Carbapenem-Resistant Enterobacterales in the Western Balkans: Addressing Gaps in European AMR Surveillance Map
Abstract
:1. Introduction
2. AMR Trends in the Western Balkans
3. CRE in the Western Balkans
3.1. Serbia
3.2. Albania
3.3. Bosnia and Herzegovina
3.4. Kosovo
3.5. Montenegro
3.6. North Macedonia
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Review on Antimicrobial Resistance; Wellcome Trust: London, UK, 2016. [Google Scholar]
- World Health Organization Global Action Plan on Antimicrobial Resistance. 2015. Available online: https://apps.who.int/iris/handle/10665/193736 (accessed on 9 April 2024).
- WHO. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655, Erratum in Lancet 2022, 400, 1102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Fang, X.; Zhang, J.; Zheng, X.; Shangguan, S.; Chen, S.; Shen, Y.; Liu, Z.; Li, J.; Zhang, R.; et al. Impact of carbapenem resistance on mortality in patients infected with Enterobacteriaceae: A systematic review and meta-analysis. BMJ Open 2021, 11, e054971. [Google Scholar] [CrossRef] [PubMed]
- Doumith, M.; Ellington, M.J.; Livermore, D.M.; Woodford, N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J. Antimicrob. Chemother. 2009, 63, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Ambler, R.P. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar]
- Osano, E.; Arakawa, Y.; Wacharotayankun, R.; Ohta, M.; Horii, T.; Ito, H.; Yoshimura, F.; Kato, N. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob. Agents Chemother. 1994, 38, 71–78. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef]
- Logan, L.K.; Weinstein, R.A. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef]
- Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends Mol. Med. 2012, 18, 263–272. [Google Scholar] [CrossRef] [PubMed]
- van Duin, D.; Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017, 8, 460–469. [Google Scholar] [CrossRef]
- Patel, G.; Bonomo, R.A. “Stormy waters ahead”: Global emergence of carbapenemases. Front. Microbiol. 2013, 4, 48. [Google Scholar] [CrossRef] [PubMed]
- Eichenberger, E.M.; Thaden, J.T. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics 2019, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.A.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019, 33, e00102-19. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef]
- El-Sayed Ahmed, M.A.E.; Zhong, L.L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Shahzad, S.; Willcox, M.D.P.; Rayamajhee, B. A Review of Resistance to Polymyxins and Evolving Mobile Colistin Resistance Gene (mcr) among Pathogens of Clinical Significance. Antibiotics 2023, 12, 1597. [Google Scholar] [CrossRef]
- European Union. 2015. Available online: https://research-and-innovation.ec.europa.eu/strategy/strategy-2020-2024/europe-world/international-cooperation/regional-dialogues-and-international-organisations/western-balkans_en (accessed on 26 April 2024).
- European Centre for Disease Prevention and Control. Carbapenemase-Producing Bacteria in Europe: Interim Results from the European Survey on Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) Project; ECDC: Stockholm, Sweden, 2013. [Google Scholar]
- Brolund, A.; Lagerqvist, N.; Byfors, S.; Struelens, M.J.; Monnet, D.L.; Albiger, B.; Kohlenberg, A.; European Antimicrobial Resistance Genes Surveillance Network (EURGen-Net) capacity survey group. Worsening epidemiological situation of carbapenemase-producing Enterobacteriaceae in Europe, assessment by national experts from 37 countries, July 2018. Euro Surveill. 2019, 24, 1900123. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Surveillance in Europe 2023—2021 Data; European Centre for Disease Prevention and Control and World Health Organization: Stockholm, Sweden, 2023.
- WHO Regional Office for Europe Antimicrobial Medicines Consumption (AMC) Network: AMC Data 2019; WHO Regional Office for Europe: Copenhagen, Denmark. 2022. Available online: https://www.who.int/europe/publications/i/item/9789289058278 (accessed on 14 September 2024).
