Antimicrobial Regimens in Cement Spacers for Periprosthetic Joint Infections: A Critical Review
Abstract
:1. Introduction
2. Basic Principles and Types of Spacers
2.1. The Role of Antibiotic-Loaded Cement Spacers in PJIs
2.2. The Types of Spacers in PJIs
3. Spacer Pharmacokinetics
4. Antimicrobial Agents in Spacers
4.1. Characteristics of Antibiotics for Use in Cement Spacers
4.2. Dosage of Antibiotics in Cement Spacers
4.3. Types of Antibiotics in Cement Spacers
4.4. Antifungal-Loaded Bone Cement
5. Mechanical Properties of Antimicrobial Cement
6. The Role of Antimicrobial Cement in Two-Stage Exchange Arthroplasty and Double DAIR Procedure
6.1. Impact of Spacer Exchange on the Success of Two-Stage Revision
6.2. The Double-DAIR Procedure
7. Complications and Toxicity
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delanois, R.E.; Mistry, J.B.; Gwam, C.U.; Mohamed, N.S.; Choksi, U.S.; Mont, M.A. Current Epidemiology of Revision Total Knee Arthroplasty in the United States. J. Arthroplast. 2017, 32, 2663–2668. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.I. CORR Insights ®: Periprosthetic Joint Infection Is the Main Cause of Failure for Modern Knee Arthroplasty: An Analysis of 11,134 Knees. Clin. Orthop. Relat. Res. 2017, 475, 2202–2204. [Google Scholar] [CrossRef]
- Koh, C.K.; Zeng, I.; Ravi, S.; Zhu, M.; Vince, K.G.; Young, S.W. Periprosthetic Joint Infection Is the Main Cause of Failure for Modern Knee Arthroplasty: An Analysis of 11,134 Knees. Clin. Orthop. Relat. Res. 2017, 475, 2194–2201. [Google Scholar] [CrossRef]
- Blom, A.; Warwick, D.; Whitehouse, M. (Eds.) Apley & Solomon’s System of Orthopaedics and Trauma; CRC Press: Boca Raton, FL, USA, 2017; pp. 44–45. ISBN 1498751679. [Google Scholar]
- Samelis, P.V.; Papagrigorakis, E.; Sameli, E.; Mavrogenis, A.; Savvidou, O.; Koulouvaris, P. Current Concepts on the Application, Pharmacokinetics and Complications of Antibiotic-Loaded Cement Spacers in the Treatment of Prosthetic Joint Infections. Cureus 2022, 14, e20968. [Google Scholar] [CrossRef] [PubMed]
- Inacio, M.C.S.; Paxton, E.W.; Graves, S.E.; Namba, R.S.; Nemes, S. Projected increase in total knee arthroplasty in the United States—An alternative projection model. Osteoarthr. Cartil. 2017, 25, 1797–1803. [Google Scholar] [CrossRef]
- Bistolfi, A.; Massazza, G.; Verné, E.; Massè, A.; Deledda, D.; Ferraris, S.; Miola, M.; Galetto, F.; Crova, M. Antibiotic-loaded cement in orthopedic surgery: A review. ISRN Orthop. 2011, 2011, 290851. [Google Scholar] [CrossRef] [PubMed]
- Shahpari, O.; Mousavian, A.; Elahpour, N.; Malahias, M.A.; Ebrahimzadeh, M.H.; Moradi, A. The Use of Antibiotic Impregnated Cement Spacers in the Treatment of Infected Total Joint Replacement: Challenges and Achievements. Arch. Bone Jt. Surg. 2020, 8, 11–20. [Google Scholar] [CrossRef]
- Vasudevan, R. Biofilms: Microbial cities of scientific significance. J. Microbiol. Exp. 2014, 1, 84–98. [Google Scholar] [CrossRef]
- Porrino, J.; Wang, A.; Moats, A.; Mulcahy, H.; Kani, K. Prosthetic joint infections: Diagnosis, management, and complications of the two-stage replacement arthroplasty. Skelet. Radiol. 2020, 49, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef]
- Lachiewicz, P.F.; Wellman, S.S.; Peterson, J.R. Antibiotic Cement Spacers for Infected Total Knee Arthroplasties. J. Am. Acad. Orthop. Surg. 2020, 28, 180–188. [Google Scholar] [CrossRef]
- LS, B.; PF, G. Infected total knee arthroplasty. A protocol for management. J. Arthroplast. 1987, 2, 27–36. [Google Scholar] [CrossRef]
- JC, C.; WJ, H.; JM, C.; RE, B. Two-stage reimplantation of septic total knee arthroplasty. Report of three cases using an antibiotic-PMMA spacer block. J. Arthroplast. 1988, 3, 369–377. [Google Scholar] [CrossRef]
- Chiang, E.R.; Su, Y.P.; Chen, T.H.; Chiu, F.Y.; Chen, W.M. Comparison of articulating and static spacers regarding infection with resistant organisms in total knee arthroplasty. Acta Orthop. 2011, 82, 460–464. [Google Scholar] [CrossRef]
