Bacteriocin-Producing Staphylococci and Mammaliicocci Strains for Agro-Food and Public Health Applications with Relevance of Micrococcin P1
Abstract
:1. Introduction
2. Results
2.1. Inhibitory Capacity of the BP-S/M Strains
2.1.1. Antimicrobial Activity of BP-S/M Strains Against the Indicators
2.1.2. Spectrum of Antimicrobial Activity of BP-S/M Strains Against Indicators
2.2. Intensity of the Inhibitory Action of the BP-S/M Strains or Their Bacteriocin Extracts Against the Indicator Microorganisms
2.3. Cross-Immunity and Potential Combinations of BP Strains
2.4. Preliminary Characterization of Pathogenesis
3. Discussion
4. Materials and Methods
4.1. Bacteriocin-Producing and Indicator Strains
4.2. Culture Media and Growth Conditions
4.3. Detection of Antimicrobial Activity (AA)
4.4. Detection of Antifungal Activity (AF)
4.5. Intensity of the Inhibitory Capacity
4.6. Cross-Immunity Among the BP Staphylococci
4.7. Hemolysis and Gelatinase Activities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soltani, S.; Biron, E.; Ben Said, L.; Subirade, M.; Fliss, I. Bacteriocin-Based Synergetic Consortia: A Promising Strategy to Enhance Antimicrobial Activity and Broaden the Spectrum of Inhibition. Microbiol. Spectr. 2022, 10, e0040621. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, J.M.; Nadeau, É.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, M.; Segura, M. Streptococcosis. In Diseases of Swine; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 934–950. [Google Scholar]
- Lagha, B.A.; Haas, B.; Gottschalk, M.; Grenier, D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet. Res. 2017, 48, 22. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- ECDC (European Centre for Disease Prevention and Control); EFSA (European Food Safety Authority); EMA (European Medicines Agency). Joint Scientific Report of ECDC, EFSA and EMEA on Methicillin Resistant Staphylococcus aureus (MRSA) in Livestock, Companion Animals and Foods. 2009, EFSA-Q-2009-00612 (EFSA Scientific Report) and EMEA/CVMP/SAGAM/62464/2009. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/rn-301 (accessed on 4 January 2025).
- European Centre for Disease Prevention and Control (ECDC). Antimicrobial Resistance Surveillance in Europe 2014; Annual Report of the European Antimicrobial Resistance Surveillance Network; EARS-Net: Stockholm, Sweden, 2015. [Google Scholar]
- Gomes, F.; Henriques, M. Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Curr. Microbiol. 2016, 72, 377–382. [Google Scholar] [CrossRef]
- Mella, A.; Ulloa, F.; Valdés, I.; Olivares, N.; Ceballos, A.; Kruze, J. Evaluation of a new vaccine against Staphylococcus aureus mastitis in dairy herds of southern Chile. I. Challenge trial. Austral J. Vet. Sci. 2017, 49, 149–160. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Calogero, A.; Montesano, D.; Naviglio, D. Relationships between food and diseases: What to know to ensure food safety. Food Res. Int. 2020, 137, 109414. [Google Scholar] [CrossRef]
- Wang, C.H.; Hsieh, Y.H.; Powers, Z.M.; Kao, C.Y. Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. Int. J. Mol. Sci. 2020, 21, 1061. [Google Scholar] [CrossRef]
- Anyaegbunam, N.J.; Anekpo, C.C.; Anyaegbunam, Z.K.G.; Doowuese, Y.; Chinaka, C.B.; Odo, O.J.; Sharndama, H.C.; Okeke, O.P.; Mba, I.E. The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects. Microbiol. Res. 2022, 264, 127155. [Google Scholar] [CrossRef]
