Phytochemical Study of Ethanol Extract of Gnaphalium uliginosum L. and Evaluation of Its Antimicrobial Activity
Abstract
:1. Introduction
2. Results
2.1. GC-MS Analysis
2.2. Antibacterial and Antifungal Activity
2.2.1. Serial Dilution Methods
2.2.2. Diffusion Method
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extract Preparation by Maceration
4.3. Extract Preparation by Ultrasound-Assisted Maceration
4.4. GS-MS Analysis
4.5. Antimicrobial Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horbach, R.; Navarro-Quesada, A.R.; Knogge, W.; Deising, H.B. When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. J. Plant Physiol. 2011, 168, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Burtscher-Schaden, H.; Durstberger, T.; Zaller, J.G. Toxicological comparison of pesticide active substances approved for conventional vs organic agriculture in Europe. Toxics 2022, 10, 753. [Google Scholar] [CrossRef]
- Bhandari, G.; Kishor, A.; Vasickova, J.; Yang, X.; Geissen, V. Ecological risk assessment of pesticide residues in soils from vegetable production areas: A case study in S-Nepal. Sci. Total Environ. 2021, 788, 147921. [Google Scholar] [CrossRef] [PubMed]
- Lavellea, P.; Decaensb, T.; Aubertb, M.; Barota, S.; Blouina, M.; Bureaub, F.; Margerieb, P.; Moraa, P.; Rossic, J.-P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Lyons, D.D.; Philibert, D.A.; Zablocki, T.; Qin, R.; Huang, R.; Gamal El-Din, M. Assessment of raw and ozonated oil sands process-affected water exposure in developing zebrafish: Associating morphological changes with gene expression. Environ. Pollut. 2018, 241, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, X.; Peng, Q.; Wang, Y.; Ge, J.; Yang, G. Multi-level ecotoxicological effects of imidacloprid on earthworm (Eisenia fetida). Chemosphere 2019, 219, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Xiong, K.; Liu, J. Comparative toxicity and bioaccumulation of fenvalerate and esfenvalerate to earthworm Eisenia fetida. J. Hazard. Mater. 2016, 310, 82–88. [Google Scholar] [CrossRef]
- Mikaberidze, A.; McDonald, B.A.; Bonhoeffer, S. Can high-risk fungicides be used in mixtures without selecting for fungicide resistance? Phytopathology 2014, 104, 324–331. [Google Scholar] [CrossRef]
- Acheuk, F.; Basiouni, S.; Shehata, A.A.; Dick, K.; Hajri, H.; Lasram, S.; Yilmaz, M.; Emekci, M.; Tsiamis, G.; Spona-Friedl, M. Status and Prospects of Botanical Biopesticides in Europe and Mediterranean Countries. Biomolecules 2022, 12, 311. [Google Scholar] [CrossRef]
- Liu, R.; Li, J.; Zhang, F.; Zheng, D.; Chang, Y.; Xu, L.; Huang, L. Biocontrol activity of Bacillus velezensis D4 against apple Valsa canker. Biol. Control 2021, 163, 104–106. [Google Scholar] [CrossRef]
