Host-Targeted Therapeutics against Multidrug Resistant Intracellular Staphylococcus aureus
Abstract
:1. Methicillin-Resistant Staphylococcus aureus (MRSA) Methicillin-Resistant Staphylococcus Aureus as an Example of Antibiotic Resistance
2. Intracellular MRSA Is Protected from Common Antibiotic Treatments
3. Current Clinical Management of S. aureus Infections
4. Host-Directed Therapies: A Novel Perspective
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agodi, A.; Barchitta, M.; Maugeri, A.; Sodano, L.; Pasquarella, C. Appropriate perioperative antibiotic prophylaxis: Challenges, strategies, and quality indicators. Epidemiol. Prev. 2015, 39, 27–32. [Google Scholar]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Jevons, M.P. “Celbenin”—Resistant Staphylococci. Br. Med. J. 1961, 1, 124–125. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Cui, L.; Kuroda, M.; Ito, T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2001, 9, 486–493. [Google Scholar] [CrossRef]
- Ippolito, G.; Leone, S.; Lauria, F.N.; Nicastri, E.; Wenzel, R.P. Methicillin-resistant Staphylococcus aureus: The superbug. Int. J. Infect. Dis. 2010, 14, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Drews, T.D.; Temte, J.L.; Fox, B.C. Community-associated methicillin-resistant Staphylococcus aureus: Review of an emerging public health concern. Wis. Med. J. 2006, 105, 52–57. [Google Scholar]
- David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef]
- Otto, M. Community-associated MRSA: What makes them special? Int. J. Med. Microbiol. 2013, 303, 324–330. [Google Scholar] [CrossRef]
- Naimi, T.S.; Ledell, K.H.; Como-sabetti, K.; Borchardt, S.M.; Boxrud, D.J.; Johnson, S.K.; Fridkin, S.; Boyle, C.O.; Danila, R.N.; Lynfield, R. Comparison of Community- and Health Care-Associated Methicillin-Staphylococcus aureus Infection. JAMA 2003, 290, 2976–2984. [Google Scholar] [CrossRef]
- Sollid, J.U.E.; Furberg, A.S.; Hanssen, A.M.; Johannessen, M. Staphylococcus aureus: Determinants of human carriage. Infect. Genet. Evol. 2014, 21, 531–541. [Google Scholar] [CrossRef]
- Sakr, A.; Brégeon, F.; Mege, J.-L.; Rolain, J.-M.; Blin, O. Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors and subsequent infections. Front. Microbiol. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- François, P.; Vaudaux, P.; Foster, T.J.; Lew, D.P. Host-Bacteria Interactions in Foreign Body Infections. Infect. Control Hosp. Epidemiol. 1996, 17, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Yoshikawa, T.T.; Strausbaugh, L.J. Methicillin-resistant Staphylococcus aureus. In Infection Management for Geriatrics in Long-Term Care Facilities, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9781420021110. [Google Scholar]
- Lehar, S.M.; Pillow, T.; Xu, M.; Staben, L.; Kajihara, K.K.; Vandlen, R.; DePalatis, L.; Raab, H.; Hazenbos, W.L.; Hiroshi Morisaki, J.; et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 2015, 527, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Jorch, S.K.; Surewaard, B.G.; Hossain, M.; Peiseler, M.; Deppermann, C.; Deng, J.; Bogoslowski, A.; van der Wal, F.; Omri, A.; Hickey, M.J.; et al. Peritoneal GATA6+ macrophages function as a portal for Staphylococcus aureus dissemination. J. Clin. Investig. 2019. [Google Scholar] [CrossRef]
- Bravo-Santano, N.; Ellis, J.K.; Mateos, L.M.; Calle, Y.; Keun, H.C.; Behrends, V.; Letek, M. Intracellular Staphylococcus aureus Modulates Host Central Carbon Metabolism To Activate Autophagy. mSphere 2018, 3, e00374-18. [Google Scholar] [CrossRef]
- Kullar, R.; Davis, S.L.; Levine, D.P.; Rybak, M.J. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: Support for consensus guidelines suggested targets. Clin. Infect. Dis. 2011, 52, 975–981. [Google Scholar] [CrossRef]
- Kourtis, A.P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M.A.; Dumyati, G.; Petit, S.; et al. Vital signs: Epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections—United States. Morb. Mortal. Wkly. Rep. 2019, 68, 214. [Google Scholar] [CrossRef]
- Walraven, C.J.; North, M.S.; Marr-Lyon, L.; Deming, P.; Sakoulas, G.; Mercier, R.C. Site of infection rather than vancomycin MIC predicts vancomycin treatment failure in methicillin-resistant Staphylococcus aureus bacteraemia. J. Antimicrob. Chemother. 2011, 66, 2386–2392. [Google Scholar] [CrossRef]