- Hovelius, L.; Josefsson, G. An alternative method for exchange operation of infected arthroplasty. Acta Orthop. Scand. 1979, 50, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Gee, R.; Munk, P.L.; Keogh, C.; Nicolaou, S.; Masri, B.; Marchinkow, L.O.; Ellis, J.; Chan, L.P. Radiography of the PROSTALAC (prosthesis with antibiotic-loaded acrylic cement) orthopedic implant. AJR Am. J. Roentgenol. 2003, 180, 1701–1706. [Google Scholar] [CrossRef]
- van Vugt, T.A.G.; Arts, J.J.; Geurts, J.A.P. Antibiotic-Loaded Polymethylmethacrylate Beads and Spacers in Treatment of Orthopedic Infections and the Role of Biofilm Formation. Front. Microbiol. 2019, 10, 1626. [Google Scholar] [CrossRef]
- Hsieh, P.H.; Chang, Y.H.; Ueng, S.W.N.; Shih, C.H. High concentration and bioactivity of vancomycin and aztreonam eluted from Simplex cement spacers in two-stage revision of infected hip implants: A study of 46 patients at an average follow-up of 107 days. J. Orthop. Res. 2006, 24, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Song, E.K.; Seon, J.K.; Yoon, T.R.; Park, G.H. Comparison of static and mobile antibiotic-impregnated cement spacers for the treatment of infected total knee arthroplasty. Int. Orthop. 2010, 34, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Emerson, R.H.; Muncie, M.; Tarbox, T.R.; Higgins, L.L. Comparison of a static with a mobile spacer in total knee infection. Clin. Orthop. Relat. Res. 2002, 404, 132–138. [Google Scholar] [CrossRef]
- Nahhas, C.R.; Chalmers, P.N.; Parvizi, J.; Sporer, S.M.; Berend, K.R.; Moric, M.; Chen, A.F.; Austin, M.S.; Deirmengian, G.K.; Morris, M.J.; et al. A Randomized Trial of Static and Articulating Spacers for the Treatment of Infection following Total Knee Arthroplasty. J. Bone Jt. Surg. Am. 2020, 102, 778–787. [Google Scholar] [CrossRef]
- Soares, D.; Leite, P.; Barreira, P.; Aido, R.S.R. Antibiotic-loaded bone cement in total joint arthroplasty. Acta Orthop. Belg. 2015, 81, 184–190. [Google Scholar] [PubMed]
- Li, Z.; Xu, C.; Chen, J. Articulating spacers: What are available and how to utilize them? Arthroplasty 2023, 5, 22. [Google Scholar] [CrossRef]
- Dunne, N.; Hill, J.; McAfee, P.; Todd, K.; Kirkpatrick, R.; Tunney, M.; Patrick, S. In vitro study of the efficacy of acrylic bone cement loaded with supplementary amounts of gentamicin: Effect on mechanical properties, antibiotic release, and biofilm formation. Acta Orthop. 2007, 78, 774–785. [Google Scholar] [CrossRef]
- Anagnostakos, K. Therapeutic Use of Antibiotic-loaded Bone Cement in the Treatment of Hip and Knee Joint Infections. J. Bone Jt. Infect. 2017, 2, 29–37. [Google Scholar] [CrossRef]
- Jacobs, M.R. Optimisation of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters. Clin. Microbiol. Infect. 2001, 7, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Schmolders, J.; Hischebeth, G.T.R.; Friedrich, M.J.; Randau, T.M.; Wimmer, M.D.; Kohlhof, H.; Molitor, E.; Gravius, S. Evidence of MRSE on a gentamicin and vancomycin impregnated polymethyl-methacrylate (PMMA) bone cement spacer after two-stage exchange arthroplasty due to periprosthetic joint infection of the knee. BMC Infect. Dis. 2014, 14, 144. [Google Scholar] [CrossRef]
- Hsieh, P.H.; Tai, C.L.; Lee, P.C.; Chang, Y.H. Liquid gentamicin and vancomycin in bone cement: A potentially more cost-effective regimen. J. Arthroplast. 2009, 24, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.A.; Middleton, F.R.; Shearwood-Porter, N.; Kinch, S.; Roques, A.; Bradley, N.W.; Browne, M. Does cyclical loading affect the elution of antibiotics from articulating cement knee spacers? J. Bone Jt. Surg. Br. 2011, 93, 914–920. [Google Scholar] [CrossRef]
- Kelm, J.; Regitz, T.; Schmitt, E.; Jung, W.; Anagnostakos, K. In vivo and in vitro studies of antibiotic release from and bacterial growth inhibition by antibiotic-impregnated polymethylmethacrylate hip spacers. Antimicrob. Agents Chemother. 2006, 50, 332–335. [Google Scholar] [CrossRef]