- Ngegba, M.; Kamara, J.; Koroma, M. Characteristics of Rural Community Savings Systems and Impacts on Rural Livelihood in Selected Districts of Sierra Leone. Asian J. Agric. Ext. Econ. Sociol. 2022, 40, 278–298. [Google Scholar] [CrossRef]
- Semina, Y.V.; Shcherbakova, L.A.; Slezina, M.P.; Odintsova, T.I. Investigation of the Activity of Chenopodium album Seed Extracts and Fusarium sam bucinum Culture Broth against Some Phytopathogenic Fungi. Sel’skokhozyaistvennaya Biol. 2016, 51, 739–745. [Google Scholar] [CrossRef]
- Buono, D.D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141–163. [Google Scholar]
- Efremov, A.P. Lekarstvennye Rasteniya i Griby Srednei Polosy Rossii: Polnyi Atlas-Opredelitel (Medicinal Plants and Mushrooms of Middle Russia: A Complete Atlas-Identifier), 2nd ed.; Fiton XXI: Moscow, Russia, 2021; p. 504. [Google Scholar]
- Shikov, A.N.; Kundracikova, M.; Palama, T.L.; Pozharitskaya, O.; Kosman, V.; Makarov, V.; Galambosi, B.; Kim, H.J.; Jang, Y.P.; Choi, Y.H.; et al. Phenolic constituents of Gnaphalium uliginosum L. Ind. Crops Prod. 2010, 31, 45–47. [Google Scholar] [CrossRef]
- Ayad, R.; Akkal, S. Phytochemistry and biological activities of algerian Centaurea and related genera. Stud. Nat. Prod. Chem. 2019, 63, 357–414. [Google Scholar]
- Lockowandt, L.J.; Pinela, C.; Roriz, C.; Pereira, R.; Abreu, R.; Calhelha, M.; Alves, L.; Barros, M.; Bredol, I. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef]
- Diaz, E.; Javier, O.; Méndez-Gutiérrez, A.; Jesus, L.; Sharma, A.; Villarreal, M.; Cardoso Taketa, A. Antibacterial Activity of Bougainvillea glabra, Eucalyptus globulus, Gnaphalium attenuatum, and Propolis Collected in Mexico. Pharmacol. Pharm. 2012, 3, 433–438. [Google Scholar] [CrossRef]
- Apaza Ticona, L.; Puerto Madorrán, M.J.; Hervás Povo, B.; Ortega Domenech, M.; Rumbero Sánchez, A. Isolation and characterisation of antibacterial and anti-inflammatory compounds from Gnaphalium polycaulon L. J. Ethnopharmacol. 2022, 282, 114. [Google Scholar] [CrossRef] [PubMed]
- Sharonova, N.; Terenzhev, D.; Bushmeleva, K.; Gumerova, S.; Lyubina, A.; Fitsev, I.; Belov, T. Phytochemical Contents, Antimicrobial and Antioxidant Properties of Gnaphalium uliginosum L. Ethanolic Extract and Essential Oil for Agricultural Uses. Asian J. Chem. 2019, 31, 2672–2678. [Google Scholar]
- Shanmugapriya, K.; Subramanian, P.; Boomi, P.; Subaskumar, R.; Sundaram, R.; Thayumanavan, T. An eco-friendly Gnaphalium polycaulon mediated silver nanoparticles: Synthesis, characterization, antimicrobial, wound healing and drug release studies. J. Drug Deliv. Sci. Technol. 2020, 61, 115–120. [Google Scholar] [CrossRef]