- Howden, B.P.; Davies, J.K.; Johnson, P.D.R.; Stinear, T.P.; Grayson, M.L. Reduced Vancomycin Susceptibility in Staphylococcus aureus, Including Vancomycin-Intermediate and Heterogeneous Vancomycin-Intermediate Strains: Resistance Mechanisms, Laboratory Detection, and Clinical Implications. Clin. Microbiol. Rev. 2010, 23, 99–139. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Boswihi, S.S.; Udo, E.E. Methicillin-resistant Staphylococcus aureus: An update on the epidemiology, treatment options and infection control. Curr. Med. Res. Pract. 2018, 8, 18–24. [Google Scholar] [CrossRef]
- Raja, A.; LaBonte, J.; Lebbos, J.; Kirkpatrick, P. Daptomycin. Nat. Rev. Drug Discov. 2003, 2, 943. [Google Scholar] [CrossRef] [PubMed]
- Watkins, R.R.; Lemonovich, T.L.; File, T.M., Jr. An evidence-based review of linezolid for the treatment of methicillin-resistant Staphylococcus aureus (MRSA): Place in therapy. Core Evid. 2012, 7, 131–143. [Google Scholar] [CrossRef]
- Nannini, E.; Murray, B.E.; Arias, C.A. Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr. Opin. Pharm. 2010, 10, 516–521. [Google Scholar] [CrossRef]
- Kobayashi, S.D.; Deleo, F.R. Staphylococcus aureus Protein A Promotes Immune Suppression. MBio 2013, 4, e00746-13. [Google Scholar] [CrossRef]
- Spaulding, A.R.; Salgado-Pabón, W.; Merriman, J.A.; Stach, C.S.; Ji, Y.; Gillman, A.N.; Peterson, M.L.; Schlievert, P.M. Vaccination against Staphylococcus aureus pneumonia. J. Infect. Dis. 2014, 209, 1955–1962. [Google Scholar] [CrossRef]
- Brown, A.F.; Leech, J.M.; Rogers, T.R.; McLoughlin, R.M. Staphylococcus aureus colonization: Modulation of host immune response and impact on human vaccine design. Front. Immunol. 2014, 4, 507. [Google Scholar] [CrossRef]
- DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016, 47, 20–33. [Google Scholar]
- Sun, W.; Sanderson, P.E.; Zheng, W. Drug combination therapy increases successful drug repositioning. Drug Discov. Today 2016, 21, 1189–1195. [Google Scholar] [CrossRef]
- Zheng, W.; Sun, W.; Simeonov, A. Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br. J. Pharm. 2018, 175, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.Y.; Uzoma, I.; Moore, R.T.; Gilbert, M.; Duplantier, A.J.; Panchal, R.G. Mitigating the impact of antibacterial drug resistance through host-directed therapies: Current progress, outlook, and challenges. MBio 2018, 9, e1092-17. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Santano, N.; Stölting, H.; Cooper, F.; Bileckaja, N.; Majstorovic, A.; Ihle, N.; Mateos, L.M.; Calle, Y.; Behrends, V.; Letek, M. Host-directed kinase inhibitors act as novel therapies against intracellular Staphylococcus aureus. Sci. Rep. 2019, 9, 4876. [Google Scholar] [CrossRef] [PubMed]
- Schwegmann, A.; Brombacher, F. Host-directed drug targeting of factors hijacked by pathogens. Sci. Signal. 2008, 1, re8. [Google Scholar] [CrossRef]
- Zumla, A.; Rao, M.; Wallis, R.S.; Kaufmann, S.H.E.; Rustomjee, R.; Mwaba, P.; Vilaplana, C.; Yeboah-Manu, D.; Chakaya, J.; Ippolito, G.; et al. Host-directed therapies for infectious diseases: Current status, recent progress, and future prospects. Lancet Infect. Dis. 2016, 16, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, S.H.E.; Dorhoi, A.; Hotchkiss, R.S.; Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov. 2018, 17, 35–56. [Google Scholar] [CrossRef]
- Wallis, R.S.; van Vuuren, C.; Potgieter, S. Adalimumab Treatment of Life-Threatening Tuberculosis. Clin. Infect. Dis. 2009, 48, 1429–1432. [Google Scholar] [CrossRef] [Green Version]
- Wroblewski, L.E.; Peek, R.M.; Wilson, K.T. Helicobacter pylori and Gastric Cancer: Factors That Modulate Disease Risk. Clin. Microbiol. Rev. 2010, 23, 713–739. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, K.M.; Skerry, C.; Carbonetti, N.H. Novel therapies for the treatment of pertussis disease. Pathog. Dis. 2015, 73, ftv074. [Google Scholar] [CrossRef] [Green Version]