- Joseph, T.N.; Chen, A.L.; Di Cesare, P.E. Use of antibiotic-impregnated cement in total joint arthroplasty. J. Am. Acad. Orthop. Surg. 2003, 11, 38–47. [Google Scholar] [CrossRef]
- Frew, N.M.; Cannon, T.; Nichol, T.; Smith, T.J.; Stockley, I. Comparison of the elution properties of commercially available gentamicin and bone cement containing vancomycin with “home-made” preparations. Bone Jt. J. 2017, 99-B, 73–77. [Google Scholar] [CrossRef]
- Wall, V.; Nguyen, T.H.; Nguyen, N.; Tran, P.A. Controlling Antibiotic Release from Polymethylmethacrylate Bone Cement. Biomedicines 2021, 9, 26. [Google Scholar] [CrossRef]
- Neut, D.; Van De Belt, H.; Van Horn, J.R.; Van Der Mei, H.C.; Busscher, H.J. The effect of mixing on gentamicin release from polymethylmethacrylate bone cements. Acta Orthop. Scand. 2003, 74, 670–676. [Google Scholar] [CrossRef] [PubMed]
- McLaren, A.C.; Nugent, M.; Economopoulos, K.; Kaul, H.; Vernon, B.L.; McLemore, R. Hand-mixed and premixed antibiotic-loaded bone cement have similar homogeneity. Clin. Orthop. Relat. Res. 2009, 467, 1693–1698. [Google Scholar] [CrossRef]
- Kuehn, K.D.; Ege, W.; Gopp, U. Acrylic bone cements: Mechanical and physical properties. Orthop. Clin. N. Am. 2005, 36, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Yuenyongviwat, V.; Ingviya, N.; Pathaburee, P.; Tangtrakulwanich, B. Inhibitory effects of vancomycin and fosfomycin on methicillin-resistant Staphylococcus aureus from antibiotic-impregnated articulating cement spacers. Bone Jt. Res. 2017, 6, 132–136. [Google Scholar] [CrossRef]
- Vaishya, R.; Chauhan, M.; Vaish, A. Bone cement. J. Clin. Orthop. Trauma 2013, 4, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.L.; Liu, C.Y.; Huang, Y.T.; Liao, C.H.; Teng, L.J.; Turnidge, J.D.; Hsueh, P.R. Antimicrobial susceptibilities of commonly encountered bacterial isolates to fosfomycin determined by agar dilution and disk diffusion methods. Antimicrob. Agents Chemother. 2011, 55, 4295–4301. [Google Scholar] [CrossRef]
- Cui, Q.; Mihalko, W.M.; Shields, J.S.; Ries, M.; Saleh, K.J. Antibiotic-impregnated cement spacers for the treatment of infection associated with total hip or knee arthroplasty. J. Bone Jt. Surg. Am. 2007, 89, 871–882. [Google Scholar] [CrossRef]
- Romanò, C.L.; Gala, L.; Logoluso, N.; Romanò, D.; Drago, L. Two-stage revision of septic knee prosthesis with articulating knee spacers yields better infection eradication rate than one-stage or two-stage revision with static spacers. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 2445–2453. [Google Scholar] [CrossRef]
- Jacofsky, D.J.; Della Valle, C.J.; Meneghini, R.M.; Sporer, S.M.; Cercek, R.M. Revision total knee arthroplasty: What the practicing orthopaedic surgeon needs to know. Instr. Course Lect. 2011, 60, 269–281. [Google Scholar]
- Fink, B.; Vogt, S.; Reinsch, M.; Büchner, H. Sufficient release of antibiotic by a spacer 6 weeks after implantation in two-stage revision of infected hip prostheses. Clin. Orthop. Relat. Res. 2011, 469, 3141–3147. [Google Scholar] [CrossRef]
- Hsieh, P.H.; Chen, L.H.; Chen, C.H.; Lee, M.S.; Yang, W.E.; Shih, C.H. Two-stage revision hip arthroplasty for infection with a custom-made, antibiotic-loaded, cement prosthesis as an interim spacer. J. Trauma 2004, 56, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Jiranek, W.A.; Hanssen, A.D.; Greenwald, A.S. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J. Bone Jt. Surg. Am. 2006, 88, 2487–2500. [Google Scholar] [CrossRef] [PubMed]
- Van De Belt, H.; Neut, D.; Schenk, W.; Van Horn, J.R.; Van Der Mei, H.C.; Busscher, H.J. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials 2001, 22, 1607–1611. [Google Scholar] [CrossRef]
- Hendriks, J.G.E.; Van Horn, J.R.; Van Der Mei, H.C.; Busscher, H.J. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 2004, 25, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Moojen, D.J.F.; Hentenaar, B.; Charles Vogely, H.; Verbout, A.J.; Castelein, R.M.; Dhert, W.J.A. In vitro release of antibiotics from commercial PMMA beads and articulating hip spacers. J. Arthroplast. 2008, 23, 1152–1156. [Google Scholar] [CrossRef]