- Rojas-Bribiesca, G.; Lévaro, J.; Tortoriello, J.; Navarro, V. Antimicrobial evaluation of certain plants used in Mexican traditional medicine for the treatment of respiratory diseases. J. Ethnopharmacol. 2001, 74, 97–101. [Google Scholar] [CrossRef]
- Al-Zubairy, M.A.; Hussein, K.; Alkhyat, S.H.; Al-Mahdi, A.Y.; Alghalibi, S.M.; Al-Gheethi, A.A.; Al-Shaibani, M.M.; El Enshasy, H.A.; Sidik, N.M. Antibacterial Activity of a Novel Oligosaccharide from Streptomyces californics against Erwinia carotovora subsp. Carotovora. Molecules 2022, 27, 2384. [Google Scholar] [CrossRef]
- Fitsev, I.M.; Nikitin, E.N.; Rakhmaeva, A.M.; Terenzhev, D.A.; Sakhno, T.M.; Nasybullina, Z.R. Chemical Composition of Cupressus sempervirens L. and Thuja occidentalis L. Essential Oils and Their Activity against Phytopathogenic Fungi. Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauk. 2022, 164, 392–407. [Google Scholar] [CrossRef]
- Lin, H.; Tsao, R. Antimicrobials from plants—Food preservation and shelf life extension. Compr. Biotechnol. 2019, 4, 703–714. [Google Scholar]
- Zibareva, L.N.; Filonenko, E.S. The Influence of Ultrasonic Treatment on the Extraction of Biologically Active Compounds from Plants of the Caryophyllaceae Family. Chem. Plant Raw Mater. 2018, 2, 145–151. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards; Barry, A.L. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Document M26-A; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 1999; Volume 19, pp. 20–29. [Google Scholar]
- Zhang, W.; Wu, C.Z.; Fan, S.Y. Chemical constituents from Gnaphalium affine and their xanthine oxidase inhibitory activity. Chin. J. Nat. Med. 2018, 16, 347. [Google Scholar] [CrossRef]
- Platonov, V.V.; Sukhikh, G.T.; Dunayev, V.A.; Khadartsev, A.A.; Yarkova, T.A.; Datieva, F.S. Chemical composition of the ethanol extract of common tansy (Tanacetum vulgre L., Astrove family—Asteraceal). Bull. New Med. Technol. 2021, 3, 15. [Google Scholar]
- Platonov, V.V.; Khadartsev, A.A.; Valentinov, B.G.; Sukhoi, G.T.; Dunaev, V.A.; Volochaeva, M.V. Chemical composition of hexane extract of roots of wild medicinal Dandelion (Dandelion officinalic wiggs., family Asteraceae—Compound. Bull. New Med. Technol. Electron. Ed. 2022, 2, 13. [Google Scholar]
- Murray, R.D.; Mendez, J.; Brown, S.A. The Natural Coumarins: Occurrence. Chemistry and Biochemistry; Wiley: Hoboken, NJ, USA, 1982; pp. 1–12. [Google Scholar]
- Mironov, A.; Colanzi, A.; Polishchuk, R.; Beznoussenko, G.; Mironov, A.; Fusella, A.; Di Tullio, G.; Silletta, M.; Corda, D.; De Matteis, M.; et al. Dicumarol, an inhibitor of ADP-ribosylation of CtBP3/BARS, fragments golgi non-compact tubular zones and inhibits intra-golgi transport. Eur. J. Cell Biol. 2004, 83, 263–279. [Google Scholar] [CrossRef]