- Suetens, C.; Latour, K.; Kärki, T.; Ricchizzi, E.; Kinross, P.; Moro, M.L.; Jans, B.; Hopkins, S.; Hansen, S.; Lyytikäinen, O.; et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: Results from two European point prevalence surveys, 2016 to 2017. Euro Surveill. 2018, 23, 1800516. [Google Scholar] [CrossRef]
- Plachouras, D.; Kärki, T.; Hansen, S.; Hopkins, S.; Lyytikäinen, O.; Moro, M.L.; Reilly, J.; Zarb, P.; Zingg, W.; Kinross, P.; et al. Antimicrobial use in European acute care hospitals: Results from the second point prevalence survey (PPS) of healthcare-associated infections and antimicrobial use, 2016 to 2017. Euro Surveill. 2018, 23, 1800393. [Google Scholar] [CrossRef] [PubMed]
- Zec, S.; Despotovic, A.; Spurnic-Radovanovic, A.; Milosevic, I.; Jovanovic, M.; Pelemis, M.; Stevanovic, G. Antimicrobial resistance in patients with urinary tract infections and the impact on empiric therapy in Serbia. J. Infect. Dev. Ctries. 2016, 10, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Djuric, O.; Jovanovic, S.; Stosovic, B.; Tosic, T.; Jovanovic, M.; Markovic-Denic, L. Antimicrobial resistance of selected invasive bacteria in a tertiary care center: Results of a prospective surveillance study. J. Infect. Dev. Ctries. 2016, 10, 1325–1331. [Google Scholar] [CrossRef]
- Djuric, O.; Markovic-Denic, L.; Jovanovic, B.; Bumbasirevic, V. High incidence of multiresistant bacterial isolates from bloodstream infections in trauma emergency department and intensive care unit in Serbia. Acta Microbiol. Immunol. Hung. 2019, 66, 307–325. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, Z.M.; Folic, M.M.; Jankovic, S.M. Distribution and antibiotic susceptibility of pathogens isolated from adults with hospital-acquired and ventilator-associated pneumonia in intensive care unit. J. Infect. Public. Health 2017, 10, 740–744. [Google Scholar] [CrossRef]
- Popović, R.; Tomić, Z.; Tomas, A.; Anđelić, N.; Vicković, S.; Jovanović, G.; Bukumirić, D.; Horvat, O.; Sabo, A. Five-year surveillance and correlation of antibiotic consumption and resistance of Gram-negative bacteria at an intensive care unit in Serbia. J. Chemother. 2020, 32, 294–303. [Google Scholar] [CrossRef]
- Despotovic, A.; Milosevic, B.; Cirkovic, A.; Vujovic, A.; Cucanic, K.; Cucanic, T.; Stevanovic, G. The Impact of COVID-19 on the Profile of Hospital-Acquired Infections in Adult Intensive Care Units. Antibiotics 2021, 10, 1146. [Google Scholar] [CrossRef]
- Gajic, I.; Jovicevic, M.; Popadic, V.; Trudic, A.; Kabic, J.; Kekic, D.; Ilic, A.; Klasnja, S.; Hadnadjev, M.; Popadic, D.J.; et al. The emergence of multi-drug-resistant bacteria causing healthcare-associated infections in COVID-19 patients: A retrospective multi-centre study. J. Hosp. Infect. 2023, 137, 1–7. [Google Scholar] [CrossRef]
- Mirović, V.; Carević, B.; Stepanović, S.; Lepšanović, Z. An outbreak of infection due to metallo-beta-lactamase-producing Proteus mirabilis in the surgical intensive care unit. Scr. Medica 2011, 42, 75–79. [Google Scholar] [CrossRef]
- Mirovic, V.; Tomanovic, B.; Lepsanovic, Z.; Jovcic, B.; Kojic, M. Isolation of Klebsiella pneumoniae producing NDM-1 metallo-β-lactamase from the urine of an outpatient baby boy receiving antibiotic prophylaxis. Antimicrob. Agents Chemother. 2012, 56, 6062–6063. [Google Scholar] [CrossRef]