- Giovanoulis, V.; Vasiliadis, A.V.; Koutserimpas, C.; Samonis, G.; Batailler, C.; Ferry, T.; Lustig, S. Prosthetic Knee Joint Infection Due to Candida lusitaniae: A Diagnostic and Therapeutic Odyssey: A Case Study. Diagnostics 2022, 12, 2640. [Google Scholar] [CrossRef]
- Baleani, M.; Persson, C.; Zolezzi, C.; Andollina, A.; Borrelli, A.M.; Tigani, D. Biological and biomechanical effects of vancomycin and meropenem in acrylic bone cement. J. Arthroplast. 2008, 23, 1232–1238. [Google Scholar] [CrossRef]
- Thienpont, E.; Yombi, J.C.; Cornu, O.; Simon, A.; Stuyck, J. International consensus on periprosthetic joint infection: Let cumulative wisdom be a guide. J. Bone Jt. Surg. Am. 2014, 96, 289–292. [Google Scholar] [CrossRef]
- von Hertzberg-Boelch, S.P.; Luedemann, M.; Rudert, M.; Steinert, A.F. PMMA Bone Cement: Antibiotic Elution and Mechanical Properties in the Context of Clinical Use. Biomedicines 2022, 10, 1830. [Google Scholar] [CrossRef]
- Funk, G.A.; Menuey, E.M.; Cole, K.A.; Schuman, T.P.; Kilway, K.V.; Mciff, T.E. Radical scavenging of poly(methyl methacrylate) bone cement by rifampin and clinically relevant properties of the rifampin-loaded cement. Bone Jt. Res. 2019, 8, 81–89. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, W.C.; Hsieh, P.H.; Chen, D.W.; Lee, M.S.; Shih, H.N.; Ueng, S.W.N. In vitro activities of daptomycin-, vancomycin-, and teicoplanin-loaded polymethylmethacrylate against methicillin-susceptible, methicillin-resistant, and vancomycin-intermediate strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 2011, 55, 5480–5484. [Google Scholar] [CrossRef]
- Samuel, S.; Mathew, B.S.; Veeraraghavan, B.; Fleming, D.H.; Chittaranjan, S.B.; Prakash, J.A.J. In vitro study of elution kinetics and bio-activity of meropenem-loaded acrylic bone cement. J. Orthop. Traumatol. 2012, 13, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakos, K.; Kelm, J.; Regitz, T.; Schmitt, E.; Jung, W. In vitro evaluation of antibiotic release from and bacteria growth inhibition by antibiotic-loaded acrylic bone cement spacers. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 72, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Koutserimpas, C.; Naoum, S.; Giovanoulis, V.; Raptis, K.; Alpantaki, K.; Dretakis, K.; Vrioni, G.; Samonis, G. Fungal Periprosthetic Hip Joint Infections. Diagnostics 2022, 12, 2341. [Google Scholar] [CrossRef]
- Koutserimpas, C.; Naoum, S.; Alpantaki, K.; Raptis, K.; Dretakis, K.; Vrioni, G.; Samonis, G. Fungal Prosthetic Joint Infection in Revised Knee Arthroplasty: An Orthopaedic Surgeon’s Nightmare. Diagnostics 2022, 12, 1606. [Google Scholar] [CrossRef] [PubMed]
- Gross, C.E.; Della Valle, C.J.; Rex, J.C.; Traven, S.A.; Durante, E.C. Fungal Periprosthetic Joint Infection: A Review of Demographics and Management. J. Arthroplast. 2021, 36, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Koutserimpas, C.; Zervakis, S.G.; Maraki, S.; Alpantaki, K.; Ioannidis, A.; Kofteridis, D.P.; Samonis, G. Non- albicans Candida prosthetic joint infections: A systematic review of treatment. World J. Clin. Cases 2019, 7, 1430–1443. [Google Scholar] [CrossRef]
- Koutserimpas, C.; Chamakioti, I.; Zervakis, S.; Raptis, K.; Alpantaki, K.; Kofteridis, D.P.; Vrioni, G.; Samonis, G. Non- Candida Fungal Prosthetic Joint Infections. Diagnostics 2021, 11, 1410. [Google Scholar] [CrossRef]
- Anagnostakos, K.; Becker, S.L.; Sahan, I. Antifungal-Loaded Acrylic Bone Cement in the Treatment of Periprosthetic Hip and Knee Joint Infections: A Review. Antibiotics 2022, 11, 879. [Google Scholar] [CrossRef]