- Beltrame, F.L.; Pessini, G.L.; Doro, D.L.; Dias Filho, B.D.; Bazotte, R.B.; Cortez, D.A.G. Evaluation of the antidiabetic and antibacterial activity of Cissus secyoides. Braz. Arch. Biol. Technol. 2002, 45, 21–25. [Google Scholar] [CrossRef]
- Sen, A.; Dhavan, P.; Shukla, K.K.; Singh, S.; Tejovathi, G. Analysis of IR, NMR and Antimicrobial Activity of β- Sitosterol Isolated from Momordica charantia. Sci. Secur. J. Biotechnol. 2012, 1, 9–13. [Google Scholar]
- Yusuf, A.J.; Abdullahi, M.I.; Aleku, G.A.; Ibrahim, I.A.A.; Alebiosu, I.O.; Yahaya, M. Antimicrobial activity of stigmasterol from the stem bark of Neocarya macrophylla. J. Med. Plants Econ. Dev. 2018, 2, 38. [Google Scholar] [CrossRef]
- Alvarez-Martinez, F.J.; Catalan, B.E.; Herranz-Lopez, M.; Micol, V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, S.; Holl, D. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016. J. Ethnopharmacol. 2017, 208, 236–252. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Hernandez, E.; Gonzalez-Garcia, V.; Palacio-Bielsa, A.; Lorenzo-Vidal, B.; Buzon-Duran, L.; Martin-Gil, J.; Martin-Ramos, P. Antibacterial Activity of Ginkgo biloba extracts against Clavibacter michiganensis subsp. michiganensis, Pseudomonas spp., and Xanthomonas vesicatoria. Horticulturae 2023, 9, 461. [Google Scholar] [CrossRef]
- Bhardwaj, S.K.; Laura, J.S. Antibacterial activity of some plant extracts against pathogenic bacteria Erwinia carotovora subsp. Carotovora. Potato J. 2008, 35, 72–77. [Google Scholar]
- Elapov, A.A.; Kuznetsov, N.N.; Marakhova, A.I. Application of Ultrasound in the Extraction of Biologically Active Compounds from Plant Raw Materials Used or Promising for Use in Medicine (Review). Razrab. I Regist. Lek. Sredstv. 2021, 10, 96–116. [Google Scholar]
- Makarova, N.V.; Eremeeva, N.B. Comparative Study of the Influence of Ultrasonic Effects on the Extraction of Antioxidant Compounds from Bilberry Berries (Vaccinium myrtillus L.). Khimiya Rastenitelnogo Syr’ya 2020, 1, 65–67. [Google Scholar]
- Sharma, P.; Wichaphon, J.; Klangpetch, W. Antimicrobial and antioxidant activities of defatted Moringa oleifera seed meal extract obtained by ultrasound-assisted extraction and application as a natural antimicrobial coating for raw chicken sausages. Int. J. Food Microbiol. 2020, 332, 97–101. [Google Scholar] [CrossRef]
- Kim, D.S.; Kwack, Y.; Lee, J.H.; Chun, C. Antimicrobial Activity of Various Parts of Tomato Plants Varied with Different Solvent Extracts. Plant Pathol. J. 2019, 35, 149–155. [Google Scholar] [CrossRef]
- Nikitin, E.; Fitsev, I.; Egorova, A.; Logvinenko, L.; Terenzhev, D.; Bekmuratova, F.; Rakhmaeva, A.; Shumatbaev, G.; Gatiyatullina, A.; Shevchuk, O.; et al. Five Different Artemisia L. Species Ethanol Extracts’ Phytochemical Composition and Their Antimicrobial and Nematocide Activity. Int. J. Mol. Sci. 2023, 24, 14372. [Google Scholar] [CrossRef] [PubMed]