- Mba, I.E.; Nweze, E.I. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria. Yale J. Biol. Med. 2022, 95, 445–463. [Google Scholar]
- Mba, I.E.; Nweze, E.I. Application of Nanotechnology in the Treatment of Infectious Diseases: An Overview. In Nanotechnology for Infectious Diseases; Hameed, S., Rehman, S., Eds.; Springer: Singapore, 2022; pp. 25–51. [Google Scholar]
- Darbandi, A.; Asadi, A.; Mahdizade, A.M.; Ohadi, E.; Talebi, M.; Halaj, Z.M.; Darb, E.A.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and potential use as antimicrobials. Clin. Lab. Anal. 2022, 36, e24093. [Google Scholar] [CrossRef]
- Huang, F.; Teng, K.; Liu, Y.; Cao, Y.; Wang, T.; Ma, C.; Zhang, J.; Zhong, J. Bacteriocins: Potential for Human Health. Oxidative Med. Cell. Longev. 2021, 2021, 5518825. [Google Scholar] [CrossRef] [PubMed]
- Telhig, S.; Ben Said, L.; Torres, C.; Rebuffat, S.; Zirah, S.; Fliss, I. Evaluating the Potential and Synergetic Effects of Microcins against Multidrug-Resistant Enterobacteriaceae. Microbiol. Spectr. 2022, 10, e02752-21. [Google Scholar] [CrossRef] [PubMed]
- Gillor, O.; Ghazaryan, L. Recent Advances in Bacteriocin Application as Antimicrobials. Recent Pat. Anti-Infect. Drug Discov. 2007, 2, 115–122. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Wirth, J.S.; Saravanan, V.S. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov.; and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 5926–5936. [Google Scholar]
- Dekham, K.; Jones, S.M.; Jitrakorn, S.; Charoonnart, P.; Thadtapong, N.; Intuy, R.; Dubbs, P.; Siripattanapipong, S.; Saksmerprome, V.; Chaturongakul, S. Functional and genomic characterization of a novel probiotic Lactobacillus johnsonii KD1 against shrimp WSSV infection. Sci. Rep. 2023, 13, 21610. [Google Scholar] [CrossRef]
- Khusro, A.; Aarti, C.; Dusthackeer, A.; Agastian, P. Anti-tubercular and probiotic properties of coagulase-negative staphylococci isolated from Koozh, a traditional fermented food of South India. Microb. Pathog. 2018, 114, 239–250. [Google Scholar] [CrossRef]
- Khusro, A.; Aarti, C.; Mahizhaveni, B.; Dusthackeer, A.; Agastian, P.; Esmail, G.A.; Ghilan, A.K.M.; Al-Dhabi, N.A.; Arasu, M.V. Purification and characterization of anti-tubercular and anticancer protein from Staphylococcus hominis strain MANF2: In silico structural and functional insight of peptide. Saudi J. Biol. Sci. 2020, 27, 1107–1116. [Google Scholar] [CrossRef]
- Cebrián, E.; Núñez, F.; Gálvez, F.J.; Delgado, J.; Bermúdez, E.; Rodríguez, M. Selection and Evaluation of Staphylococcus xylosus as a Biocontrol Agent against Toxigenic Moulds in a Dry-Cured Ham Model System. Microorganisms 2020, 8, 793. [Google Scholar] [CrossRef]
- Mangrolia, U.; Osborne, W.J. Staphylococcus xylosus VITURAJ10: Pyrrolo [1,2α] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) (PPDHMP) producing, potential probiotic strain with antibacterial and anticancer activity. Microb. Pathog. 2020, 147, 104259. [Google Scholar] [CrossRef]
- Fernández-Fernández, R.; Lozano, C.; Reuben, R.C.; Ruiz-Ripa, L.; Zarazaga, M.; Torres, C. Comprehensive Approaches for the Search and Characterization of Staphylococcins. Microorganisms 2023, 11, 1329. [Google Scholar] [CrossRef]