- Datta, M.; Via, L.E.; Kamoun, W.S.; Liu, C.; Chen, W.; Seano, G.; Weiner, D.M.; Schimel, D.; England, K.; Martin, J.D.; et al. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc. Natl. Acad. Sci. USA 2015, 112, 1827–1832. [Google Scholar] [CrossRef] [Green Version]
- Oehlers, S.H.; Cronan, M.R.; Scott, N.R.; Thomas, M.I.; Okuda, K.S.; Walton, E.M.; Beerman, R.W.; Crosier, P.S.; Tobin, D.M. Interception of host angiogenic signalling limits mycobacterial growth. Nature 2014, 517, 612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Mohan, A.; Dey, A.B.; Mitra, D.K. Inhibiting the Programmed Death 1 Pathway Rescues Mycobacterium tuberculosis–Specific Interferon γ—Producing T Cells From Apoptosis in Patients with Pulmonary Tuberculosis. J. Infect. Dis. 2013, 208, 603–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurado, J.O.; Alvarez, I.B.; Pasquinelli, V.; Martínez, G.J.; Quiroga, M.F.; Abbate, E.; Musella, R.M.; Chuluyan, H.E.; García, V.E. Programmed Death (PD)-1: PD-Ligand 1/PD-Ligand 2 Pathway Inhibits T Cell Effector Functions during Human Tuberculosis. J. Immunol. 2008, 181, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravimohan, S.; Tamuhla, N.; Steenhoff, A.P.; Letlhogile, R.; Nfanyana, K.; Bellamy, S.L.; MacGregor, R.R.; Gross, R.; Weissman, D.; Bisson, G.P. Immunological profiling of tuberculosis-associated immune reconstitution inflammatory syndrome and non-immune reconstitution inflammatory syndrome death in HIV-infected adults with pulmonary tuberculosis starting antiretroviral therapy: A prospective obse. Lancet Infect. Dis. 2015, 15, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Tobin, D.M.; Roca, F.J.; Ray, J.P.; Ko, D.C.; Ramakrishnan, L. An Enzyme That Inactivates the Inflammatory Mediator Leukotriene B4 Restricts Mycobacterial Infection. PLoS ONE 2013, 8, e67828. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.; Bleiss, W.; Marko, A.; Ordway, D.; Viveiros, M.; Leandro, C.; Pacheco, T.; Molnar, J.; Kristiansen, J.E.; Amaral, L. Clinical concentrations of thioridazine enhance the killing of intracellular methicillin-resistant Staphylococcus aureus: An in vivo, ex vivo and electron microscopy study. In Vivo 2004, 18, 787–794. [Google Scholar]
- Rikihisa, Y.; Zhang, Y.; Park, J. Role of Ca2+ and calmodulin in ehrlichial infection in macrophages. Infect. Immun. 1995, 63, 2310–2316. [Google Scholar]
- Amaral, L.; Kristiansen, J.E.; Frølund Thomsen, V.; Markovich, B. The effects of chlorpromazine on the outer cell wall of Salmonella Typhimurium in ensuring resistance to the drug. Int. J. Antimicrob. Agents 2000, 14, 225–229. [Google Scholar] [CrossRef]
- Kuijl, C.; Savage, N.D.L.; Marsman, M.; Tuin, A.W.; Janssen, L.; Egan, D.A.; Ketema, M.; van den Nieuwendijk, R.; van den Eeden, S.J.F.; Geluk, A.; et al. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 2007, 450, 725. [Google Scholar] [CrossRef]
- Skerry, C.; Scanlon, K.; Rosen, H.; Carbonetti, N.H. Sphingosine-1-phosphate Receptor Agonism Reduces Bordetella pertussis—Mediated Lung Pathology. J. Infect. Dis. 2015, 211, 1883–1886. [Google Scholar] [CrossRef] [Green Version]
- Koh, G.C.K.W.; Maude, R.R.; Schreiber, M.F.; Limmathurotsakul, D.; Wiersinga, W.J.; Wuthiekanun, V.; Lee, S.J.; Mahavanakul, W.; Chaowagul, W.; Chierakul, W.; et al. Glyburide Is Anti-inflammatory and Associated with Reduced Mortality in Melioidosis. Clin. Infect. Dis. 2011, 52, 717–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czyz, D.M.; Potluri, L.-P.; Jain-Gupta, N.; Riley, S.P.; Martinez, J.J.; Steck, T.L.; Crosson, S.; Shuman, H.A.; Gabay, J.E. Host-directed antimicrobial drugs with broad-spectrum efficacy against intracellular bacterial pathogens. MBio 2014, 5, e01534-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, G.R.; Wheeler, A.P.; Russell, J.A.; Schein, R.; Summer, W.R.; Steinberg, K.P.; Fulkerson, W.J.; Wright, P.E.; Christman, B.W.; Dupont, W.D.; et al. The Effects of Ibuprofen on the Physiology and Survival of Patients with Sepsis. N. Engl. J. Med. 1997, 336, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Vilaplana, C.; Marzo, E.; Tapia, G.; Diaz, J.; Garcia, V.; Cardona, P.-J. Ibuprofen Therapy Resulted in Significantly Decreased Tissue Bacillary Loads and Increased Survival in a New Murine Experimental Model of Active Tuberculosis. J. Infect. Dis. 2013, 208, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Ivanyi, J.; Zumla, A. Nonsteroidal Antiinflammatory Drugs for Adjunctive Tuberculosis Treatment. J. Infect. Dis. 2013, 208, 185–188. [Google Scholar] [CrossRef]