Plant | Geographical Region | Type of Raw Material | Diffusion Method, mm | Method of Serial Dilutions, µg/mL |
---|---|---|---|---|
Gnaphalium attenuatum DC. | Morelos, Mexico. | Dry-air raw materials, part Above the ground | MIC 8–21.5 | MIC 50–200 |
Gnaphalium polycaulon | La Paz, Bolivia. | Dry-air raw materials, part | MIC 10–93 | MIC 40–100 |
Gnaphalium uliginosum L. | Zelenodolsk district, Republic of Tatarstan, Russian Federation. | Above the ground | nd | MIC 62.5–1000 |
Gnaphalium polycaulon | Tamil Nadu, India. | Dry-air raw materials, part | MIC 15–33 | nd |
Gnaphalium oxyphyllum, Gnaphalium americanum | Morelos, Mexico. | Above the ground | nd | MIC 2–50 |
Gnaphalium uliginosum L. | Zelenodolsk district, Republic of Tatarstan, Russian Federation | Dry-air raw materials, leaves | nd | MIC 78–625 |
№ 1 | tR 2, min | Component | ω 3 (%) | Class of Compounds |
---|---|---|---|---|
1 | 3.199 | Octadecane | 1.946 ± 0.006 | Acyclic hydrocarbon |
2 | 5.617 | 2-Hexynoic acid | 0.130 ± 0.002 | Alkyl carboxylic acids |
3 | 6.331 | Bicyclo [2.2.1]heptan-2-ol, 1,7,7-trimethyl-, (1S-endo) | 0.185 ± 0.002 | Monoterpenoid |
4 | 6.514 | Dodecanoic acid | 0.935 ± 0.003 | |
5 | 6.943 | Eicosanoic acid, phenylmethyl ester | 0.139 ± 0.002 | Fatty acid ester |
6 | 7.080 | Folic Acid | 0.171 ± 0.002 | Vitamins |
7 | 8.092 | 9-Octadecenoic acid, (2-phenyl-1,3-dioxolan-4-yl)methyl ester, trans | 0.296 ± 0.003 | Carboxylic acids ester |
8 | 10.789 | 6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one | 0.740 ± 0.003 | Tetrahydrobenzofuran |
9 | 10.984 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 0.828 ± 0.003 | Acyclic diterpene alcohol |
10 | 11.607 | n-Hexadecanoic acid | 1.646 ± 0.004 | Carboxylic acid |
11 | 12.275 | 9,12-Octadecadienoic acid, methyl ester, (E,E) | 1.060 ± 0.004 | Carboxylic acid ester |
12 | 12.578 | 9,12-Octadecadienoic acid (Z,Z)- | 8.949 ± 0.012 | Carboxylic acid |
13 | 12.887 | 2-[4-methyl-6-(2,6,6-trimethylcyclohex-1-enyl)hexa-1,3,5-trienyl]cyclohex-1-en-1-carboxaldehyde | 3.451 ± 0.008 | Carboxaldehyde |
14 | 14.567 | 3-(1,1-Dimethylethenyl)-7-hydroxy-6-methoxy-2H-1-benzopyran-2-one | 3.227 ± 0.007 | Coumarins |
15 | 15.882 | (9Z,12Z)-octadeca-9,12-dienoic acid 2-[(2-hydroxyethoxy)methyl] ester | 2.356 ± 0.007 | Fatty acid ester |
16 | 25.043 | Campesterol | 1.979 ± 0.006 | Phytosterol |
17 | 25.924 | Stigmasterol | 5.965 ± 0.010 | Phytosterol |
18 | 27.644 | Sitosterol | 5.624 ± 0.010 | Phytosterol |
19 | 29.324 | Cyclodecasiloxane, eicosamethyl | 4.620 ± 0.009 | Siloxane |
Strains of Microorganisms | Maceration at t = 25 °C | Maceration at t = 45 °C | Maceration at t = 75 °C | Chloramphenicol * /Tebuconazole ** | ||||
