Antimicrobial and Antibiofilm Activity of Auranofin and Its Two Derivatives Bearing Naproxen and Acetylcysteine as Ligands Against Staphylococci †
Abstract
:1. Introduction
2. Results
2.1. Synthesis, Characterization, In-Solution Stability and LogP Evaluation of AF-Napx and AF-AcCys
2.2. XTT Reduction Assay upon Cell Exposure to AF, AF-Napx, and AF-AcCys
2.3. Antimicrobial Activity of AF and Its Derivates Against Planktonic and Biofilm Staphylococcal Strains
2.4. Theoretical Calculations
2.5. SEM Examination of the Antibiofilm Effect Produced by AF and Its Derivatives
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Synthesis of Compounds
4.3. Measurement of Water–Octanol Partition Coefficient (LogP)
4.4. Stability Studies in DMSO and Aqueous Solution
4.5. Computational Details
4.6. Cell Cytotoxicity Assessment: XTT Reduction Assay on A549 Cell Line
4.7. Staphylococcal Strains
4.8. Antimicrobial Susceptibility Testing of Planktonic Bacteria
4.9. Evaluation of Antibiofilm Activity of AF, AF-AcCys, and AF-Napx
4.10. Investigation by Scanning Electron Microscopy of S. aureus and S. epidermidis in Sessile Form
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huemer, M.; Mairpady Shambat, S.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep. 2020, 21, e51034. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P&T 2015, 40, 277–283. [Google Scholar]
- Oliva, A.; Stefani, S.; Venditti, M.; Di Domenico, E.G. Biofilm-Related Infections in Gram-Positive Bacteria and the Potential Role of the Long-Acting Agent Dalbavancin. Front. Microbiol. 2021, 12, 749685. [Google Scholar] [CrossRef] [PubMed]
- Crivello, G.; Fracchia, L.; Ciardelli, G.; Boffito, M.; Mattu, C. In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections. Nanomaterials 2023, 13, 904. [Google Scholar] [CrossRef] [PubMed]
- Büssing, R.; Karge, B.; Lippmann, P.; Jones, P.G.; Brönstrup, M.; Ott, I. Gold(I) and Gold(III) N-Heterocyclic Carbene Complexes as Antibacterial Agents and Inhibitors of Bacterial Thioredoxin Reductase. ChemMedChem 2021, 16, 3402–3409. [Google Scholar] [CrossRef] [PubMed]
- Chiaverini, L.; Pratesi, A.; Cirri, D.; Nardinocchi, A.; Tolbatov, I.; Marrone, A.; Di Luca, M.; Marzo, T.; La Mendola, D. Anti-Staphylococcal Activity of the Auranofin Analogue Bearing Acetylcysteine in Place of the Thiosugar: An Experimental and Theoretical Investigation. Molecules 2022, 27, 2578. [Google Scholar] [CrossRef]
- Harbut, M.B.; Vilchèze, C.; Luo, X.; Hensler, M.E.; Guo, H.; Yang, B.; Chatterjee, A.K.; Nizet, V.; Jacobs, W.R.; Schultz, P.G.; et al. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc. Natl. Acad. Sci. USA 2015, 112, 4453–4458. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Almazor, M.E.; Spooner, C.; Belseck, E.; Shea, B. Auranofin versus placebo in rheumatoid arthritis. Cochrane Database Syst. Rev. 2000, 2010, CD002048. [Google Scholar] [CrossRef]
- Donahue, K.E.; Gartlehner, G.; Jonas, D.E.; Lux, L.J.; Thieda, P.; Jonas, B.L.; Hansen, R.A.; Morgan, L.C.; Lohr, K.N. Systematic Review: Comparative Effectiveness and Harms of Disease-Modifying Medications for Rheumatoid Arthritis. Ann. Intern. Med. 2008, 148, 124. [Google Scholar] [CrossRef]
- Berners-Price, S.J.; Filipovska, A. Gold compounds as therapeutic agents for human diseases. Metallomics 2011, 3, 863. [Google Scholar] [CrossRef]