- Napier, R.J.; Rafi, W.; Cheruvu, M.; Powell, K.R.; Zaunbrecher, M.A.; Bornmann, W.; Salgame, P.; Shinnick, T.M.; Kalman, D. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 2011, 10, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Den Dulk-Ras, A.; Hooykaas, P.J.J.; Rikihisa, Y. Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell. Microbiol. 2007, 9, 2644–2657. [Google Scholar] [CrossRef]
- Bruce Light, R. Indomethacin and Acetylsalicylic Acid Reduce Intrapulmonary Shunt in Experimental Pneumococcal Pneumonia. Am. Rev. Respir. Dis. 1986, 134, 520–525. [Google Scholar]
- Singhal, A.; Jie, L.; Kumar, P.; Hong, G.S.; Leow, M.K.-S.; Paleja, B.; Tsenova, L.; Kurepina, N.; Chen, J.; Zolezzi, F.; et al. Metformin as adjunct antituberculosis therapy. Sci. Transl. Med. 2014, 6, 263ra159. [Google Scholar] [CrossRef]
- Pirinen, E.; Cantó, C.; Jo, Y.S.; Morato, L.; Zhang, H.; Menzies, K.J.; Williams, E.G.; Mouchiroud, L.; Moullan, N.; Hagberg, C.; et al. Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle. Cell Metab. 2014, 19, 1034–1041. [Google Scholar] [CrossRef] [Green Version]
- Coussens, A.K.; Wilkinson, R.J.; Martineau, A.R. Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3. PLoS Pathog. 2015, 11, e1005007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieberman, L.A.; Higgins, D.E. A small-molecule screen identifies the antipsychotic drug pimozide as an inhibitor of Listeria monocytogenes infection. Antimicrob. Agents Chemother. 2009, 53, 756–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, C.A.; Nigro, N.; Briel, M.; Schuetz, P.; Ullmer, E.; Suter-Widmer, I.; Winzeler, B.; Bingisser, R.; Elsaesser, H.; Drozdov, D.; et al. Adjunct prednisone therapy for patients with community-acquired pneumonia: A multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2015, 385, 1511–1518. [Google Scholar] [CrossRef]
- Critchley, J.A.; Young, F.; Orton, L.; Garner, P. Corticosteroids for prevention of mortality in people with tuberculosis: A systematic review and meta-analysis. Lancet Infect. Dis. 2013, 13, 223–237. [Google Scholar] [CrossRef]
- Ho Sui, S.J.; Lo, R.; Fernandes, A.R.; Caulfield, M.D.G.; Lerman, J.A.; Xie, L.; Bourne, P.E.; Baillie, D.L.; Brinkman, F.S.L. Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int. J. Antimicrob. Agents 2012, 40, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortensen, E.M.; Pugh, M.J.; Copeland, L.A.; Restrepo, M.I.; Cornell, J.E.; Anzueto, A.; Pugh, J.A. Impact of statins and angiotensin-converting enzyme inhibitors on mortality of subjects hospitalised with pneumonia. Eur. Respir. J. 2008, 31, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, J.D.; Singanayagam, A.; Murray, M.P.; Hill, A.T. Prior Statin Use Is Associated with Improved Outcomes in Community-acquired Pneumonia. Am. J. Med. 2008, 121, 1002–1007. [Google Scholar] [CrossRef]
- Parihar, S.P.; Guler, R.; Khutlang, R.; Lang, D.M.; Hurdayal, R.; Mhlanga, M.M.; Suzuki, H.; Marais, A.D.; Brombacher, F. Statin Therapy Reduces the Mycobacterium tuberculosis Burden in Human Macrophages and in Mice by Enhancing Autophagy and Phagosome Maturation. J. Infect. Dis. 2014, 209, 754–763. [Google Scholar] [CrossRef] [Green Version]
- Yedery, D.R.; Jerse, E.A. Augmentation of Cationic Antimicrobial Peptide Production with Histone Deacetylase Inhibitors as a Novel Epigenetic Therapy for Bacterial Infections. Antibiotics 2015, 4, 44–61. [Google Scholar] [CrossRef]
- Lieberman, L.A.; Higgins, D.E. Inhibition of Listeria monocytogenes infection by neurological drugs. Int. J. Antimicrob. Agents 2010, 35, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Amaral, L.; Viveiros, M. Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. Int. J. Antimicrob. Agents 2012, 39, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Viveiros, M.; Amaral, L. Inhibitors of Ca2+ and K+ Transport Enhance Intracellular Killing of M. tuberculosis by Non-killing Macrophages. In Vivo 2008, 22, 69–75. [Google Scholar] [PubMed]
