Utility of Combination Antimicrobial Therapy in Adults with Bloodstream Infections due to Enterobacteriaceae and Non-Fermenting Gram-Negative Bacilli Based on In Vitro Analysis at Two Community Hospitals
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics and Microbiology
2.2. Additional Antimicrobial Coverage of Combination Regimens
2.3. Correlation between Susceptibilities of Different Antimicrobial Classes
3. Discussion
3.1. Clinical Applications of Study Findings
3.2. Potential Explanations for Correlation between Susceptibilities of Different Antimicrobial Classes
3.3. Impact of Antimicrobial Utilization in Hospitals on Choice of Combination Agent
3.4. Antimicrobial Stewardship Implications
3.5. Strengths and Limitations
4. Materials and Methods
4.1. Setting
4.2. Study Design and Definitions
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Decker, B.; Masur, H. Bad bugs, no drugs: are we part of the problem, or leaders in developing solutions? Crit. Care Med. 2015, 43, 1153–1155. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.A.; Cobos-Trigueros, N.; Soriano, A.; Almela, M.; Ortega, M.; Marco, F.; Pitart, C.; Sterzik, H.; Lopez, J.; Mensa, J. Influence of empiric therapy with a beta-lactam alone or combined with an aminoglycoside on prognosis of bacteremia due to gram-negative microorganisms. Antimicrob. Agents Chemother. 2010, 54, 3590–3596. [Google Scholar] [CrossRef] [PubMed]
- Leibovici, L.; Paul, M.; Poznanski, O.; Drucker, M.; Samra, Z.; Konigsberger, H.; Pitlik, S.D. Monotherapy versus beta-lactam-aminoglycoside combination treatment for gram-negative bacteremia: a prospective, observational study. Antimicrob. Agents Chemother. 1997, 41, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Korvick, J.A.; Bryan, C.S.; Farber, B.; Beam, T.R., Jr.; Schenfeld, L.; Muder, R.R.; Weinbaum, D.; Lumish, R.; Gerding, D.N.; Wagener, M.M. Prospective observational study of Klebsiella bacteremia in 230 patients: outcome for antibiotic combinations versus monotherapy. Antimicrob. Agents Chemother. 1992, 36, 2639–2644. [Google Scholar] [CrossRef] [PubMed]
- Hilf, M.; Yu, V.L.; Sharp, J.; Zuravleff, J.J.; Korvick, J.A.; Muder, R.R. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am. J. Med. 1989, 87, 540–546. [Google Scholar] [CrossRef]
- Chamot, E.; Boffi El Amari, E.; Rohner, P.; Van Delden, C. Effectiveness of combination antimicrobial therapy for Pseudomonas aeruginosa bacteremia. Antimicrob. Agents Chemother. 2003, 47, 2756–2764. [Google Scholar] [CrossRef]
- Chow, J.W.; Yu, V.L. Combination antibiotic therapy versus monotherapy for gram-negative bacteraemia: a commentary. Int. J. Antimicrob. Agents 1999, 11, 7–12. [Google Scholar] [CrossRef]
- Klibanov, O.M.; Raasch, R.H.; Rublein, J.C. Single versus combined antibiotic therapy for gram-negative infections. Ann. Pharmacother. 2004, 38, 332–337. [Google Scholar] [CrossRef]
- Safdar, N.; Handelsman, J.; Maki, D.G. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect. Dis. 2004, 4, 519–527. [Google Scholar] [CrossRef]