- Livermore, D.M.; Walsh, T.R.; Toleman, M.; Woodford, N. Balkan NDM-1: Escape or transplant? Lancet Infect. Dis. 2011, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Struelens, M.J.; Monnet, D.L.; Magiorakos, A.P.; Santos O’Connor, F.; Giesecke, J.; European NDM-1 Survey Participants. New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: Emergence and response in Europe. Euro Surveill. 2010, 15, 19716. [Google Scholar] [CrossRef] [PubMed]
- Dortet, L.; Poirel, L.; Nordmann, P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed. Res. Int. 2014, 2014, 249856. [Google Scholar] [CrossRef]
- Bogaerts, P.; Bouchahrouf, W.; de Castro, R.R.; Deplano, A.; Berhin, C.; Piérard, D.; Denis, O.; Glupczynski, Y. Emergence of NDM-1-producing Enterobacteriaceae in Belgium. Antimicrob. Agents Chemother. 2011, 55, 3036–3038. [Google Scholar] [CrossRef]
- Seiffert, S.N.; Marschall, J.; Perreten, V.; Carattoli, A.; Furrer, H.; Endimiani, A. Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int. J. Antimicrob. Agents. 2014, 44, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Potron, A.; Poirel, L.; Rondinaud, E.; Nordmann, P. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill. 2013, 18, 20549. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, H.; Glasner, C.; Albiger, B.; Aanensen, D.M.; Tomlinson, C.T.; Andrasević, A.T.; Cantón, R.; Carmeli, Y.; Friedrich, A.W.; Giske, C.G.; et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): A prospective, multinational study. Lancet Infect. Dis. 2017, 17, 153–163. [Google Scholar] [CrossRef]
- Novovic, K.; Vasiljevic, Z.; Kuzmanovic, M.; Lozo, J.; Begovic, J.; Kojic, M.; Jovcic, B. Novel E. coli ST5123 Containing blaNDM-1 Carried by IncF Plasmid Isolated from a Pediatric Patient in Serbia. Microb. Drug Resist. 2016, 22, 707–711. [Google Scholar] [CrossRef]
- Novovic, K.; Filipic, B.; Veljovic, K.; Begovic, J.; Mirkovic, N.; Jovcic, B. Environmental waters and blaNDM-1 in Belgrade, Serbia: Endemicity questioned. Sci. Total Environ. 2015, 511, 393–398. [Google Scholar] [CrossRef]
- Walsh, T.R.; Weeks, J.; Livermore, D.M.; Toleman, M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. Lancet Infect. Dis. 2011, 11, 355–362. [Google Scholar] [CrossRef]
- Trudić, A.; Jelesić, Z.; Mihajlović-Ukropina, M.; Medić, D.; Zivlak, B.; Gusman, V.; Đilas, M. Carbapenemase production in hospital isolates of multidrug-resistant Klebsiella pneumoniae and Escherichia coli in Serbia. Vojnosanit. Pregl. 2017, 74, 715–721. [Google Scholar] [CrossRef]
- Novović, K.; Trudić, A.; Brkić, S.; Vasiljević, Z.; Kojić, M.; Medić, D.; Ćirković, I.; Jovčić, B. Molecular Epidemiology of Colistin-Resistant, Carbapenemase-Producing Klebsiella pneumoniae in Serbia from 2013 to 2016. Antimicrob Agents Chemother. 2017, 61, e02550-16. [Google Scholar] [CrossRef] [PubMed]
- Mijac, V.; Brkic, S.; Milic, M.; Siljic, M.; Cirkovic, V.; Perovic, V.; Markovic, M.; Cirkovic, I.; Stanojevic, M. Intestinal Colonization of Preterm Neonates with Carbapenem Resistant Enterobacteria at Hospital Discharge. Antibiotics 2023, 12, 284. [Google Scholar] [CrossRef] [PubMed]
- Brkić, S.; Božić, D.; Stojanović, N.; Vitorović, T.; Topalov, D.; Jovanović, M.; Stepanović, M.; Ćirković, I. Antimicrobial Susceptibility and Molecular Characterization of Carbapenemase-Producing Enterobacter spp. Community Isolates in Belgrade, Serbia. Microb. Drug Resist. 2020, 26, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Peirano, G.; Matsumura, Y.; Adams, M.D.; Bradford, P.; Motyl, M.; Chen, L.; Kreiswirth, B.N.; Pitout, J.D.D. Genomic Epidemiology of Global Carbapenemase-Producing Enterobacter spp., 2008-2014. Emerg. Infect. Dis. 2018, 24, 1010–1019. [Google Scholar] [CrossRef]