- Fernández-Fernández, R.; Lozano, C.; Eguizábal, P.; Ruiz-Ripa, L.; Martínez-Álvarez, S.; Abdullahi, I.N.; Zarazaga, M.; Torres, C. Bacteriocin-Like Inhibitory Substances in Staphylococci of Different Origins and Species With Activity Against Relevant Pathogens. Front. Microbiol. 2022, 13, 870510. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, R.; Elsherbini, A.M.A.; Lozano, C.; Martínez, A.; De Toro, M.; Zarazaga, M.; Peschel, A.; Krismer, B.; Torres, C. Genomic Analysis of Bacteriocin-Producing Staphylococci: High Prevalence of Lanthipeptides and the Micrococcin P1 Biosynthetic Gene Clusters. Probiotics Antimicrob. Prot. 2023. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, R.; Lozano, C.; Fernández-Pérez, R.; Zarazaga, M.; Peschel, A.; Krismer, B.; Torres, C. Detection of Micrococcin MP1 in commensal and environmental staphylococcal isolates with high antimicrobial activity against MRSA. Int. J. Antimicrob. Agents 2023, 62, 10696. [Google Scholar] [CrossRef]
- Soltani, S.; Hammami, R.; Cotter, P.D.; Rebuffat, S.; Said, L.B.; Gaudreau, H.; Bédard, F.; Biron, E.; Drider, D.; Fliss, I. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiol. Rev. 2021, 45, fuaa039. [Google Scholar] [CrossRef]
- Al Atya, A.K.; Abriouel, H.; Kempf, I.; Jouy, E.; Auclair, E.; Vachée, A.; Drider, D. Effects of Colistin and Bacteriocins Combinations on the In Vitro Growth of Escherichia coli Strains from Swine Origin. Probiotics Antimicrob. Prot. 2016, 8, 183–190. [Google Scholar] [CrossRef]
- LeBel, G.; Piché, F.; Frenette, M.; Gottschalk, M.; Grenier, D. Antimicrobial activity of nisin against the swine pathogen Streptococcus suis and its synergistic interaction with antibiotics. Peptides 2013, 50, 19–23. [Google Scholar] [CrossRef]
- Diez-Gonzalez, F. Applications of bacteriocins in livestock. Curr. Issues Intest. Microbiol. 2007, 8, 15–23. [Google Scholar]
- Joerger, R. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 2003, 82, 640–647. [Google Scholar] [CrossRef]
- Vandeplas, S.; Dauphin, R.D.; Beckers, Y.; Thonart, P.; Théwis, A. Salmonella in Chicken: Current and Developing Strategies to Reduce Contamination at Farm Level. J. Food Prot. 2010, 73, 774–785. [Google Scholar] [CrossRef]
- Malinowski, E.; Krumrych, W.; Markiewicz, H. The effect of low intensity laser irradiation of inflamed udders on the efficacy of antibiotic treatment of clinical mastitis in dairy cows. Vet. Ital. 2019, 55, 253–260. [Google Scholar]
- Fernández, L.; Delgado, S.; Herrero, H.; Maldonado, A.; Rodríguez, J.M. The Bacteriocin Nisin, an Effective Agent for the Treatment of Staphylococcal Mastitis During Lactation. J. Hum. Lact. 2008, 24, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Santos, F.; Pinto, M.S.; Barbosa, A.A.T.; Brito, M.A.V.P.; Mantovani, H.C. Efficacy of a Ruminal Bacteriocin Against Pure and Mixed Cultures of Bovine Mastitis Pathogens. Indian J. Microbiol. 2019, 59, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, R.; Todorov, S.D. Bacteriocins: Exploring alternatives to antibiotics in mastitis treatment. Braz. J. Microbiol. 2010, 41, 542–562. [Google Scholar] [CrossRef]
- Heilbronner, S.; Krismer, B.; Brötz-Oesterhelt, H.; Peschel, A. The microbiome-shaping roles of bacteriocins. Nat. Rev. Microbiol. 2021, 19, 726–739. [Google Scholar] [CrossRef] [PubMed]