- Grimsrud, C.; Raven, R.; Fothergill, A.W.; Kim, H.T. The in vitro elution characteristics of antifungal-loaded PMMA bone cement and calcium sulfate bone substitute. Orthopedics 2011, 34, e378–e381. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; McLaren, A.; Pauken, C.; McLemore, R. Voriconazole is cytotoxic at locally delivered concentrations: A pilot study. Clin. Orthop. Relat. Res. 2013, 471, 3165–3170. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.B.; McLaren, A.C.; Pauken, C.; Clarke, H.D.; McLemore, R. Voriconazole is delivered from antifungal-loaded bone cement. Clin. Orthop. Relat. Res. 2013, 471, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Rouse, M.S.; Heijink, A.; Steckelberg, J.M.; Patel, R. Are anidulafungin or voriconazole released from polymethylmethacrylate in vitro? Clin. Orthop. Relat. Res. 2011, 469, 1466–1469. [Google Scholar] [CrossRef]
- Sealy, P.I.; Nguyen, C.; Tucci, M.; Benghuzzi, H.; Cleary, J.D. Delivery of antifungal agents using bioactive and nonbioactive bone cements. Ann. Pharmacother. 2009, 43, 1606–1615. [Google Scholar] [CrossRef]
- Silverberg, D.; Kodali, P.; Dipersio, J.; Acus, R.; Askew, M. In vitro analysis of antifungal impregnated polymethylmethacrylate bone cement. Clin. Orthop. Relat. Res. 2002, 403, 228–231. [Google Scholar] [CrossRef]
- Goss, B.; Lutton, C.; Weinrauch, P.; Jabur, M.; Gillett, G.; Crawford, R. Elution and mechanical properties of antifungal bone cement. J. Arthroplast. 2007, 22, 902–908. [Google Scholar] [CrossRef]
- Houdek, M.T.; Greenwood-Quaintance, K.E.; Morrey, M.E.; Patel, R.; Hanssen, A.D. Elution of High Dose Amphotericin B Deoxycholate from Polymethylmethacrylate. J. Arthroplast. 2015, 30, 2308–2310. [Google Scholar] [CrossRef]
- Cunningham, B.; McLaren, A.C.; Pauken, C.; McLemore, R. Liposomal formulation increases local delivery of amphotericin from bone cement: A pilot study. Clin. Orthop. Relat. Res. 2012, 470, 2671–2676. [Google Scholar] [CrossRef] [PubMed]
- Czuban, M.; Wulsten, D.; Wang, L.; Di Luca, M.; Trampuz, A. Release of different amphotericin B formulations from PMMA bone cements and their activity against Candida biofilm. Colloids Surf. B Biointerfaces 2019, 183, 110406. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Bingham, J.; McLaren, A.C.; McLemore, R. Liposomal Formulation Decreases Toxicity of Amphotericin B In Vitro and In Vivo. Clin. Orthop. Relat. Res. 2015, 473, 2262–2269. [Google Scholar] [CrossRef]
- Anagnostakos, K.; Meyer, C. Antibiotic Elution from Hip and Knee Acrylic Bone Cement Spacers: A Systematic Review. BioMed Res. Int. 2017, 2017, 4657874. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, D.M.; Chandra, J.; Mukherjee, P.K.; Ghannoum, M.A. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect. Immun. 2002, 70, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Kozaily, E.; Chisari, E.; Parvizi, J. Is There a Role for Spacer Exchange in Two-Stage Exchange Arthroplasty for Periprosthetic Joint Infection? J. Clin. Med. 2020, 9, 2901. [Google Scholar] [CrossRef] [PubMed]
- Urish, K.L.; Bullock, A.G.; Kreger, A.M.; Shah, N.B.; Jeong, K.; Rothenberger, S.D.; Irrgang, J.J.; Klatt, B.A.; Hamlin, B.R. A Multicenter Study of Irrigation and Debridement in Total Knee Arthroplasty Periprosthetic Joint Infection: Treatment Failure Is High. J. Arthroplast. 2018, 33, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Barberán, J.; Aguilar, L.; Carroquino, G.; Giménez, M.J.; Sánchez, B.; Martínez, D.; Prieto, J. Conservative treatment of staphylococcal prosthetic joint infections in elderly patients. Am. J. Med. 2006, 119, 993.e7–993.e10. [Google Scholar] [CrossRef] [PubMed]
- McPherson, E.J.; Woodson, C.; Holtom, P.; Roidis, N.; Shufelt, C.P.M. Periprosthetic total hip infection: Outcomes using a staging system. Clin. Orthop. Relat. Res. 2002, 403, 8–15. [Google Scholar] [CrossRef]
- Mortazavi, S.M.J.; Vegari, D.; Ho, A.; Zmistowski, B.; Parvizi, J. Two-stage exchange arthroplasty for infected total knee arthroplasty: Predictors of failure. Clin. Orthop. Relat. Res. 2011, 469, 3049–3054. [Google Scholar] [CrossRef]
