infect. Dis. 2016, 16, 716. [Google Scholar] [CrossRef]
- Abreu, R.; Rodríguez-Álvarez, C.; Lecuona, M.; Castro, B.; González, J.; Aguirre-Jaime, A.; Arias, Á. Increased antimicrobial resistance of MRSA strains isolated from pigs in Spain between 2009 and 2018. Vet. Sci. 2019, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Alt, K.; Fetsch, A.; Schroeter, A.; Guerra, B.; Hammerl, J.A.; Hertwig, S.; Senkov, N.; Geinets, A.; Mueller-Graf, C.; Braeunig, J.; et al. Factors associated with the occurrence of MRSA CC398 in herds of fattening pigs in Germany. BMC Vet. Res. 2011, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Armand-Lefevre, L.; Ruimy, R.; Andremont, A. Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg. Infect. Dis. 2005, 11, 711–714. [Google Scholar] [CrossRef]
- Pu, W.; Su, Y.; Li, J.; Li, C.; Yang, Z.; Deng, H.; Ni, C. High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PLoS ONE 2014, 9, e88134. [Google Scholar] [CrossRef]
- Saeed, K.; Ahmad, N.; Dryden, M.; Cortes, N.; Marsh, P.; Sitjar, A.; Wyllie, S.; Bourne, S.; Hemming, J.; Jeppesen, C.; et al. Oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA), a hidden resistant mechanism among clinically significant isolates in the Wessex region/UK. Infection 2014, 42, 843–847. [Google Scholar] [CrossRef]
- Guimarães, F.F.; Manzi, M.P.; Joaquim, S.F.; Richini-Pereira, V.B.; Langoni, H. Short communication: Outbreak of methicillin-resistant Staphylococcus aureus (MRSA)-associated mastitis in a closed dairy herd. J. Dairy Sci. 2017, 100, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Fabri, F.V.; Pinto, N.B.; Mattos, M.D.S.F.D.; Rodrigues, R.F.; Shinohara, D.R.; Pereira, P.M.; Nishiyama, S.A.B.; Tognim, M.C.B. First report of oxacillin-susceptible mecA-positive Staphylococcus aureus in healthy dogs and their owners in southern Brazil. Prev. Vet. Med. 2021, 189, 105286. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Figueiredo, M.; Leal-Balbino, T.C. Clonal diversity and epidemiological characteristics of Staphylococcus aureus: High prevalence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with clinical isolates in Brazil. BMC Microbiol. 2016, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Danelli, T.; Duarte, F.C.; Oliveira, T.A.D.; Silva, R.S.D.; Frizon Alfieri, D.; Gonçalves, G.B.; de Oliveira, C.F.; Tavares, E.R.; Yamauchi, L.M.; Perugini, M.R.E.; et al. Nasal carriage by Staphylococcus aureus among healthcare workers and students attending a university hospital in Southern Brazil: Prevalence, phenotypic, and molecular characteristics. Interdiscip. Perspect. Infect. Dis. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Denis, O.; Suetens, C.; Hallin, M.; Catry, B.; Ramboer, I.; Dispas, M.; Willems, G.; Gordts, B.; Butaye, P.; Struelens, M.J. Methicillin-resistant Staphylococcus aureus ST398 in swine farm personnel, Belgium. Emerg. Infect. Dis. 2009, 157, 1098–1101. [Google Scholar] [CrossRef] [PubMed]
- De Neeling, A.J.; Van Den Broek, M.J.M.; Spalburg, E.C.; Van Santen-Verheuvel, M.G.; Dam-Deisz, W.D.C.; Boshuizen, H.C.; van de Giessen, A.W.; van Duijkeren, E.; Huijsdens, X.W. High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet. Microbiol. 2007, 122, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Wardyn, S.E.; Stegger, M.; Price, L.B.; Smith, T.C. Whole-genome analysis of recurrent Staphylococcus aureus t571/ST398 infection in farmer, Iowa, USA. Emerg. Infect. Dis. 2018, 24, 153–154. [Google Scholar] [CrossRef]
- Moon, D.C.; Jeong, S.K.; Hyun, B.H.; Lim, S.K. Prevalence and characteristics of methicillin-resistant Staphylococcus aureus isolates in pigs and pig farmers in Korea. Foodborne Pathog. Dis. 2019, 16, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.Z.; Dutra, M.C.; Moreno, M.; Ferreira, T.S.; Silva, G.F.D.; Matajira, C.E.; Silva, A.P.; Moreno, A.M. Vancomycin-intermediate livestock-associated methicillin-resistant Staphylococcus aureus ST398/t9538 from swine in Brazil. Mem. Inst. Oswaldo Cruz 2016, 11, 659–661. [Google Scholar] [CrossRef]
- Santos, S.C.L.; Saraiva, M.M.S.; Moreira Filho, A.L.B.; Silva, N.M.V.; De Leon, C.M.G.; Pascoal, L.A.F.; Givisiez, P.E.N.; Gebreyes, W.A.; Oliveira, C.J.B. Swine as reservoirs of zoonotic borderline oxacillin-resistant Staphylococcus aureus ST398. Comp. Immunol. Microbiol. Infect. Dis. 2021, 79, 101697. [Google Scholar] [CrossRef]