- Bastos, M.C.; Ceotto, H.; Coelho, M.L.; Nascimento, J.S. Staphylococcal antimicrobial peptides: Relevant properties and potential biotechnological applications. Curr. Pharm. Biotechnol. 2009, 10, 38–61. [Google Scholar] [CrossRef]
- Wladyka, B.; Piejko, M.; Bzowska, M.; Pieta, P.; Krzysik, M.; Mazurek, Ł.; Guevara-Lora, I.; Bukowski, M.; Sabat, A.J.; Friedrich, A.W.; et al. A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors. Sci. Rep. 2015, 5, 14569. [Google Scholar] [CrossRef]
- Ovchinnikov, K.V.; Kranjec, C.; Telke, A.; Kjos, M.; Thorstensen, T.; Scherer, S.; Carlsen, H.; Diep, D.B. A Strong Synergy Between the Thiopeptide Bacteriocin Micrococcin P1 and Rifampicin Against MRSA in a Murine Skin Infection Model. Front. Immunol. 2021, 12, 676534. [Google Scholar] [CrossRef]
- Degiacomi, G.; Personne, Y.; Mondésert, G.; Ge, X.; Mandava, C.S.; Hartkoorn, R.C.; Boldrin, F.; Goel, P.; Peisker, K.; Benjak, A.; et al. Micrococcin P1—A bactericidal thiopeptide active against Mycobacterium tuberculosis. Tuberculosis 2016, 100, 95–101. [Google Scholar] [CrossRef]
- Bennett, S.; Ben Said, L.; Lacasse, P.; Malouin, F.; Fliss, I. Susceptibility to Nisin, Bactofencin, Pediocin and Reuterin of Multidrug Resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis Causing Bovine Mastitis. Antibiotics 2021, 10, 1418. [Google Scholar] [CrossRef]
- Bennett, S.; Fliss, I.; Ben Said, L.; Malouin, F.; Lacasse, P. Efficacy of bacteriocin-based formula for reducing staphylococci, streptococci, and total bacterial counts on teat skin of dairy cows. J. Dairy Sci. 2022, 105, 4498–4507. [Google Scholar] [CrossRef]
- Marques-Bastos, S.L.S.; Coelho, M.L.V.; De Sousa Santos, I.N.; Moreno, D.S.A.; Barrias, E.S.; De Mendonça, J.F.M.; Mendonça, L.C.; Lange, C.C.; De Paiva Brito, M.A.V.; Do Carmo De Freire Bastos, M. Effects of the natural antimicrobial peptide aureocin A53 on cells of Staphylococcus aureus and Streptococcus agalactiae involved in bovine mastitis in the excised teat model. World J. Microbiol. Biotechnol. 2023, 39, 5. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Flowers, L.; Knight, S.A.B.; Zheng, Q.; Murga-Garrido, S.; Uberoi, A.; Pan, J.T.C.; Walsh, J.; Schroeder, E.; Chu, E.W.; et al. Harnessing diversity and antagonism within the pig skin microbiota to identify novel mediators of colonization resistance to methicillin-resistant Staphylococcus aureus. mSphere 2023, 8, e00177-23. [Google Scholar] [CrossRef] [PubMed]
- Eveno, M.; Savard, P.; Belguesmia, Y.; Bazibet, L.; Gancel, F.; Drider, D.; Fliss, I. Compatibility, Cytotoxicity, and Gastrointestinal Tenacity of Bacteriocin-Producing Bacteria Selected for a Consortium Probiotic Formulation to Be Used in Livestock Feed. Probiotics Antimicro Prot. 2021, 13, 208–217. [Google Scholar] [CrossRef]
- Reuben, R.C.; Roy, P.C.; Sarkar, S.L.; Alam, R.U.; Jahid, I.K. Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol. 2019, 19, 253. [Google Scholar] [CrossRef]
- García-Vela, S.; Ben Said, L.; Soltani, S.; Guerbaa, R.; Fernández-Fernández, R.; Ben Yahia, H.; Ben Slama, K.; Torres, C.; Fliss, I. Targeting Enterococci with Antimicrobial Activity against Clostridium perfringens from Poultry. Antibiotics 2023, 12, 231. [Google Scholar] [CrossRef]