- Dwyer, M.K.; Damsgaard, C.; Wadibia, J.; Wong, G.; Lazar, D.; Smith, E.; Talmo, C.; Bedair, H. Laboratory Tests for Diagnosis of Chronic Periprosthetic Joint Infection Can Help Predict Outcomes of Two-Stage Exchange. J. Bone Jt. Surg. Am. 2018, 100, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Ledezma, C.; Higuera, C.A.; Parvizi, J. Success after treatment of periprosthetic joint infection: A Delphi-based international multidisciplinary consensus. Clin. Orthop. Relat. Res. 2013, 471, 2374–2382. [Google Scholar] [CrossRef] [PubMed]
- Fillingham, Y.A.; Della Valle, C.J.; Suleiman, L.I.; Springer, B.D.; Gehrke, T.; Bini, S.A.; Segreti, J.; Chen, A.F.; Goswami, K.; Tan, T.L.; et al. Definition of Successful Infection Management and Guidelines for Reporting of Outcomes After Surgical Treatment of Periprosthetic Joint Infection: From the Workgroup of the Musculoskeletal Infection Society (MSIS). J. Bone Jt. Surg. Am. 2019, 101, e69. [Google Scholar] [CrossRef]
- McQuivey, K.S.; Bingham, J.; Chung, A.; Clarke, H.; Schwartz, A.; Pollock, J.R.; Beauchamp, C.; Spangehl, M.J. The Double DAIR: A 2-Stage Debridement with Prosthesis-Retention Protocol for Acute Periprosthetic Joint Infections. JBJS Essent. Surg. Tech. 2021, 11, e19.00071. [Google Scholar] [CrossRef] [PubMed]
- Chung, A.S.; Niesen, M.C.; Graber, T.J.; Schwartz, A.J.; Beauchamp, C.P.; Clarke, H.D.; Spangehl, M.J. Two-Stage Debridement with Prosthesis Retention for Acute Periprosthetic Joint Infections. J. Arthroplast. 2019, 34, 1207–1213. [Google Scholar] [CrossRef]
- Estes, C.S.; Beauchamp, C.P.; Clarke, H.D.; Spangehl, M.J. A two-stage retention débridement protocol for acute periprosthetic joint infections. Clin. Orthop. Relat. Res. 2010, 468, 2029–2038. [Google Scholar] [CrossRef]
- Mazza, D.; Calderaro, C.; Iorio, R.; Drogo, P.; Andreozzi, V.; Ferretti, A. Acute kidney failure after total knee arthroplasty revision with antibiotic-impregnated cement spacer. Orthop. Rev. 2020, 12, 87–89. [Google Scholar] [CrossRef]
- Patel, R.A.; Baker, H.P.; Smith, S.B. Acute Renal Failure due to a Tobramycin and Vancomycin Spacer in Revision Two-Staged Knee Arthroplasty. Case Rep. Nephrol. 2018, 2018, 6579894. [Google Scholar] [CrossRef]
- Aeng, E.S.Y.; Shalansky, K.F.; Lau, T.T.Y.; Zalunardo, N.; Li, G.; Bowie, W.R.; Duncan, C.P. Acute Kidney Injury with Tobramycin-Impregnated Bone Cement Spacers in Prosthetic Joint Infections. Ann. Pharmacother. 2015, 49, 1207–1213. [Google Scholar] [CrossRef]
- Braun, J.; Eckes, S.; Rommens, P.M.; Schmitz, K.; Nickel, D.; Ritz, U. Toxic Effect of Vancomycin on Viability and Functionality of Different Cells Involved in Tissue Regeneration. Antibiotics 2020, 9, 238. [Google Scholar] [CrossRef]
- Rathbone, C.R.; Cross, J.D.; Brown, K.V.; Murray, C.K.; Wenke, J.C. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J. Orthop. Res. 2011, 29, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, D.R.; Killen, C.; Murphy, M.; Perry, M.; Romano, J.; Brown, N. The Impact of Antibiotic-Loaded Bone Cement on Antibiotic Resistance in Periprosthetic Knee Infections. Clin. Orthop. Surg. 2020, 12, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Shanks, R.M.Q.; Davis, C.M.; Craft, D.W.; Wood, T.K.; Hamlin, B.R.; Urish, K.L. Viable bacteria persist on antibiotic spacers following two-stage revision for periprosthetic joint infection. J. Orthop. Res. 2018, 36, 452–458. [Google Scholar] [CrossRef]
- Sanz-Ruiz, P.; Carbó-Laso, E.; Del Real-Romero, J.C.; Arán-Ais, F.; Ballesteros-Iglesias, Y.; Paz-Jiménez, E.; Sánchez-Navarro, M.; Pérez-Limiñana, M.Á.; Vaquero-Martín, J. Microencapsulation of rifampicin: A technique to preserve the mechanical properties of bone cement. J. Orthop. Res. 2018, 36, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Romanò, C.L.; Scarponi, S.; Gallazzi, E.; Romanò, D.; Drago, L. Antibacterial coating of implants in orthopaedics and trauma: A classification proposal in an evolving panorama. J. Orthop. Surg. Res. 2015, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Brennan, S.A.; Fhoghlú, C.N.; DeVitt, B.M.; O’Mahony, F.J.; Brabazon, D.; Walsh, A. Silver nanoparticles and their orthopaedic applications. Bone Jt. J. 2015, 97-B, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Tamai, K.; Kawate, K.; Kawahara, I.; Takakura, Y.; Sakaki, K. Inorganic antimicrobial coating for titanium alloy and its effect on bacteria. J. Orthop. Sci. 2009, 14, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zhong, H.; Zhang, M.; Hong, Y. Effects of antimicrobial peptides on Staphylococcus aureus growth and biofilm formation in vitro following isolation from implant-associated infections. Int. J. Clin. Exp. Med. 2015, 15, 1546–1551. [Google Scholar]