- Nurjadi, D.; Olalekan, A.O.; Layer, F.; Shittu, A.O.; Alabi, A.; Ghebremedhin, B.; Schaumburg, F.; Hofmann-Eifler, J.; Van Genderen, P.J.; Caumes, E.; et al. Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe. J. Antimicrob. Chemother. 2014, 69, 2361–2368. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wendlandt, S.; Yao, J.; Liu, Y.; Zhang, Q.; Shi, Z.; Wei, J.; Shao, D.; Schwarz, S.; Wang, S.; et al. Detection and new genetic environment of the pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in methicillin-resistant Staphylococcus aureus of swine origin. J. Antimicrob. Chemother. 2013, 68, 1251–1255. [Google Scholar] [CrossRef] [PubMed]
- Sarrou, S.; Liakopoulos, A.; Tsoumani, K.; Sagri, E.; Mathiopoulos, K.D.; Tzouvelekis, L.S.; Petinaki, E. Characterization of a novel lsa (E)- and lnu (B)-carrying structure located in the chromosome of a Staphylococcus aureus sequence type 398 strain. Antimicrob. Agents Chemother. 2016, 60, 1164–1166. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, Z.; Chlebowicz, M.A.; Tao, X.; Ni, M.; Hu, Y.; Li, Z.; Grundmann, H.; Murray, S.; Pascoe, B.; et al. Genetic features of livestock-associated Staphylococcus aureus ST9 isolates from Chinese pigs that carry the lsa(E) gene for quinupristin/dalfopristin resistance. Int. J. Med. Microbiol. 2016, 306, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Feßler, A.; Kadlec, K.; Wang, Y.; Zhang, W.J.; Wu, C.; Shen, J.; Schwarz, S. Small antimicrobial resistance plasmids in livestock-associated methicillin-resistant Staphylococcus aureus CC398. Front. Microbiol. 2018, 9, 2063. [Google Scholar] [CrossRef] [PubMed]
- Sineke, N.; Asante, J.; Amoako, D.G.; Abia, A.L.K.; Perrett, K.; Bester, L.A.; Essack, S.Y. Staphylococcus aureus in intensive pig production in South Africa: Antibiotic resistance, virulence determinants, and clonality. Pathogens 2021, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Pirolo, M.; Gioffrè, A.; Visaggio, D.; Gherardi, M.; Pavia, G.; Samel, P.; Ciambrone, L.; Di Natale, R.; Spatari, G.; Casalinuovo, F.; et al. Prevalence, molecular epidemiology, and antimicrobial resistance of methicillin-resistant Staphylococcus aureus from swine in Southern Italy. BMC Microbiol. 2019, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, S.; Aspiroz, C.; Ruiz-Ripa, L.; Zarazaga, M.; Torres, C. Antimicrobial resistance phenotypes and genotypes of methicillin-resistant Staphylococcus aureus CC398 isolates from Spanish hospitals. Int. J. Antimicrob. Agents 2020, 55, 105907. [Google Scholar] [CrossRef] [PubMed]
- Kehrenberg, C.; Schwarz, S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 2006, 50, 1156–1163. [Google Scholar] [CrossRef]
- Monaco, M.; Pedroni, P.; Sanchini, A.; Bonomini, A.; Indelicato, A.; Pantosti, A. Livestock-associated methicillin-resistant Staphylococcus aureus responsible for human colonization and infection in an area of Italy with high density of pig farming. BMC Infect. Dis. 2013, 13, 258. [Google Scholar] [CrossRef]
- Larsen, T.G.; Samaniego Castruita, J.A.; Worning, P.; Westh, H.; Bartels, M.D. Within-host genomic evolution of methicillin-resistant Staphylococcus aureus in long-term carriers. Appl. Microbiol. Biotechnol. 2024, 108, 95. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Javerliat, F.; Palmieri, M.; Mirande, C.; van Wamel, W.; Tavakol, M.; Verkaik, N.J.; van Belkum, A. Genomic evolution of Staphylococcus aureus during artificial and natural colonization of the human nose. Front. Microbiol. 2019, 10, 1525. [Google Scholar] [CrossRef] [PubMed]
- Hegstad, K.; Langsrud, S.; Lunestad, B.T.; Scheie, A.A.; Sunde, M.; Yazdankhah, S.P. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb. Drug Resist. 2010, 16, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, K.; Millet, S.; Van Weyenberg, S.; Herman, L.; Heyndrickx, M.; Dewulf, J.; De Reu, K. A 10-day vacancy period after cleaning and disinfection has no effect on the bacterial load in pig nursery units. BMC Vet. Res. 2016, 12, 236. [Google Scholar] [CrossRef]
- IBGE, Instituto Brasileiro de Geografia e Estatística. Divisão Regional do Brasil em Regiões Geográficas Imediatas e Regiões Geográficas Intermediárias. Coordenação de Geografia; IBGE: Rio de Janeiro, RJ, Brazil, 2017. Available online: https://www.ibge.gov.br/apps/regioes_geograficas/#/home/ (accessed on 8 January 2021).