- Al-Hasan, M.N.; Wilson, J.W.; Lahr, B.D.; Thomsen, K.M.; Eckel-Passow, J.E.; Vetter, E.A.; Tleyjeh, I.M.; Baddour, L.M. Beta-lactam and fluoroquinolone combination antibiotic therapy in bacteremia caused by gram-negative bacilli. Antimicrob. Agents. Chemother. 2009, 53, 1386–1394. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Tansarli, G.S.; Bliziotis, I.A.; Falagas, M.E. β-Lactam plus aminoglycoside or fluoroquinolone combination versus β-lactam monotherapy for Pseudomonas aeruginosa infections: a meta-analysis. Int. J. Antimicrob. Agents 2013, 4, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Peña, C.; Suarez, C.; Ocampo-Sosa, A.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M.; Granados, A.; Calbo, E.; Rodríguez-Baño, J. Spanish Network for Research in Infectious Diseases (REIPI). Effect of adequate single-drug vs combination antimicrobial therapy on mortality in Pseudomonas aeruginosa bloodstream infections: a post hoc analysis of a prospective cohort. Clin. Infect. Dis. 2013, 57, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Jun, Y.H.; Kim, Y.R.; Park, K.G.; Park, Y.J.; Kang, J.Y.; Kim, S.I. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy. BMC Infect. Dis. 2014, 14, 161. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Lador, A.; Grozinsky-Glasberg, S.; Leibovici, L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane. Database Syst. Rev. 2014, 1, CD003344. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.K.; Kim, H.A.; Ryu, S.Y.; Lee, E.J.; Lee, M.S.; Kim, J.; Park, S.Y.; Yang, K.S.; Kim, S.W. Tree-structured survival analysis of patients with Pseudomonas aeruginosa bacteremia: A multicenter observational cohort study. Diagn. Microbiol. Infect. Dis. 2017, 87, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Ong, D.S.Y.; Frencken, J.F.; Klein Klouwenberg, P.M.C.; Juffermans, N.; van der Poll, T.; Bonten, M.J.M.; Cremer, O.L.; MARS consortium. Short-course adjunctive gentamicin as empirical therapy in patients with severe sepsis and septic shock: a prospective observational cohort study. Clin. Infect. Dis. 2017, 64, 1731–1736. [Google Scholar] [CrossRef]
- Justo, J.A.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Combination versus monotherapy for gram-negative bloodstream infections: matching by predicted prognosis. Int. J. Antimicrob. Agents 2018, 51, 488–492. [Google Scholar] [CrossRef]
- Tumbarello, M.; Trecarichi, E.M.; Bassetti, M.; De Rosa, F.G.; Spanu, T.; Di Meco, E.; Losito, A.R.; Parisini, A.; Pagani, N.; Cauda, R. Identifying patients harboring extended-spectrum-beta-lactamase-producing Enterobacteriaceae on hospital admission: derivation and validation of a scoring system. Antimicrob. Agents Chemother. 2011, 55, 3485–3490. [Google Scholar] [CrossRef]
- Augustine, M.R.; Testerman, T.L.; Justo, J.A.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Clinical risk score for prediction of extended-spectrum beta-lactamase producing Enterobacteriaceae in bloodstream isolates. Infect. Control Hosp. Epidemiol. 2017, 38, 266–272. [Google Scholar] [CrossRef]
- Al-Jaghbeer, M.J.; Justo, J.A.; Owens, W.; Kohn, J.; Bookstaver, P.B.; Hucks, J.; Al-Hasan, M.N. Risk factors for pneumonia due to beta-lactam-susceptible and beta-lactam-resistant Pseudomonas aeruginosa: a case-case-control study. Infection 2018, 46, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J. Infectious diseases society of America; European society for microbiology and infectious diseases. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [PubMed]
- Haggard, E.; Hagedorn, M.; Bookstaver, P.B.; Justo, J.A.; Kohn, J.; Al-Hasan, M.N. Minimum acceptable susceptibility of empirical antibiotic regimens for gram-negative bloodstream infections: a survey of clinical pharmacists. Infect. Dis. Clin. Practice 2018, 26, 283–287. [Google Scholar] [CrossRef]