- Meyburgh, C.; Bragg, R.; Boucher, C. Lactococcus garvieae: An emerging bacterial pathogen of fish. Dis. Aquat. Org. 2017, 123, 67–79. [Google Scholar] [CrossRef]
- Chapman, B.; Gunter, C. Local Food Systems Food Safety Concerns. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Ross, R.P.; Hill, C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 2002, 84, 593–604. [Google Scholar] [CrossRef]
- Petruzzi, L.; Capozzi, V.; Berbegal, C.; Corbo, M.R.; Bevilacqua, A.; Spano, G.; Sinigaglia, M. Microbial Resources and Enological Significance: Opportunities and Benefits. Front. Microbiol. 2017, 8, 995. [Google Scholar] [CrossRef]
- Rojo-Bezares, B.; Sáenz, Y.; Zarazaga, M.; Torres, C.; Ruiz-Larrea, F. Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. Int. J. Food Microbiol. 2007, 116, 32–36. [Google Scholar] [CrossRef]
- Fletcher, J.T.; Gaze, R.H. Mushroom Pest and Disease Control: A Colour Handbook, 1st ed.; Manson Publishing Ltd.: San Diego, CA, USA, 2008; 192p. [Google Scholar]
- Largeteau, M.L.; Savoie, J.M. Microbially induced diseases of Agaricus bisporus: Biochemical mechanisms and impact on commercial mushroom production. Appl. Microbiol. Biotechnol. 2010, 86, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Gea, F.J.; Navarro, M.J.; Santos, M.; Diánez, F.; Carrasco, J. Control of fungal diseases in mushroom crops while dealing with fungicide resistance: A review. Microorganisms 2021, 9, 585. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.R.; Pecchia, J.A.; Segato, F.; Polikarpov, I. Exploring oyster mushroom (Pleurotus ostreatus) substrate preparation by varying phase I composting time: Changes in bacterial communities and physicochemical composition of biomass impacting mushroom yields. J. Appl. Microbiol. 2019, 126, 931–944. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, J.; García-Delgado, C.; Lavega, R.; Tello, M.L.; De Toro, M.; Barba-Vicente, V.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J.; Pérez, M.; Preston, G.M. Holistic assessment of the microbiome dynamics in the substrates used for commercial champignon (Agaricus bisporus) cultivation. Microb. Biotechnol. 2020, 13, 1933–1947. [Google Scholar] [CrossRef]
- Just-Baringo, X.; Albericio, F.; Álvarez, M. Thiopeptide Antibiotics: Retrospective and Recent Advances. Mar. Drugs 2014, 12, 317–351. [Google Scholar] [CrossRef]
- O’Sullivan, J.N.; Rea, M.C.; O’Connor, P.M.; Hill, C.; Ross, R.P. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol. Ecol. 2019, 95, fiy241. [Google Scholar] [CrossRef]
Main Field of Interest | Indicator Strains b | Percentage of BP Strains with Inhibitory Activity Against the Indicator a | ||
---|---|---|---|---|
Spot-on-lawn | CFS | BT | ||
Dairy livestock mastitis | Streptococcus agalactie X9738 | 27 | 40 | 87 |
Streptococcus dysgalactie X9739 | 33 | 27 | 87 | |
Streptococcus gallolyticus X9742 | 40 | 33 | 60 | |
Staphylococcus aureus C7246 MRSA b | 33 | 27 | 33 | |
S. aureus X3548 MRSA b | 53 | 27 | 60 | |
Enterococcus faecium C2321 VanR b | 53 | 27 | 60 | |
Avian pathogen zoonoses | Clostridium perfringens X9740 | 53 | 0 | 27 |
Enterococcus cecorum X3809 | 47 | 33 | 87 | |
S. aureus C5313 MRSA b | 60 | 0 | 47 | |
Swine zoonoses | Streptococcus suis X2060 | 47 | 27 | 80 |
S. aureus C1570 MRSA-CC398 b | 67 | 27 | 73 | |
S. aureus X3963 MRSA b | 53 | 33 | 93 | |