- Van Acker, H.; Coenye, T. The Role of Reactive Oxygen Species in Antibiotic-Mediated Killing of Bacteria. Trends Microbiol. 2017, 25, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Pratesi, A.; Gabbiani, C.; Michelucci, E.; Ginanneschi, M.; Papini, A.M.; Rubbiani, R.; Ott, I.; Messori, L. Insights on the mechanism of thioredoxin reductase inhibition by Gold N-heterocyclic carbene compounds using the synthetic linear Selenocysteine containing C-terminal peptide hTrxR(488-499): An ESI-MS investigation. J. Inorg. Biochem. 2014, 136, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Jackson-Rosario, S.; Cowart, D.; Myers, A.; Tarrien, R.; Levine, R.L.; Scott, R.A.; Self, W.T. Auranofin disrupts selenium metabolism in Clostridium difficile by forming a stable Au–Se adduct. JBIC J. Biol. Inorg. Chem. 2009, 14, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Liu, H.; Yang, Y.; Yang, Y.; Jiao, Y.; Tay, F.R.; Chen, J. Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects. Oxid. Med. Cell. Longev. 2018, 2018, 2835787. [Google Scholar] [CrossRef] [PubMed]
- Kregiel, D.; Rygala, A.; Kolesinska, B.; Nowacka, M.; Herc, A.S.; Kowalewska, A. Antimicrobial and Antibiofilm N-acetyl-L-cysteine Grafted Siloxane Polymers with Potential for Use in Water Systems. Int. J. Mol. Sci. 2019, 20, 2011. [Google Scholar] [CrossRef]
- Aslam, S.; Trautner, B.W.; Ramanathan, V.; Darouiche, R.O. Combination of Tigecycline and N-Acetylcysteine Reduces Biofilm-Embedded Bacteria on Vascular Catheters. Antimicrob. Agents Chemother. 2007, 51, 1556–1558. [Google Scholar] [CrossRef]
- Oka, S.; Kamata, H.; Kamata, K.; Yagisawa, H.; Hirata, H. N-Acetylcysteine suppresses TNF-induced NF-UB activation through inhibition of IUB kinases. FEBS Lett. 2000, 472, 196–202. [Google Scholar] [CrossRef]
- Atkuri, K.R.; Mantovani, J.J.; Herzenberg, L.A.; Herzenberg, L.A. N-Acetylcysteine—A safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol. 2007, 7, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Day, R.O.; Graham, G.G. Non-steroidal anti-inflammatory drugs (NSAIDs). Br. J. Sports Med. 2014, 48, 1396. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Xu, Z.; Ma, X.; Chen, X.; Liu, W. Repurposing of the gold drug auranofin and a review of its derivatives as antibacterial therapeutics. Drug Discov. Today 2022, 27, 1961–1973. [Google Scholar] [CrossRef] [PubMed]
- Fackler, J.P.; King, C.; Staples, R.J.; Winpenny, R.E.P. Decarboxylation of (TriphenyIphosphine)gold(I) Carboxylates. Organometallics 1991, 10, 2178–2183. [Google Scholar] [CrossRef]
- Grodzicki, A.; Łakomska, I.; Piszczek, P.; Szymańska, I.; Szłyk, E. Copper(I), silver(I) and gold(I) carboxylate complexes as precursors in chemical vapour deposition of thin metallic films. Coord. Chem. Rev. 2005, 249, 2232–2258. [Google Scholar] [CrossRef]
- Johnson, A.; Olelewe, C.; Kim, J.H.; Northcote-Smith, J.; Mertens, R.T.; Passeri, G.; Singh, K.; Awuah, S.G.; Suntharalingam, K. The anti-breast cancer stem cell properties of gold(I)-non-steroidal anti-inflammatory drug complexes. Chem. Sci. 2023, 14, 557–565. [Google Scholar] [CrossRef]
- Kinsch, E.M.; Stephan, D.W. A 31P nuclear magnetic resonance and fluorescence study of the interaction of an anti-arthritic gold phosphine drug with albumin. A bioinorganic approach. Inorg. Chim. Acta 1984, 91, 263–267. [Google Scholar] [CrossRef]
- Caddy, J.; Hoffmanns, U.; Metzler-Nolte, N. Introduction of Phosphine-Gold(I) Precursors into a Cys-modified Enkephalin Neuropeptide as Part of Solid Phase Peptide Synthesis. Z. Naturforschung B 2007, 62, 460–466. [Google Scholar] [CrossRef]
- Marzo, T.; Cirri, D.; Gabbiani, C.; Gamberi, T.; Magherini, F.; Pratesi, A.; Guerri, A.; Biver, T.; Binacchi, F.; Stefanini, M.; et al. Auranofin, Et 3 PAuCl, and Et 3 PAuI Are Highly Cytotoxic on Colorectal Cancer Cells: A Chemical and Biological Study. ACS Med. Chem. Lett. 2017, 8, 997–1001. [Google Scholar] [CrossRef]
- Yeo, C.I.; Goh, C.H.P.; Tiekink, E.R.T.; Chew, J. Antibiotics: A “GOLDen” promise? Coord. Chem. Rev. 2024, 500, 215429. [Google Scholar] [CrossRef]
- Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLoS Med. 2023, 20, e1004264. [Google Scholar] [CrossRef]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Robles Aguilar, G.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Coscione, F.; Zineddu, S.; Vitali, V.; Fondi, M.; Messori, L.; Perrin, E. The Many Lives of Auranofin: How an Old Anti-Rheumatic Agent May Become a Promising Antimicrobial Drug. Antibiotics 2024, 13, 652. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, S.; Mohammad, H.; Abushahba, M.F.N.; Sobreira, T.J.P.; Hedrick, V.E.; Paul, L.N.; Seleem, M.N. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Sci. Rep. 2016, 6, 22571. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, S.; Mohammad, H.; Abushahba, M.F.N.; Sobreira, T.J.P.; Seleem, M.N. Repurposing auranofin for the treatment of cutaneous staphylococcal infections. Int. J. Antimicrob. Agents 2016, 47, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Epstein, T.D.; Wu, B.; Moulton, K.D.; Yan, M.; Dube, D.H. Sugar-Modified Analogs of Auranofin Are Potent Inhibitors of the Gastric Pathogen Helicobacter pylori. ACS Infect. Dis. 2019, 5, 1682–1687. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Yang, X.; Yan, M. Synthesis and Structure–Activity Relationship Study of Antimicrobial Auranofin against ESKAPE Pathogens. J. Med. Chem. 2019, 62, 7751–7768. [Google Scholar] [CrossRef] [PubMed]
- Tuon, F.F.; Suss, P.H.; Telles, J.P.; Dantas, L.R.; Borges, N.H.; Ribeiro, V.S.T. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics 2023, 12, 87. [Google Scholar] [CrossRef]
- Blasi, F.; Page, C.; Rossolini, G.M.; Pallecchi, L.; Matera, M.G.; Rogliani, P.; Cazzola, M. The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir. Med. 2016, 117, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Mirani, Z.A.; Fatima, A.; Urooj, S.; Aziz, M.; Khan, M.N.; Abbas, T. Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Iran. J. Basic Med. Sci. 2018, 21, 760. [Google Scholar] [PubMed]
- Leão, C.; Borges, A.; Simões, M. NSAIDs as a Drug Repurposing Strategy for Biofilm Control. Antibiotics 2020, 9, 591. [Google Scholar] [CrossRef] [PubMed]
- Lerebour, G.; Cupferman, S.; Bellon-Fontaine, M.N. Adhesion of Staphylococcus aureus and Staphylococcus epidermidis to the EpiskinR reconstructed epidermis model and to an inert 304 stainless steel substrate. J. Appl. Microbiol. 2004, 97, 7–16. [Google Scholar] [CrossRef]
- Leo, A.; Hansch, C.; Elkins, D. Partition coefficients and their uses. Chem. Rev. 1971, 71, 525–616. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Tolbatov, I.; Re, N.; Coletti, C.; Marrone, A. An Insight on the Gold(I) Affinity of golB Protein via Multilevel Computational Approaches. Inorg. Chem. 2019, 58, 11091–11099. [Google Scholar] [CrossRef] [PubMed]
- Paciotti, R.; Tolbatov, I.; Marrone, A.; Storchi, L.; Re, N.; Coletti, C. Computational investigations of bioinorganic complexes: The case of calcium, gold and platinum ions. AIP Conf. Proc. 2019, 2186, 030011. [Google Scholar]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef] [PubMed]
- Tolbatov, I.; Storchi, L.; Marrone, A. Structural Reshaping of the Zinc-Finger Domain of the SARS-CoV-2 nsp13 Protein Using Bismuth(III) Ions: A Multilevel Computational Study. Inorg. Chem. 2022, 61, 15664–15677. [Google Scholar] [CrossRef]
- Remya, K.; Suresh, C.H. Which density functional is close to CCSD accuracy to describe geometry and interaction energy of small noncovalent dimers? A benchmark study using Gaussian09. J. Comput. Chem. 2013, 34, 1341–1353. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cancès, E. The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct. THEOCHEM 1999, 464, 211–226. [Google Scholar] [CrossRef]
- Klamt, A.; Moya, C.; Palomar, J. A Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach. J. Chem. Theory Comput. 2015, 11, 4220–4225. [Google Scholar] [CrossRef] [PubMed]
- Scudiere, D.A.; Shoemaker, R.H.; Paul, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a Soluble Tetrazolium/Formazan Assay for Cell Growth and Drug Sensitivity in Culture Using Human and Other Tumor Cell Lines. Cancer Res. 1988, 48, 3827–4833. [Google Scholar]