Types of Articulating Spacers | Characteristics | |
---|---|---|
Advantages | Disadvantages | |
Hand-made spacers [24] | Lower cost, custom-made to suit specific anatomical configurations, can be loaded with antibiotics that are more sensitive to pathogens | Time-consuming, heightened risk of fracture, potential mismatch with articulating surfaces |
Spacers fashioned from moulds [24] | More consistent geometry, and various sizes, allowing intraoperative selection, can be loaded with antibiotics that are more sensitive to pathogens | Increased procedure costs, higher incidence of mechanical complications |
Commercial preformed spacers [24] | Straightforward intraoperative application, time-saving | Lower antibiotic doses and limitations on the types of antibiotics used |
Spacers with additional metal or polyethylene articulating elements [24] | Semi-constrained to minimise dislocation risk, advocated for complex cases | Limited availability |
New or autoclaved prosthesis [24] | Significant flexibility in two-stage exchange procedures, allowing partial prosthesis removal or combination with other strategies to manage complications | It contradicts recommendations from regulatory bodies like the Food and Drug Administration (FDA) in the USA and the Medicines and Healthcare Products Regulatory Agency (MHRA) in the UK |
Custom-made articulating spacers (CUMARS) [24] | Better joint function, enabling full weight-bearing of the lower extremity, improved inter-stage functionality, easier removal, and effective infection control | High cost |
3D printing-assisted articulating spacers [24] | High geometric consistency, different-sized models while preserving geometry, minimal mechanical complications | Lack of relevant medical regulations and consensus |
Increasing Antibiotic Release | Decreasing Antibiotic Release |
---|---|
Greater the surface area [5] | Increased distance between the cement and surrounding tissues |
Cancellous bone/dead space | Cortical bone |
Porosity/ Intact crystals left from the mixing process | |
Partially mixed cements | |
Joint motion | |
Tissue absorption capacity | |
Increased concentration of the antibiotic |
Cement | Antimicrobial Agents | Coverage Spectrum |
---|---|---|
Palacos | Gentamicin | Gram-negative (Pseudomonas, Proteus, Klebsiella, E. coli), Gram-positive Staphylococcus, aerobic bacteria |
CMW/Simplex/Palacos | Gentamicin | Gram-negative (Pseudomonas, Proteus, Klebsiella, E. coli), Gram-positive Staphylococcus, aerobic bacteria |
Palacos | Gentamicin/erythromycin/penicillin | Gram-negative (Pseudomonas, Proteus, Klebsiella, E. coli, Mycoplasma, Chlamydia trachomatis, Rickettsia), Gram-positive cocci, aerobic bacteria, aerobic bacilli |
Simplex | Penicillin/methicillin/erythromycin/lincomycin/nafcillin/ | Gram-negative (Pseudomonas, Proteus, Klebsiella, E. coli, Mycoplasma, Chlamydia trachomatis, Rickettsia, Treponema), Gram-positive cocci, aerobic bacteria, aerobic bacilli |
polymyxin/colistimethate | Gram-negative (jnc. Pseudomonas) | |
Simplex/Palacos | Gentamicin/oxacillin/cephazolin | Gram-negative (Pseudomonas, Proteus, Klebsiella, E. coli), Gram-positive cocci, aerobic bacteria |
Palacos/Simplex/CMW | Sodium fusidate/gentamicin | Gram-negative (Pseudomonas, Proteus, Klebsiella, E. coli), Gram-positive cocci, aerobic bacteria |
Simplex | Fucidin/clindamycin/gentamicin | Gram-negative (Pseudomonas, Proteus, Klebsiella, E. coli, Mycoplasma, Chlamydia trachomatis, Rickettsia), Gram-positive cocci, aerobic and anaerobic bacteria and bacilli |