- Gupta, S.; Tyagi, S.; Bishai, W.R. Verapamil increases the bactericidal activity of bedaquiline against Mycobacterium tuberculosis in a mouse model. Antimicrob. Agents Chemother. 2015, 59, 673–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salin, O.P.; Pohjala, L.L.; Saikku, P.; Vuorela, H.J.; Leinonen, M.; Vuorela, P.M. Effects of coadministration of natural polyphenols with doxycycline or calcium modulators on acute Chlamydia pneumoniae infection in vitro. J. Antibiot. 2011, 64, 747. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Valentini, D.; Zumla, A.; Maeurer, M. Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat) in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis. Int. J. Infect. Dis. 2018, 69, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Mayer-Barber, K.D.; Andrade, B.B.; Oland, S.D.; Amaral, E.P.; Barber, D.L.; Gonzales, J.; Derrick, S.C.; Shi, R.; Kumar, N.P.; Wei, W.; et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 2014, 511, 99. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Chen, W.; Zhu, H.; Chen, Y.; Wan, X.; Yang, N.; Xu, S.; Yu, C.; Chen, L. Helicobacter pylori Induces Increased Expression of the Vitamin D Receptor in Immune Responses. Helicobacter 2013, 19, 37–47. [Google Scholar] [CrossRef]
- Derré, I.; Pypaert, M.; Dautry-Varsat, A.; Agaisse, H. RNAi Screen in Drosophila Cells Reveals the Involvement of the Tom Complex in Chlamydia Infection. PLoS Pathog. 2007, 3, e155. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.W.; Viala, J.P.M.; Stuurman, N.; Wiedemann, U.; Vale, R.D.; Portnoy, D.A. Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen. Proc. Natl. Acad. Sci. USA 2005, 102, 13646–13651. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Santano, N.; Capilla-Lasheras, P.; Mateos, L.M.; Calle, Y.; Behrends, V.L.M. Identification of novel targets for host-directed therapeutics against intracellular Staphylococcus aureus. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Stefanovic, B.; Stefanovic, L.; Schnabl, B.; Bataller, R.; Brenner, D.A. TRAM2 protein interacts with endoplasmic reticulum Ca2+ pump Serca2b and is necessary for collagen type I synthesis. Mol. Cell. Biol. 2004, 24, 1758–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kint, G.; Fierro, C.; Marchal, K.; Vanderleyden, J.; De Keersmaecker, S.C.J. Integration of ‘omics’ data: Does it lead to new insights into host–microbe interactions? Future Microbiol. 2010, 5, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Jean Beltran, P.M.; Federspiel, J.D.; Sheng, X.; Cristea, I.M. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol. Syst. Biol. 2017, 13. [Google Scholar] [CrossRef] [PubMed]
- Eisenreich, W.; Heesemann, J.; Rudel, T.; Goebel, W. Metabolic host responses to infection by intracellular bacterial pathogens. Front. Cell. Infect. Microbiol. 2013, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escoll, P.; Song, O.R.O.-R.; Viana, F.; Steiner, B.; Lagache, T.; Olivo-Marin, J.-C.J.C.; Impens, F.; Brodin, P.; Hilbi, H.; Buchrieser, C. Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages. Cell Host Microbe 2017, 22, 302–316. [Google Scholar] [CrossRef] [PubMed]
- Kentner, D.; Martano, G.; Callon, M.; Chiquet, P.; Brodmann, M.; Burton, O.; Wahlander, A.; Nanni, P.; Delmotte, N.; Grossmann, J.; et al. Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth. Proc. Natl. Acad. Sci. USA 2014, 111, 9929–9934. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Sassetti, C.M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. USA 2008, 105, 4376–4380. [Google Scholar] [CrossRef] [Green Version]
- Gierok, P.; Harms, M.; Methling, K.; Hochgräfe, F.; Lalk, M. Staphylococcus aureus infection reduces nutrition uptake and nucleotide biosynthesis in a human airway epithelial cell line. Metabolites 2016, 6, 41. [Google Scholar] [CrossRef]
- Bravo-Santano, N.; Ellis, J.K.; Calle, Y.; Keun, H.C.; Behrends, V.; Letek, M. Intracellular Staphylococcus aureus Elicits the Production of Host Very Long-Chain Saturated Fatty Acids with Antimicrobial Activity. Metabolites 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Li, H.; Ding, S.; Wang, Y. Autophagy inhibition promotes phagocytosis of macrophage and protects mice from methicillin-resistant Staphylococcus aureus pneumonia. J. Cell. Biochem. 2018, 119, 4808–4814. [Google Scholar] [CrossRef]