- Brkić, S.; Božić, D.D.; Stojanović, N.; Bulbuk, D.; Jovanović, M.; Ćirković, I. Carbapenemase-producing Klebsiella pneumoniae in community settings: A cross-sectional study in Belgrade, Serbia. Future Microbiol. 2023, 18, 389–397. [Google Scholar] [CrossRef]
- Palmieri, M.; D’Andrea, M.M.; Pelegrin, A.C.; Mirande, C.; Brkic, S.; Cirkovic, I.; Goossens, H.; Rossolini, G.M.; van Belkum, A. Genomic Epidemiology of Carbapenem- and Colistin-Resistant Klebsiella pneumoniae Isolates from Serbia: Predominance of ST101 Strains Carrying a Novel OXA-48 Plasmid. Front. Microbiol. 2020, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Can, F.; Menekse, S.; Ispir, P.; Atac, N.; Albayrak, O.; Demir, T.; Karaaslan, D.C.; Karahan, S.N.; Kapmaz, M.; Kurt Azap, O.; et al. Impact of the ST101 clone on fatality among patients with colistin-resistant Klebsiella pneumoniae infection. J. Antimicrob. Chemother. 2018, 73, 1235–1241. [Google Scholar] [CrossRef]
- Chatzidimitriou, M.; Kavvada, A.; Kavvadas, D.; Kyriazidi, M.A.; Eleftheriadis, K.; Varlamis, S.; Papaliagkas, V.; Mitka, S. Carbapenem-resistant Klebsiella pneumoniae in the Balkans: Clonal distribution and associated resistance determinants. Acta Microbiol. Immunol. Hung. 2024, 71, 10–24. [Google Scholar] [CrossRef]
- Cirkovic, I.; Muller, B.H.; Janjusevic, A.; Mollon, P.; Istier, V.; Mirande-Meunier, C.; Brkic, S. Whole-Genome Sequencing Snapshot of Clinically Relevant Carbapenem-Resistant Gram-Negative Bacteria from Wastewater in Serbia. Antibiotics 2023, 12, 350. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Hu, Y.; Zhang, G.; Zhu, B.; Gao, G.F. Detection of mobile colistin resistance gene mcr-9 in carbapenem-resistant Klebsiella pneumoniae strains of human origin in Europe. J. Infect. 2020, 80, 578–606. [Google Scholar] [CrossRef] [PubMed]
- Kostyanev, T.; Tafaj, S.; Skenduli, I.; Bardhi, D.; Kapisyzi, P.; Bino, S.; Lammens, C.; Goossens, H. First detection of KPC-3-producing Klebsiella pneumoniae in Albania. New Microbes New Infect. 2015, 4, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Parascandalo, F.A.; Zarb, P.; Tartari, E.; Lacej, D.; Bitincka, S.; Manastirliu, O.; Nika, D.; Borg, M.A. Carriage of multidrug-resistant organisms in a tertiary university hospital in Albania-a point prevalence survey. Antimicrob. Resist. Infect. Control. 2016, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Tafaj, S.; Gona, F.; Kapisyzi, P.; Cani, A.; Hatibi, A.; Bino, S.; Fico, A.; Koraqi, A.; Kasmi, G.; Cirillo, D. Isolation of the first New Delhi metallo-ß-lactamase-1 (NDM-1)-producing and colistin-resistant Klebsiella pneumoniae sequence type ST15 from a digestive carrier in Albania, May 2018. J Glob Antimicrob Resist. 2019, 17, 142–144. [Google Scholar] [CrossRef]
- Custović, A.; Zulcić-Nakić, V.; Ascerić, M.; Hadzić, S. Surveillance of intrahospital infections at the clinic for gynaecology and obstetrics. Bosn. J. Basic. Med. Sci. 2009, 9, 66–70. [Google Scholar] [CrossRef]
- Granov, D.; Dedeić-Ljubović, A.; Salimović-Bešić, I. Characterization of Carbapenemase-Producing Klebsiella pneumoniae in Clinical Center University of Sarajevo, Bosnia and Herzegovina. Microb. Drug Resist. 2020, 26, 1038–1045. [Google Scholar] [CrossRef]