Palacos/Simplex | Penicillin/gentamicin | Gram-negative (Pseudomonas, Proteus, Klebsiella, E. coli, Mycoplasma, Chlamydia trachomatis, Rickettsia, Treponema), Gram-positive cocci, aerobic bacteria, aerobic bacilli |
Palacos/CMW | Gentamicin sulphate/sodium fusidate/diethanolamine | Gram-negative (Pseudomonas, Proteus, Klebsiella, E. coli) |
Palacos/CMW | Ceftriaxone/coumermycin/sulfampicionmethoxozaole/ | Gram-positive bacteria, Gram-negative bacteria (Klebsiella, E. coli, Proteus, not including Pseudomonas) |
Trimethoprim/cephalothin/vancomycin/fusidic acid/ | Gram-positive bacteria (including methicillin-resistant organisms), Gram-negative bacteria (esp. Pseudomonas) | |
Gentamicin/rifampicin/vancomycin | Gram-positive bacteria (including methicillin-resistant organisms), Gram-negative bacteria (esp. Pseudomonas), Mycobacterium | |
Palacos/Simplex/Zimmer | Vancomycin/amikacin/daptomycin | Gram-positive bacteria (including methicillin-resistant organisms), Gram-negative bacteria (esp. Pseudomonas) |
low viscosity and dough type | ||
Palacos/Simplex | Tobramycin/vancomycin | Gram-positive bacteria, (including methicillin-resistant organisms), Gram-negative bacteria (especially Pseudomonas) |
Palacos | Vancomycin/tobramycin | Gram-positive bacteria, (including methicillin-resistant organisms), Gram-negative bacteria (especially Pseudomonas) |
Cerafix | Vancomycin | Gram-positive bacteria (including methicillin-resistant organisms) |
Antibiotics | Dose per 40 g Cement |
---|---|
Tobramycin | 1 to 4.8 g |
Gentamicin | 0.25 to 4.8 g |
Cefazolin | 1 to 2 g |
Cefuroxime | 1.5 to 2 g |
Ceftazidime | 2 g |
Cefotaxime | 2 g |
Ceftaroline | 2 to 4 g |
Ciprofloxacin | 0.2 to 3 g |
Vancomycin | 0.5 to 4 g |
Clindamycin | 1 to 2 g |
Erythromycin | 0.5 to 1 g |
Colistin | 0.24 g |
Piperacillin—not available Piperacillin-tazobactam | 4 to 8 g |
Aztreonam | 4 g |
Tazobactam | 0.5 g |
Linezolid | 1.2 g |
Meropenem | 0.5 to 4 g |
Daptomycin | 2 g |
Amphotericin | 200 mg |
Voriconazole | 300–600 mg |
Itraconazole | 250 mg |
Fluconazole | 200 mg |
Beads or Bead Chains | Spacers | ||
---|---|---|---|
Pros | Cons | Pros | Cons |
Increased antibiotic concentrations | Disruption of local anatomy | Preservation of local anatomy | Lower antibiotic concentrations and shorter duration |
Cost-effective | Extensive scar tissue formation | Pre-fabricated spacers are costly | Spacer dislocation/ migration |
Low complication rates | Possible joint mobility and weight-bearing | Spacer fractures | |
Simple to use, implant, and remove | |||
Longer period at minimum inhibitory concentration (MIC) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naoum, S.; Koutserimpas, C.; Pantekidis, I.; Giovanoulis, V.; Veizi, E.; Piagkou, M.; Ioannou, P.; Samonis, G.; Domouchtsidou, A.; Tsantes, A.G.; et al. Antimicrobial Regimens in Cement Spacers for Periprosthetic Joint Infections: A Critical Review. Antibiotics 2024, 13, 772. https://doi.org/10.3390/antibiotics13080772
Naoum S, Koutserimpas C, Pantekidis I, Giovanoulis V, Veizi E, Piagkou M, Ioannou P, Samonis G, Domouchtsidou A, Tsantes AG, et al. Antimicrobial Regimens in Cement Spacers for Periprosthetic Joint Infections: A Critical Review. Antibiotics. 2024; 13(8):772. https://doi.org/10.3390/antibiotics13080772
Chicago/Turabian StyleNaoum, Symeon, Christos Koutserimpas, Ioannis Pantekidis, Vasileios Giovanoulis, Enejd Veizi, Maria Piagkou, Petros Ioannou, George Samonis, Aglaia Domouchtsidou, Andreas G. Tsantes, and et al. 2024. "Antimicrobial Regimens in Cement Spacers for Periprosthetic Joint Infections: A Critical Review" Antibiotics 13, no. 8: 772. https://doi.org/10.3390/antibiotics13080772
APA StyleNaoum, S., Koutserimpas, C., Pantekidis, I., Giovanoulis, V., Veizi, E., Piagkou, M., Ioannou, P., Samonis, G., Domouchtsidou, A., Tsantes, A. G., & Papadopoulos, D. V. (2024). Antimicrobial Regimens in Cement Spacers for Periprosthetic Joint Infections: A Critical Review. Antibiotics, 13(8), 772. https://doi.org/10.3390/antibiotics13080772