- Zadrazilova, I.; Pospisilova, S.; Pauk, K.; Imramovsky, A.; Vinsova, J.; Cizek, A.; Jampilek, J. In Vitro Bactericidal Activity of 4- and 5-Chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Res. Int. 2015, 2015, 349534. [Google Scholar] [CrossRef] [PubMed]
- Butini, M.E.; Abbandonato, G.; Di Rienzo, C.; Trampuz, A.; Di Luca, M. Isothermal Microcalorimetry Detects the Presence of Persister Cells in a Staphylococcus aureus Biofilm After Vancomycin Treatment. Front. Microbiol. 2019, 10, 332. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, C.; Poma, N.V.; Bernardo, M.; Rindi, L.; Cesta, N.; Tavanti, A.; Tascini, C.; Di Luca, M. Evaluation of antibiofilm activity of cefiderocol alone and in combination with imipenem against Pseudomonas aeruginosa. J. Glob. Antimicrob. Resist. 2024, 37, 53–61. [Google Scholar] [CrossRef]
- Macia, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Moreno, M.; Wang, L.; De Masi, M.; Winkler, T.; Trampuz, A.; Di Luca, M. In vitro antimicrobial activity against Abiotrophia defectiva and Granulicatella elegans biofilms. J. Antimicrob. Chemother. 2019, 74, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
Strains | MIC (µM) | ||
---|---|---|---|
AF | AF-AcCys | AF-Napx | |
S. aureus ATCC43300 | 2 | 0.5 | 2 |
S. aureus 10 | 0.5 * | 0.5 * | 0.25 |
S. aureus 11 | 0.25 * | 0.25 * | 0.25 |
S. aureus 12 | 0.5 * | 0.5 * | 2 |
S. epidermidis 2 | ≤0.12 * | 2 * | 0.25 |
S. epidermidis 6 | ≤0.12 * | 2 * | 0.25 |
S. epidermidis 7 | ≤0.12 * | >2 * | 0.5 |
Strains | AF (µM) | AF-AcCys (µM) | AF-Npax (µM) | |||
---|---|---|---|---|---|---|
MBBC | MBEC | MBBC | MBEC | MBBC | MBEC | |
S. aureus ATCC43300 | 8 | 8 | 8 | >8 | 8 | >8 |
S. aureus 10 | 4 | 4 | 8 | >8 | 8 | >8 |
S. aureus 11 | 0.5 | 2 | >8 | >8 | >8 | >8 |
S. aureus 12 | 4 | >8 | 4 | 8 | 8 | >8 |
S. epidermidis 2 | 2–4 | 2–4 | >8 | >8 | 1 | 1 |
S. epidermidis 6 | 4 | 8 | >8 | >8 | 1 | 2 |
S. epidermidis 7 | 4 | 4 | 8 | >8 | 1 | 1 |
Complex | Bond | FE | BDE | BDFE |
---|---|---|---|---|
AF | Au-P Au-S | 61.5 54.1 | 56.2 50.9 | 46.0 40.8 |
AF-AcCys | Au-P Au-S | 62.3 59.4 | 57.5 56.4 | 45.1 44.1 |
AF-Napx | Au-P Au-O | 73.3 42.0 | 68.9 38.4 | 56.8 27.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferretti, C.; Chiaverini, L.; Poma, N.; Dalli, A.; Di Leo, R.; Rindi, L.; Marrone, A.; Tolbatov, I.; La Mendola, D.; Tavanti, A.; et al. Antimicrobial and Antibiofilm Activity of Auranofin and Its Two Derivatives Bearing Naproxen and Acetylcysteine as Ligands Against Staphylococci. Antibiotics 2025, 14, 118. https://doi.org/10.3390/antibiotics14020118
Ferretti C, Chiaverini L, Poma N, Dalli A, Di Leo R, Rindi L, Marrone A, Tolbatov I, La Mendola D, Tavanti A, et al. Antimicrobial and Antibiofilm Activity of Auranofin and Its Two Derivatives Bearing Naproxen and Acetylcysteine as Ligands Against Staphylococci. Antibiotics. 2025; 14(2):118. https://doi.org/10.3390/antibiotics14020118
Chicago/Turabian StyleFerretti, Caterina, Lorenzo Chiaverini, Noemi Poma, Andrea Dalli, Riccardo Di Leo, Laura Rindi, Alessandro Marrone, Iogann Tolbatov, Diego La Mendola, Arianna Tavanti, and et al. 2025. "Antimicrobial and Antibiofilm Activity of Auranofin and Its Two Derivatives Bearing Naproxen and Acetylcysteine as Ligands Against Staphylococci" Antibiotics 14, no. 2: 118. https://doi.org/10.3390/antibiotics14020118
APA StyleFerretti, C., Chiaverini, L., Poma, N., Dalli, A., Di Leo, R., Rindi, L., Marrone, A., Tolbatov, I., La Mendola, D., Tavanti, A., Marzo, T., & Di Luca, M. (2025). Antimicrobial and Antibiofilm Activity of Auranofin and Its Two Derivatives Bearing Naproxen and Acetylcysteine as Ligands Against Staphylococci. Antibiotics, 14(2), 118. https://doi.org/10.3390/antibiotics14020118