- Sokolović, D.; Drakul, D.; Vujić-Aleksić, V.; Joksimović, B.; Marić, S.; Nežić, L. Antibiotic consumption and antimicrobial resistance in the SARS-CoV-2 pandemic: A single-center experience. Front. Pharmacol. 2023, 14, 1067973. [Google Scholar] [CrossRef]
- Ljubović, A.D.; Granov, Ð.; Husić, E.; Gačanović, D.; Halković, J.; Lab Ing, A.Č.; Kotorić Keser, Š.; Loga Zec, S. Prevalence of extended-spectrum β-lactamase and carbapenem-resistant Klebsiella pneumoniae in clinical samples. Saudi Med. J. 2023, 44, 801–807. [Google Scholar] [CrossRef]
- Zarfel, G.; Hoenigl, M.; Leitner, E.; Salzer, H.J.; Feierl, G.; Masoud, L.; Valentin, T.; Krause, R.; Grisold, A.J. Emergence of New Delhi metallo-β-lactamase, Austria. Emerg. Infect. Dis. 2011, 17, 129–130. [Google Scholar] [CrossRef] [PubMed]
- Papst, L.; Beović, B.; Pulcini, C.; Durante-Mangoni, E.; Rodríguez-Baño, J.; Kaye, K.S.; Daikos, G.L.; Raka, L.; Paul, M.; ESGAP, ESGBIS, ESGIE and the CRGNB treatment survey study group. Antibiotic treatment of infections caused by carbapenem-resistant Gram-negative bacilli: An international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals. Clin. Microbiol. Infect. 2018, 24, 1070–1076. [Google Scholar] [CrossRef]
- Baraniak, A.; Izdebski, R.; Fiett, J.; Gawryszewska, I.; Bojarska, K.; Herda, M.; Literacka, E.; Żabicka, D.; Tomczak, H.; Pewińska, N.; et al. NDM-producing Enterobacteriaceae in Poland, 2012–2014: Inter-regional outbreak of Klebsiella pneumoniae ST11 and sporadic cases. J Antimicrob Chemother. 2016, 71, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mijović, G.; Čizmović, L.; Vuković, M.N.; Stamatović, S.; Lopičić, M. Antibiotic Consumption in Hospitals and Resistance Rate of Klebsiella pneumoniae and Escherichia coli in Montenegro. Acta Clin. Croat. 2020, 59, 469–479. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzis, E.; Alba, A.B.; Cepeda, M.; Galan, J.A.; Geavlete, P.; Giannakopoulos, S.; Saltirov, I.; Sarica, K.; Skolarikos, A.; Stavridis, S.; et al. Bacterial spectrum and antibiotic resistance of urinary tract infections in patients treated for upper urinary tract calculi: A multicenter analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1971–1981. [Google Scholar] [CrossRef] [PubMed]
- Moser, A.I.; Keller, P.M.; Campos-Madueno, E.I.; Poirel, L.; Nordmann, P.; Endimiani, A. A Patient with Multiple Carbapenemase Producers Including an Unusual Citrobacter sedlakii Hosting an IncC blaNDM-1- and armA-carrying Plasmid. Pathog. Immun. 2021, 6, 119–134. [Google Scholar] [CrossRef]
WB Country | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EC | KP | EC | KP | EC | KP | EC | KP | EC | KP | EC | KP | |
Albania | - | - | - | - | - | - | - | - | - | - | - | - |
Bosnia and Herzegovina | 0.0 | 8.0 | 1.1 | 10.9 | 0.0 | 18.4 | 0.0 | 41.7 | 0.0 | 43.5 | 0.5 | 37.1 |
Kosovo * | NA | 0.0 | NA | 0.0 | NA | 1.5 | NA | 0.0 | NA | 0.0 | NA | 1.1 |
Montenegro | 0.0 a | 3.7 a | 0.0 a | 13.8 a | 0.0 a | 4.5 a | 0.0 a | 17.4 a | 0.0 a | 13.8 a | NA | 37.5 |
North Macedonia | 0.0 | 12.5 a | 0.0 | 17.4 a | 3.7 | 20.5 | 1.2 | 7.3 | 2.0 | 5.1 | 0.0 | 4.6 |
Serbia | 0.6 | 34.5 | 1.0 | 34.9 | 0.9 | 36.2 | 0.4 | 39.3 | 1.4 | 47.9 | 3.2 | 62.7 |
WB Country | Year | Species | Isolates (n) a | Carbapenemase Type Detected (n, %) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
KPC | IMP | VIM | NDM | OXA-48 | Multiple Types | |||||