- Schultsz, C.; Geerlings, S. Plasmid-mediated resistance in Enterobacteriaceae changing landscape and implications for therapy. Drugs 2012, 72, 1–16. [Google Scholar] [CrossRef]
- Lambert, P.A. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 2002, 95, 22–26. [Google Scholar] [PubMed]
- Potron, A.; Poirel, L.; Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents 2015, 45, 568–85. [Google Scholar] [CrossRef] [PubMed]
- Kiser, T.H.; Obritsch, M.D.; Jung, R.; MacLaren, R.; Fish, D.N. Efflux pump contribution to multidrug resistance in clinical isolates of Pseudomonas aeruginosa. Pharmacotherapy 2010, 30, 632–638. [Google Scholar] [CrossRef]
- Liang, B.; Wheeler, J.S.; Blanchette, L.M. Impact of combination antibiogram and related education on inpatient fluoroquinolone prescribing patterns for patients with health care-associated pneumonia. Ann. Pharmacother. 2016, 50, 172–179. [Google Scholar] [CrossRef]
- Hammer, K.L.; Justo, J.A.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Differential effect of prior beta-lactams and fluoroquinolones on risk of bloodstream infections secondary to Pseudomonas aeruginosa. Diagn. Microbiol. Infect. Dis. 2017, 87, 87–91. [Google Scholar] [CrossRef]
- Cha, M.K.; Kang, C.I.; Kim, S.H.; Cho, S.Y.; Ha, Y.E.; Wi, Y.M.; Chung, D.R.; Peck, K.R.; Song, J.H.; Korean Network for Study on Infectious Diseases (KONSID). In vitro activities of 21 antimicrobial agents alone and in combination with aminoglycosides or fluoroquinolones against extended-spectrum-β-lactamase-producing Escherichia coli isolates causing bacteremia. Antimicrob. Agents Chemother. 2015, 59, 5834–5837. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Castanheira, M.; Flamm, R.K.; Farrell, D.J.; Jones, R.N. Antimicrobial activity of ceftazidime-avibactam against Gram-negative organisms collected from U.S. medical centers in 2012. Antimicrob. Agents Chemother. 2014, 58, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D.J.; Flamm, R.K.; Sader, H.S.; Jones, R.N. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2011-2012). Antimicrob. Agents Chemother. 2013, 57, 6305–6310. [Google Scholar] [CrossRef] [PubMed]
Variable | Enterobacteriaceae (n = 1063) | NFGN (n = 105) |
---|---|---|
Age in y, median (IQR) | 65 (54-77) | 63 (51-75) |
Female sex | 575 (54) | 45 (43) |
Ethnicity | ||
White | 497 (47) | 46 (44) |
African American | 529 (50) | 54 (51) |
Other | 37 (3) | 5 (5) |
Diabetes mellitus | 415 (39) | 36 (34) |
End-stage renal disease | 106 (10) | 14 (13) |
Liver cirrhosis | 51 (5) | 4 (4) |
Cancer | 175 (16) | 26 (25) |
Immune compromised host | 118 (8) | 25 (24) |
Indwelling central venous catheter | 207 (19) | 34 (32) |
Indwelling urinary catheterization | 123 (12) | 14 (13) |
Residence at skilled nursing facility | 164 (15) | 10 (10) |
Recent hospitalization* | 328 (31) | 42 (40) |
Hospital-acquired infection | 228 (21) | 38 (36) |
Pitt bacteremia score ≥4 | 233 (22) | 24 (23) |
Bacteria | 3GC n (%) | 3GC/FQ n (%) | MD (95% CI) | p | 3GC/AG n (%) | MD (95% CI) | p |
---|---|---|---|---|---|---|---|
Enterobacteriaceae | |||||||
Overall (n = 1063) | 996 (94) | 1022 (96) | 2.4 (1.5, 3.4) | <0.001 | 1028 (97) | 3.0 (2.0, 4.0) | <0.001 |
No 3GC-R risk factors* (n = 768) | 750 (98) | 760 (99) | 1.3 (0.5, 2.1) | 0.002 | 761 (99) | 1.4 (0.6, 2.3) | <0.001 |
3GC-R risk factors* (n = 295) | 247 (84) | 263 (89) | 5.4 (2.8, 8.0) | <0.001 | 268 (91) | 7.1 (4.2, 10.1) | <0.001 |