---|---|---|---|---|---|---|---|---|
MIC, µg/mL | MFC, µg/mL | MIC, µg/mL | MFC, µg/mL | MIC, µg/mL | MFC, µg/mL | MIC, µg/mL | MBC/MFC, µg/mL | |
Clavibacter michiganensis | 625 ± 40 | >2500 ± 180 | 312 ± 20 | >2500 ± 180 | 625 ± 40 | >2500 ± 180 | 1 ± 0.3 | 1.9 ± 0.2 |
Erwinia carotovora spp. | 1250 ± 80 | 1250 ± 80 | 625 ± 40 | 625 ± 40 | 312 ± 20 | 312 ± 20 | 250 ± 20.6 | 250 ± 19.5 |
Rhizoctonia solani | 625 ± 40 | 2500 ± 160 | 625 ± 40 | 1250 ± 80 | 312 ± 20 | 1250 ± 80 | 31.25 ± 2.4 | 125 ± 10.3 |
Alternaria solani | >2500 ± 180 | >2500 ± 180 | >2500 ± 180 | >2500 ± 180 | >2500 ± 180 | >2500 ± 180 | 15.62 ± 1.3 | 62.5 ± 5.6 |
Power, Extraction Time | Rhizoctonia solani | Alternaria solani | Clavibacter michiganensis | Erwinia carotovora spp. | ||||
---|---|---|---|---|---|---|---|---|
MIC, µg/mL | MFC, µg/mL | MIC, µg/mL | MFC, µg/mL | MIC, µg/mL | MBC, µg/mL | MIC, µg/mL | MBC, µg/mL | |
63 W, 5 min | 625 ± 40 | >2500 ± 180 | >2500 ± 180 | >2500 ± 180 | >2500 ± 180 | >2500 ± 180 | 1250 ± 80 | 2500 |
63 W, 10 min | 625 ± 40 | >2500 ± 180 | 1250 ± 70 | >2500 ± 180 | >2500 ± 180 | >2500 ± 190 | 1250 ± 80 | 2500 |
126 W, 5 min | 312 ± 30 | 312 ± 30 | >2500 ± 180 | >2500 ± 180 | >2500 ± 175 | >2500 ± 180 | 625 ± 40 | 2500 |
126 W, 10 min | 312 ± 25 | 312 ± 25 | 1250 ± 70 | >2500 ± 180 | >2500 ± 180 | >2500 ± 175 | 312 ± 25 | 625 ± 40 |
189 W, 5 min | 156 ± 10 | 312 ± 20 | 625 ± 30 | >2500 ± 180 | 1250 ± 80 | 1250 ± 80 | 312 ± 25 | 625 ± 40 |
189 W, 10 min | 78 ± 10 | 78 ± 10 | 156 ± 10 | 312 ± 30 | 156 ± 10 | 312 ± 30 | 156 ± 10 | 312 ± 25 |
252 W, 5 min | 78 ± 10 | 78 ± 10 | 156 ± 10 | 312 ± 30 | 156 ± 10 | 312 ± 30 | 156 ± 10 | 312 ± 25 |
252 W, 10 min | 78 ± 10 | 156 ± 20 | 625 ± 30 | >2500 ± 180 | 1250 ± 80 | 1250 ± 70 | 312 ± 25 | 625 ± 40 |
315 W, 5 min | 312 ± 30 | 312 ± 30 | 625 ± 30 | >2500 ± 180 | 1250 ± 80 | 1250 ± 70 | 625 ± 40 | 1250 ± 80 |
315 W, 10 min | 625 ± 30 | 625 ± 30 | 1250 ± 70 | >2500 ± 180 | 625 ± 40 | 625 ± 40 | 2500 ± 160 | >2500 |
Tebuconazole */Chloramphenicol ** | 31.25 ± 2.4 | 125 ± 10.3 | 1.9 ± 0.3 | 1.9 ± 0.2 | 250 ± 20.6 | 250 ± 19.5 | 15.62 ± 1.3 | 62.5 ± 5.6 |
Plant Parts | Rhizoctonia solani | Alternaria solani | ||||||
---|---|---|---|---|---|---|---|---|
189 W, 10 min | 252 W, 5 min | 189 W, 10 min | 252 W, 5 min | |||||
MIC, µg/mL | MBC, µg/mL | MIC, µg/mL | MBC, µg/mL | MIC, µg/mL | MBC, µg/mL | MIC, µg/mL | MBC, µg/mL | |
Roots | 1250 ± 70 | >2500 ± 180 | 1250 ± 70 | >2500 ± 180 | 1250 ± 70 | >2500 ± 180 | 1250 ± 70 | >2500 ± 180 |
Stems | 625 ± 40 | >2500 ± 180 | 625 ± 40 | >2500 ± 180 | 1250 ± 70 | 1250 ± 70 | 1250 ± 70 | 1250 ± 70 |
Flowers | 78 ± 5 | 156 ± 10 | 78 ± 5 | 312 ± 25 | 156 ± 10 | 312 ± 25 | 156 ± 10 | 312 ± 25 |