Albania | 2014 | K. pneumoniae | 1 | 1 (100) | NP | NP | NP | NP | [59] | |
2018 | K. pneumoniae | 1 | NP | NP | NP | 1 (100) | NP | [61] | ||
Bosnia and Herzegovina | 2017–2018 | K. pneumoniae | 15 | NP | NP | NP | NP | 15 (100) | [63] | |
Kosovo * | 2010 | K. pneumoniae | 1 | ND | ND | ND | 1 (100) | ND | [66] | |
2010 | K. pneumoniae | 1 | NP | NP | NP | 1 (100) | NP | [41] | ||
E. coli | 1 | NP | NP | NP | 1 (100) | NP | ||||
Montenegro | 2010 | K. pneumoniae | 1 | NP | NP | NP | 1 (100) | NP | [41] | |
E. coli | 1 | NP | NP | NP | 1 (100) | NP | ||||
2013 | K. oxytoca | 1 | ND | NP | NP | 1 (100) | NP | [68] | ||
2013–2014 | K. pneumoniae | 10 | NP | ND | NP | 10 (100) | NP | [44] | ||
North Macedonia | 2013–2014 | K. pneumoniae | 3 | 2 (66.7) | ND | NP | NP | NP | [44] | |
2020 | K. pneumoniae | 1 | NP | NP | NP | 1 (100) | NP | [71] | ||
E. coli | 1 | NP | NP | NP | 1 (100) | NP | ||||
C. sedlakii | 1 | NP | NP | NP | 1 (100) | NP | ||||
P. stuartii | 1 | NP | NP | NP | NP | 1 (100) | ||||
Serbia | 2008 | P. mirabilis | 9 | ND | 6 (66.7) | 3 (33.3) | NP | ND | [36] | |
2010 | M. morganii | 1 | NP | NP | NP | 1 (100) | NP | [41] | ||
E. cloacae | 1 | NP | NP | NP | 1 (100) | NP | ||||
2011 | K. pneumoniae | 1 | ND | NP | NP | 1 (100) | ND | [37] | ||
2013 | K. pneumoniae | 1 | NP | NP | NP | NA | NA | 1 (100) NDM, OXA48 | [42] | |
2013–2014 | K. pneumoniae | 43 | 1 (2.4) | ND | NP | 33 (76.7) | 9 (20.9) | [44] | ||
E. coli | 5 | NP | ND | NP | 5 (100) | NP | ||||
2013–2014 | K. pneumoniae, E. colib | 58 | 1 (1.7) | NP | NP | 40 (69.0) | 10 (17.2) | 7 (12.1) NDM, OXA48 | [48] | |
2015 | E. coli | 1 | NP | NP | NP | 1 (100) | NP | [45] | ||
2013–2016 | K. pneumoniae | 27 | NP | NP | NP | 4 (14.8) | 23 (85.2) | [49] | ||
2013–2017 | K. pneumoniae | 45 | 1 (2.2) | NP | NP | 2 (4.4) | 37 (82.2) | [54] | ||
2016–2017 | Enterobacter spp. | 17 | NP | NP | NP | 12 (70.6) | 1 (5.9) | 4 (23.5) NDM, OXA48 | [51] | |
2018 | K. pneumoniae | 12 | NP | NP | NP | NP | 11 (91.7) | 1 (8.3) NDM, OXA48 | [57] | |
E. cloacae | 9 | NP | NP | NP | 4 (44.4) | NP | ||||
E. coli | 3 | NP | NP | NP | 2 (66.7) | 1 (33.3) | ||||
K. oxytoca | 3 | NP | NP | NP | NP | 1 (33.3) | ||||
2018–2019 | K. pneumoniae | 87 | 42 (48.3) | NP | NP | NP | 45 (51.7) | [50] | ||
E. coli | 1 | NP | NP | NP | 1 (100) | NP | ||||
2016–2020 | K. pneumoniae | 114 | 10 (8.8) | NP | NP | 9 (7.9) | 92 (80.7) | 1 (0.9) NDM, OXA48 1 (0.9) OXA-48, KPC 1 (0.9) NDM, KPC | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brkic, S.; Cirkovic, I. Carbapenem-Resistant Enterobacterales in the Western Balkans: Addressing Gaps in European AMR Surveillance Map. Antibiotics 2024, 13, 895. https://doi.org/10.3390/antibiotics13090895
Brkic S, Cirkovic I. Carbapenem-Resistant Enterobacterales in the Western Balkans: Addressing Gaps in European AMR Surveillance Map. Antibiotics. 2024; 13(9):895. https://doi.org/10.3390/antibiotics13090895
Chicago/Turabian StyleBrkic, Snezana, and Ivana Cirkovic. 2024. "Carbapenem-Resistant Enterobacterales in the Western Balkans: Addressing Gaps in European AMR Surveillance Map" Antibiotics 13, no. 9: 895. https://doi.org/10.3390/antibiotics13090895
APA StyleBrkic, S., & Cirkovic, I. (2024). Carbapenem-Resistant Enterobacterales in the Western Balkans: Addressing Gaps in European AMR Surveillance Map. Antibiotics, 13(9), 895. https://doi.org/10.3390/antibiotics13090895