Non-fermenting Gram-negative bacilli | |||||||
Overall (n = 105) | 83 (79) | 99 (94) | 15.2 (8.3, 22.2) | <0.001 | 101 (96) | 17.1 (9.8, 24.5) | <0.001 |
No recent use of beta-lactams+ (n = 76) | 63 (83) | 71 (93) | 10.5 (3.7, 17.6) | 0.004 | 73 (96) | 13.2 (5.4, 20.9) | 0.001 |
Recent beta-lactam use+ (n = 29) | 20 (69) | 28 (97) | 27.6 (10.3, 44.9) | 0.003 | 28 (97) | 27.6 (10.3, 44.9) | 0.003 |
Pseudomonas aeruginosa | |||||||
Overall (n = 70) | 64 (91) | 70 (100) | 8.6 (1.8, 15.3) | 0.01 | 70 (100) | 8.6 (1.8, 15.3) | 0.01 |
No recent use of beta-lactams+ (n = 49) | 47 (96) | 49 (100) | 4.1 (-1.7, 9.8) | 0.16 | 49 (100) | 4.1 (-1.7, 9.8) | 0.16 |
Recent beta-lactam use+ (n = 21) | 17 (81) | 21 (100) | 19.0 (7.1, 37.4) | 0.04 | 21 (100) | 19.0 (7.1, 37.4) | 0.04 |
Bacteria | Ciprofloxacin | p | Gentamicin | p |
---|---|---|---|---|
Enterobacteriaceae | 880/1058 (83) | 997/1053 (93) | ||
Ceftriaxone-susceptible Ceftriaxone-nonsusceptible | 854/992 (86) 26/66 (39) | <0.001 | 945/987 (96) 32/66 (48) | <0.001 |
NFGN | 88/104 (85) | 92/105 (88) | ||
Ceftazidime-susceptible Ceftazidime-nonsusceptible | 72/82 (88) 16/22 (73) | 0.08 | 74/83 (89) 18/22 (82) | 0.35 |
Bacteria | Ciprofloxacin | Gentamicin | ||
---|---|---|---|---|
κ (95% CI) | p | κ (95% CI) | p | |
Enterobacteriaceae | 0.27 (0.19, 0.34) | <0.001 | 0.45 (0.35, 0.56) | <0.001 |
E. coli, Klebsiella spp. and P. mirabilis | 0.30 (0.22, 0.38) | <0.001 | 0.52 (0.41, 0.63) | <0.001 |
Enterobacter, Serratia and Citrobacter spp. | -0.07 (-0.10, 0.04) | 0.38 | -0.06 (-0.09, 0.03) | 0.47 |
Non-fermenting Gram-negative bacilli | 0.17 (-0.05, 0.38) | 0.08 | 0.09 (-0.12, 0.29) | 0.35 |
P. aeruginosa | -0.10 (-0.16, 0.05) | 0.39 | -0.04 (-0.09, 0.01) | 0.66 |
Other non-fermenters | 0.21 (-0.09, 0.51) | 0.17 | -0.12 (-0.43, 0.19) | 0.45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foster, R.A.; Troficanto, C.; Bookstaver, P.B.; Kohn, J.; Justo, J.A.; Al-Hasan, M.N. Utility of Combination Antimicrobial Therapy in Adults with Bloodstream Infections due to Enterobacteriaceae and Non-Fermenting Gram-Negative Bacilli Based on In Vitro Analysis at Two Community Hospitals. Antibiotics 2019, 8, 15. https://doi.org/10.3390/antibiotics8010015
Foster RA, Troficanto C, Bookstaver PB, Kohn J, Justo JA, Al-Hasan MN. Utility of Combination Antimicrobial Therapy in Adults with Bloodstream Infections due to Enterobacteriaceae and Non-Fermenting Gram-Negative Bacilli Based on In Vitro Analysis at Two Community Hospitals. Antibiotics. 2019; 8(1):15. https://doi.org/10.3390/antibiotics8010015
Chicago/Turabian StyleFoster, Rachel A., Casey Troficanto, P. Brandon Bookstaver, Joseph Kohn, Julie Ann Justo, and Majdi N. Al-Hasan. 2019. "Utility of Combination Antimicrobial Therapy in Adults with Bloodstream Infections due to Enterobacteriaceae and Non-Fermenting Gram-Negative Bacilli Based on In Vitro Analysis at Two Community Hospitals" Antibiotics 8, no. 1: 15. https://doi.org/10.3390/antibiotics8010015
APA StyleFoster, R. A., Troficanto, C., Bookstaver, P. B., Kohn, J., Justo, J. A., & Al-Hasan, M. N. (2019). Utility of Combination Antimicrobial Therapy in Adults with Bloodstream Infections due to Enterobacteriaceae and Non-Fermenting Gram-Negative Bacilli Based on In Vitro Analysis at Two Community Hospitals. Antibiotics, 8(1), 15. https://doi.org/10.3390/antibiotics8010015