- Rossi, J.-F.; Lu, Z.-Y.; Jourdan, M.; Klein, B. Interleukin-6 as a Therapeutic Target. Clin. Cancer Res. 2015, 21, 1248–1257. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Rehn, A.; Rahman, J.; Andersson, J.; Svensson, M.; Brighenti, S. Pulmonary tuberculosis patients with a vitamin D deficiency demonstrate low local expression of the antimicrobial peptide LL-37 but enhanced FoxP3+ regulatory T cells and IgG-secreting cells. Clin. Immunol. 2015, 156, 85–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napier, R.J.; Norris, B.A.; Swimm, A.; Giver, C.R.; Harris, W.A.C.; Laval, J.; Napier, B.A.; Patel, G.; Crump, R.; Peng, Z.; et al. Low Doses of Imatinib Induce Myelopoiesis and Enhance Host Anti-microbial Immunity. PLoS Pathog. 2015, 11, e1004770. [Google Scholar] [CrossRef] [PubMed]
- Sinha, B.; François, P.P.; Nüsse, O.; Foti, M.; Hartford, O.M.; Vaudaux, P.; Foster, T.J.; Lew, D.P.; Herrmann, M.; Krause, K.H. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell. Microbiol. 1999, 1, 101–117. [Google Scholar] [CrossRef]
- Agerer, F.; Lux, S.; Michel, A.; Rohde, M.; Ohlsen, K.; Hauck, C.R. Cellular invasion by Staphylococcus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation. J. Cell Sci. 2005, 118, 2189–2200. [Google Scholar] [CrossRef] [Green Version]
- Richter, E.; Harms, M.; Ventz, K.; Nölker, R.; Fraunholz, M.J.; Mostertz, J.; Hochgräfe, F. Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of Staphylococcus aureus. J. Proteome Res. 2016, 15, 4369–4386. [Google Scholar] [CrossRef]
- Goldmann, O.; Tuchscherr, L.; Rohde, M.; Medina, E. α-Hemolysin enhances Staphylococcus aureus internalization and survival within mast cells by modulating the expression of β1 integrin. Cell. Microbiol. 2015, 18, 807–819. [Google Scholar] [CrossRef]
- Ashraf, S.; Cheng, J.; Zhao, X. Clumping factor A of Staphylococcus aureus interacts with AnnexinA2 on mammary epithelial cells. Sci. Rep. 2017, 7, 40608. [Google Scholar] [CrossRef] [Green Version]
- Oviedo-Boyso, J.; Cortés-Vieyra, R.; Huante-Mendoza, A.; Yu, H.B.; Valdez-Alarcón, J.J.; Bravo-Patiño, A.; Cajero-Juárez, M.; Finlay, B.B.; Baizabal-Aguirre, V.M. The phosphoinositide-3-kinase-akt signaling pathway is important for Staphylococcus aureus internalization by endothelial cells. Infect. Immun. 2011, 79, 4569–4577. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, C.J.; Garciarena, C.D.; Watkin, R.L.; McHale, T.M.; McLoughlin, A.; Claes, J.; Verhamme, P.; Cummins, P.M.; Kerrigan, S.W. Inhibition of major integrin αVβ3 reduces Staphylococcus aureus attachment to sheared human endothelial cells. J. Thromb. Haemost. 2016, 14, 2536–2547. [Google Scholar] [CrossRef]
- Ellington, J.K.; Elhofy, A.; Bost, K.L.; Hudson, M.C. Involvement of Mitogen-Activated Protein Kinase Pathways in Staphylococcus aureus Invasion of Normal Osteoblasts. Infect. Immun. 2001, 69, 5235–5242. [Google Scholar] [CrossRef] [Green Version]
- Soong, G.; Martin, F.J.; Chun, J.; Cohen, T.S.; Ahn, D.S.; Prince, A. Staphylococcus aureus protein A mediates invasion across airway epithelial cells through activation of RhoA GTPase signaling and proteolytic activity. J. Biol. Chem. 2011, 286, 35891–35898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Gao, Y.; Xia, X.; Che, Y.; Wang, Y.; Liu, H.; Sun, Y.; Ren, W.; Han, W.; Yang, J.; et al. TGF-β1 promotes Staphylococcus aureus adhesion to and invasion into bovine mammary fibroblasts via the ERK pathway. Microb. Pathog. 2017, 106, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Dziewanowska, K.; Carson, A.R.; Patti, J.M.; Deobald, C.F.; Bayles, K.W.; Bohach, G.A. Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: Role in internalization by epithelial cells. Infect. Immun. 2000, 68, 6321–6328. [Google Scholar] [CrossRef] [PubMed]
- Hirschhausen, N.; Schlesier, T.; Schmidt, M.A.; Götz, F.; Peters, G.; Heilmann, C. A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cell. Microbiol. 2010, 12, 1746–1764. [Google Scholar] [CrossRef] [PubMed]