Leaves | 156 ± 10 | 312 ± 25 | 312 ± 25 | 312 ± 30 | 312 ± 30 | 312 ± 30 | 312 ± 25 | 625 ± 40 |
Tebuconazole * | 31 ± 2.4 | 125 ± 10.3 | 31.25 ± 2.4 | 125 ± 10.3 | 15.62 ± 1.3 | 62.5 ± 5.6 | 15.62 ± 1.3 | 62.5 ± 5.6 |
Plant Parts | Clavibacter michiganensis | Erwinia carotovora spp. | ||||||
---|---|---|---|---|---|---|---|---|
189 W, 10 min | 252 W, 5 min | 189 W, 10 min | 252 W, 5 min | |||||
MIC, µg/mL | MBC, µg/mL | MIC, µg/mL | MBC, µg/mL | MIC, µg/mL | MBC, µg/mL | MIC, µg/mL | MBC, µg/mL | |
Roots | 625 ± 40 | 625 ± 40 | 625 ± 40 | 1250 ± 80 | >2500 ± 180 | >2500 ± 180 | 1250 ± 80 | 2500 ± 160 |
Stems | 625 ± 40 | 625 ± 40 | 625 ± 40 | 625 ± 40 | >2500 ± 180 | >2500 ± 180 | 1250 ± 80 | 2500 ± 160 |
Flowers | 156 ± 10 | 156 ± 10 | 312 ± 25 | 312 ± 25 | 156 ± 10 | 312 ± 25 | 312 ± 25 | 312 ± 25 |
Leaves | 312 ± 25 | 312 ± 25 | 312 ± 25 | 625 ± 40 | 156 ± 10 | 312 ± 25 | 312 ± 25 | 312 ± 25 |
Chloramphenicol * | 1.9 ± 0.3 | 1.9 ± 0.2 | 1.9 ± 0.2 | 1.9 ± 0.3 | 250 ± 20.4 | 250 ± 19.5 | 250 ± 19.6 | 250 ± 19.6 |
Bacterial Strain | Flowers | Leaves | Roots | Stems | Total Biomass (Maceration) | Total Biomass (US) | Chloramphenicol * |
---|---|---|---|---|---|---|---|
Mm | |||||||
E. carotovora | 14 ± 0.42 | 14 ± 0.42 | 0 | 0 | 13 ± 0.38 | 18 ± 0.53 | 35 ± 1.1 |
C. michiganensis | 21 ± 0.53 | 24 ± 0.72 | 0 | 0 | 22 ± 0.6 | 23 ± 0.69 | 56 ± 1.68 |
№ | Power, W. | Frequency, kHz. | Time, min. |
---|---|---|---|
1. | 63 | 16.9 | 5 |
2. | 126 | 22.0 | 5 |
3. | 189 | 22.4 | 5 |
4. | 252 | 22.1 | 5 |
5. | 315 | 22.1 | 5 |
6. | 63 | 16.9 | 10 |
7. | 126 | 22.0 | 10 |
8. | 189 | 22.4 | 10 |
9. | 252 | 22.1 | 10 |
10. | 315 | 22.1 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davydova, L.; Menshova, A.; Shumatbaev, G.; Babaev, V.; Nikitin, E. Phytochemical Study of Ethanol Extract of Gnaphalium uliginosum L. and Evaluation of Its Antimicrobial Activity. Antibiotics 2024, 13, 785. https://doi.org/10.3390/antibiotics13080785
Davydova L, Menshova A, Shumatbaev G, Babaev V, Nikitin E. Phytochemical Study of Ethanol Extract of Gnaphalium uliginosum L. and Evaluation of Its Antimicrobial Activity. Antibiotics. 2024; 13(8):785. https://doi.org/10.3390/antibiotics13080785
Chicago/Turabian StyleDavydova, Lilia, Angelina Menshova, Georgiy Shumatbaev, Vasily Babaev, and Evgeny Nikitin. 2024. "Phytochemical Study of Ethanol Extract of Gnaphalium uliginosum L. and Evaluation of Its Antimicrobial Activity" Antibiotics 13, no. 8: 785. https://doi.org/10.3390/antibiotics13080785
APA StyleDavydova, L., Menshova, A., Shumatbaev, G., Babaev, V., & Nikitin, E. (2024). Phytochemical Study of Ethanol Extract of Gnaphalium uliginosum L. and Evaluation of Its Antimicrobial Activity. Antibiotics, 13(8), 785. https://doi.org/10.3390/antibiotics13080785