Enterococcus faecalis C9951 LZD-R b | 33 | 27 | 67 | |
Food safety | S. aureus C1532 MRSA b | 60 | 0 | 73 |
Bacillus cereus X10062 | 47 | 27 | 87 | |
Listeria monocytogenes CECT911 | 73 | 47 | 73 | |
Aquaculture | Lactococcus garviae Om-Pe-HK-61 | 60 | 27 | 13 |
Carnobacterium maltaromaticum St-PS-HK-63 | 40 | 27 | 13 | |
Wine making | Pediococcus pentosaceus A100 | 47 | 27 | 13 |
Pediococcus acidilactici A101 | 60 | 27 | 13 | |
Lactobacillus plantarum A102 | 0 | 33 | 20 | |
Leuconostoc mesenteroides A103 | 67 | 0 | 20 | |
Mushroom cultivation | Trichoderma atroviride TAV1 | NT | NT | 27 |
Cladobotryum mycophilum CM13900 | NT | NT | 40 | |
Gram-negative c | Salmonella spp. X10061 | 0 | 0 | 0 |
Escherichia coli ATCC25922 | 0 | 0 | 0 | |
Pseudomonas aeruginosa PAO1 | 0 | 0 | 0 |
ID Code | Specie | Origin | Bacteriocin Detected |
---|---|---|---|
C5802 | S. aureus | Environment–water | Micrococcin P1 |
C5835 | S. hominis | Environment–water | Micrococcin P1 |
X3011 | S. sciuri b | Food–chicken | Micrococcin P1 |
X3041 | S. sciuri b | Food–chicken | Micrococcin P1 |
C8189 | S. pseudintermedius | Human–dog | BacSp222 |
C8478 | S. pseudintermedius | Human–dog | BacSp222 |
C8479 | S. pseudintermedius | Human–dog | BacSp222 |
C9838 | S. chromogenes | Wild animal–mammal | Circular |
C8609 | S. aureus | Wild animal–mammal | Lanthipeptide |
X3410 | S. aureus | Food–chicken | Lanthipeptide |
C6770 | S. aureus | Wild animal–mammal | Lanthipeptide |
X2969 | S. warneri | Food–chicken | Lanthipeptide |
X3009 | S. epidermidis | Food–chicken | Lanthipeptide |
C9832 | S. simulans | Wild animal–mammal | Lanthipeptide |
C9585 | S. hyicus | Wild animal–mammal | Lanthipeptide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Fernández, R.; Lozano, C.; Campaña-Burguet, A.; González-Azcona, C.; Álvarez-Gómez, T.; Fernández-Pérez, R.; Peña, R.; Zarazaga, M.; Carrasco, J.; Torres, C. Bacteriocin-Producing Staphylococci and Mammaliicocci Strains for Agro-Food and Public Health Applications with Relevance of Micrococcin P1. Antibiotics 2025, 14, 97. https://doi.org/10.3390/antibiotics14010097
Fernández-Fernández R, Lozano C, Campaña-Burguet A, González-Azcona C, Álvarez-Gómez T, Fernández-Pérez R, Peña R, Zarazaga M, Carrasco J, Torres C. Bacteriocin-Producing Staphylococci and Mammaliicocci Strains for Agro-Food and Public Health Applications with Relevance of Micrococcin P1. Antibiotics. 2025; 14(1):97. https://doi.org/10.3390/antibiotics14010097
Chicago/Turabian StyleFernández-Fernández, Rosa, Carmen Lozano, Allelen Campaña-Burguet, Carmen González-Azcona, Tamara Álvarez-Gómez, Rocío Fernández-Pérez, Raquel Peña, Myriam Zarazaga, Jaime Carrasco, and Carmen Torres. 2025. "Bacteriocin-Producing Staphylococci and Mammaliicocci Strains for Agro-Food and Public Health Applications with Relevance of Micrococcin P1" Antibiotics 14, no. 1: 97. https://doi.org/10.3390/antibiotics14010097
APA StyleFernández-Fernández, R., Lozano, C., Campaña-Burguet, A., González-Azcona, C., Álvarez-Gómez, T., Fernández-Pérez, R., Peña, R., Zarazaga, M., Carrasco, J., & Torres, C. (2025). Bacteriocin-Producing Staphylococci and Mammaliicocci Strains for Agro-Food and Public Health Applications with Relevance of Micrococcin P1. Antibiotics, 14(1), 97. https://doi.org/10.3390/antibiotics14010097