- Askarian, F.; Ajayi, C.; Hanssen, A.-M.; van Sorge, N.M.; Pettersen, I.; Diep, D.B.; Sollid, J.U.E.; Johannessen, M. The interaction between Staphylococcus aureus SdrD and desmoglein 1 is important for adhesion to host cells. Sci. Rep. 2016, 6, 22134. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-H.; Jiang, Y.-L.; Zhang, J.; Wang, L.; Bai, X.-H.; Zhang, S.-J.; Ren, Y.-M.; Li, N.; Zhang, Y.-H.; Zhang, Z.; et al. Structural Insights into SraP-Mediated Staphylococcus aureus Adhesion to Host Cells. PLoS Pathog. 2014, 10, e1004169. [Google Scholar] [CrossRef]
- Miller, M.; Dreisbach, A.; Otto, A.; Becher, D.; Bernhardt, J.; Hecker, M.; Peppelenbosch, M.P.; van Dijl, J.M. Mapping of Interactions between Human Macrophages and Staphylococcus aureus Reveals an Involvement of MAP Kinase Signaling in the Host Defense. J. Proteome Res. 2011, 10, 4018–4032. [Google Scholar] [CrossRef]
- Inoshima, I.; Inoshima, N.; Wilke, G.A.; Powers, M.E.; Frank, K.M.; Wang, Y.; Wardenburg, J.B. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 2011, 17, 1310–1314. [Google Scholar] [CrossRef] [Green Version]
- Neumann, Y.; Bruns, S.A.; Rohde, M.; Prajsnar, T.K.; Foster, S.J.; Schmitz, I. Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase. Autophagy 2016, 12, 2069–2084. [Google Scholar] [CrossRef] [Green Version]
- Schröder, A.; Schröder, B.; Roppenser, B.; Linder, S.; Sinha, B.; Fässler, R.; Aepfelbacher, M. Staphylococcus aureus Fibronectin Binding Protein-A Induces Motile Attachment Sites and Complex Actin Remodeling in Living Endothelial Cells. Mol. Biol. Cell 2006, 17, 5198–5210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boada-Romero, E.; Letek, M.; Fleischer, A.; Pallauf, K.; Ramó n-Barros, C.; Pimentel-Muiñ os, F.X. TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J. 2013, 32, 566–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestre, M.B.; Colombo, M.I. CAMP and EPAC are key players in the regulation of the signal transduction pathway involved in the α-hemolysin autophagic response. PLoS Pathog. 2012, 8, e1002664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imre, G.; Heering, J.; Takeda, A.-N.; Husmann, M.; Thiede, B.; zu Heringdorf, D.M.; Green, D.R.; van der Goot, F.G.; Sinha, B.; Dötsch, V.; et al. Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis. EMBO J. 2012, 31, 2615–2628. [Google Scholar] [CrossRef] [PubMed]
- Rudel, T.; Kepp, O.; Kozjak-Pavlovic, V. Interactions between bacterial pathogens and mitochondrial cell death pathways. Nat. Rev. Microbiol. 2010, 8, 693. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Planillo, R.; Franchi, L.; Miller, L.S.; Núñez, G. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J. Immunol. 2009, 183, 3942–3948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Class | Drug | Mechanism of Action | Pathogen | Reference |
---|---|---|---|---|
Monoclonal antibody | Adalimumab | Anti-TNFα | Mycobacterium tuberculosis | [38] |
Anti-interleukin 1β | Cytokine neutralisation | Helicobacter pylori | [39] | |
Antipertussis toxins antibody | Enhancement of immunoglobulins | Bordetella pertussis | [40] | |
Anti-TNFα | Cytokine neutralisation | Helicobacter pylori | [39] | |
Bevacizumab | Anti-VEGF | Mycobacterium tuberculosis | [41,42] | |
Nivolumab | Anti-PD-1 | Mycobacterium tuberculosis | [43,44] | |
Siltuximab | Anti-interleukin 6 | Mycobacterium tuberculosis | [45] | |
Repurposed drug | Aspirin | NSAID, TNFα levels reduction | Mycobacterium tuberculosis | [46] |
Chlorpromazine | Calmodulin antagonist | Staphylococcus aureus | [47] | |
Neorickettsia risticii | [48] | |||
Salmonella Typhimurium | [49] | |||
ETB067 | Serine-threonine protein kinase (Akt1) inhibitor | Mycobacterium tuberculosis | [50] | |
Fingolimod | Activation of sphingosine-1-phosphate pathway | Bordetella pertussis | [51] | |
Glibendamide | Cyclooxygenase inhibition | Streptococcus pneumoniae | [52] | |
H-89 | Protein kinase A (PKA) inhibitor | Salmonella Typhimurium | [50] | |
Coxiella burnetii | [53] | |||
Ibuprofen | NSAID, cyclooxygenase inhibition | Streptococcus pneumoniae | [54] | |
Mycobacterium tuberculosis | [55,56] | |||