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Zhang, K.; McClure, J.A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex pcr assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5026–5033. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
Antimicrobial Agent | Number of Carriers of Resistant Strains | |
---|---|---|
Pig (14) | Farm Worker (7) | |
Clindamycin | 9 | 5 |
Erythromycin | 9 | 4 |
Chloramphenicol | 7 | 2 |
Penicillin | 9 | 6 |
Tetracycline | 9 | 5 |
Ciprofloxacin | 9 | 3 |
Norfloxacin | 6 | 1 |
Sulfamethoxazole-trimethoprim | 5 | 0 |
Gentamycin | 3 | 2 |
Cefoxitin | 2 | 0 |
Linezolid | 0 | 0 |
Rifampicin | 0 | 0 |
Host | Source | Farm | ST | spa Type | SCCmec | Resistance | Virulence Genotype | Plasmids | IS, ICE | |
---|---|---|---|---|---|---|---|---|---|---|
Phenotype 1 | Genotype | |||||||||
HSN12 | Human | L | 398 | t571 | - | Chl, Cip, Cli, Ery, Gen, Nor, Pen, Tet | blaZ, aac(6”)-aph(2”), aaD, erm(T), lsa(E), tet(L), tet(M), fexA, dfrG, qacQ | aur, hlgA | rep21, rep22, repUS43, repUS70 | IS256, ISSau1, ISSau8, Tn558, Tn6009 |
SN145 | Pig | L | 398 | t01451 | - | Chl, Cip, Cli, Ery, Gen, Nor, Pen, Tet | blaZ, aac(6”)-aph(2”), aaD, erm(T), lsa(E), tet(L), tet(M), fexA, dfrG, qacQ | aur, hlgA, hlgB, hlgC | rep21, rep22, repUS43, repUS70 | IS256, ISSau1, Tn558, Tn6009 |
SN512 | Pig | E | 398 | t011 | V | Cef, Cip, Cli, Ery, Nor, Pen, Sut, Tet | blaZ, mecA, erm(C), lsa(E), tet(K), tet(M), gyrA, fexA, dfrG | aur, hlgA, hlgB, hlgC | rep7a, repUS43 | Tn558, Tn6009 |
HSN183 | Human | N | 398 | t011 | V | Chl, Cip, Cli, Ery, Pen, Tet | blaZ, mecA, erm(C), lsa(E), tet(K), tet(M), grlA, dfrG, qacQ | aur, hlgA, hlgB, hlgC | rep7a, repUS43 | Tn558, Tn6009 |
SN1823 | Pig | N | 398 | t011 | V | Chl, Cip, Cli, Ery, Pen, Tet | blaZ, mecA, erm(C), lsa(E), tet(K), tet(M), grlA, dfrG, qacQ | aur, hlgA, hlgB, hlgC | rep7a, repUS43 | Tn558, Tn6009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talim, J.; Martins, I.; Messias, C.; Sabino, H.; Oliveira, L.; Pinto, T.; Albuquerque, J.; Cerqueira, A.; Dolores, Í.; Moreira, B.; et al. Multidrug-Resistant Staphylococcus aureus Colonizing Pigs and Farm Workers in Rio de Janeiro State, Brazil: Potential Interspecies Transmission of Livestock-Associated MRSA (LA-MRSA) ST398. Antibiotics 2024, 13, 767. https://doi.org/10.3390/antibiotics13080767
Talim J, Martins I, Messias C, Sabino H, Oliveira L, Pinto T, Albuquerque J, Cerqueira A, Dolores Í, Moreira B, et al. Multidrug-Resistant Staphylococcus aureus Colonizing Pigs and Farm Workers in Rio de Janeiro State, Brazil: Potential Interspecies Transmission of Livestock-Associated MRSA (LA-MRSA) ST398. Antibiotics. 2024; 13(8):767. https://doi.org/10.3390/antibiotics13080767
Chicago/Turabian StyleTalim, Joana, Ianick Martins, Cassio Messias, Hellen Sabino, Laura Oliveira, Tatiana Pinto, Julia Albuquerque, Aloysio Cerqueira, Ítalo Dolores, Beatriz Moreira, and et al. 2024. "Multidrug-Resistant Staphylococcus aureus Colonizing Pigs and Farm Workers in Rio de Janeiro State, Brazil: Potential Interspecies Transmission of Livestock-Associated MRSA (LA-MRSA) ST398" Antibiotics 13, no. 8: 767. https://doi.org/10.3390/antibiotics13080767
APA StyleTalim, J., Martins, I., Messias, C., Sabino, H., Oliveira, L., Pinto, T., Albuquerque, J., Cerqueira, A., Dolores, Í., Moreira, B., Silveira, R., Neves, F., & Rabello, R. (2024). Multidrug-Resistant Staphylococcus aureus Colonizing Pigs and Farm Workers in Rio de Janeiro State, Brazil: Potential Interspecies Transmission of Livestock-Associated MRSA (LA-MRSA) ST398. Antibiotics, 13(8), 767. https://doi.org/10.3390/antibiotics13080767