Imatinib mesylate | BCR-ABL tyrosine kinase inhibitor | Mycobacterium tuberculosis | [57] | |
Anaplasma phagocytophilum | [58] | |||
Repurposed drug | Indometacin | Cyclooxygenase inhibition | Streptococcus pneumoniae | [59] |
Metformin | Mitochondrial respiratory chain blocker | Mycobacterium tuberculosis | [60] | |
Niraparib | PARP inhibitor | Mycobacterium tuberculosis | [61] | |
Phenylbutyrate | Histone deacetylase inhibitor | Mycobacterium tuberculosis | [62] | |
Pimozide | Calcium channel inhibitor | Listeria monocytogenes | [63] | |
Bacillus subtilis | [63] | |||
Salmonella Typhimurium | [63] | |||
Escherichia coli | [63] | |||
Prednisone | Glucocorticoid receptor antagonist | Streptococcus pneumoniae | [64] | |
Mycobacterium tuberculosis | [65] | |||
Raloxifene | Oestrogen receptor modulator | Pseudomonas aeruginosa | [66] | |
Statins | HMG-CoA reductase inhibitor | Streptococcus pneumoniae | [67,68] | |
Mycobacterium tuberculosis | [69] | |||
Sulforaphane | Histone deacetylase inhibitor | Neisseria gonorrhoeae | [70] | |
Thapsigargin | Calcium ATPase inhibitor | Coxiella burnetii | [53] | |
Thioridazine | unknown | Listeria monocytogenes | [71] | |
Staphylococcus aureus | [47] | |||
Mycobacterium tuberculosis | [72] | |||
Verapamil | Calcium channel inhibitor | Mycobacterium tuberculosis | [73,74] | |
Chlamydia pneumoniae | [75] | |||
Vorinostat | Histone deacetylase inhibitor | Mycobacterium tuberculosis | [76] | |
Zileuton | Leukotriene synthesis inhibitor | Mycobacterium tuberculosis | [77] | |
Vitamin | Vitamin D3 | Activation of antimicrobial defenses | Helicobacter pylori | [78] |
Host Factor | Putative Function | Reference | Host-Directed Drug | Type |
---|---|---|---|---|
Adherence and Internalization | ||||
α5β1-integrins | Internalization into non-phagocytic cells | [95] | Volociximab * | Antibody |
FAK | Internalization into non-phagocytic cells | [96,97] | PF-562271 | Inhibitor |
Src-mediated cortactin | Internalization into non-phagocytic cells | [96,97] | PP2 | Inhibitor |
β1-integrins | Internalization into mast cells | [98] | R1295 * | Antagonist |
Annexin 2 | Internalization into epithelial cells | [99] | ||
(PI3K)-Akt | Internalization into endothelial cells | [100] | Nelfinavir * | Inhibitor |
αVβ3-integrin | Internalization into endothelial cells | [101] | Cilengitide * | Inhibitor |
ERK | Internalization into osteoblast and Hep-2 cells | [102] | SCH772984 * | Inhibitor |
ERK1/2/MEK | Penetration into airway epithelial cells | [103] | UO126 | Inhibitor |
ERK | Invasion to fibroblasts | [104] | PD98059 | Inhibitor |
Hsp60 | Internalization into epithelial cells | [105] | ||
Hsc70 | Internalization into 293T cells | [106] | ||
Desmoglein 1 | Adherence to keratinocytes | [107] | ||
Scavenger protein gp340 | Internalization into A549 cells | [108] | ||
EGFR | Penetration into airway epithelial cells | [103] | BPDQ | Inhibitor |
ROCK | Penetration into airway epithelial cells | [103] | Y-27632 | Inhibitor |
JNK | Penetration into airway epithelial cells | [103] | SP600125 | Inhibitor |
p38/MAPK | Penetration into airway epithelial cells | [103] | SB202190 | Inhibitor |
EPHA2 | Invasion/Internalization into epithelial cells | [34] | Ibrutinib | Inhibitor |
CDK | Adhesion to human bronchial epithelial cells | [97] | Roscovitine | |
PKA | Internalization into Thp1 macrophages | [97,109] | H-89 | Inhibitor |
PKC | Internalization into Thp1 macrophages | [97,109] | Bisindolylmaleimide-I | Inhibitor |
Intracellular Survival and Proliferation | ||||
ADAM10 | Cleavage of adherens junction protein E-cadherin | [110] | GI 254023X | Inhibitor |
AMPK | Induction of autophagy | [17] | Dorsomorphin | Inhibitor |
ERK | Induction of autophagy | [17] | SCH772984 * | Inhibitor |
TRAM2 | Ca2+ pump to promote collagen synthesis | [81] | Thapsigargin | Inhibitor |
p38/MAPK | Subversion of autophagy | [111] | Skepinone-L * | Inhibitor |
PAK | Cytoeskeleton rearrangements | [97] | FRAX597 * | Inhibitor |
MYL2 | Cytoeskeleton rearrangements | [81] | Blebbistatin * | Inhibitor |
FAM63B | Intracellular trafficking | [81] | ||
Actin | Promote bacterial movements within the host cell | [95,112] | Cytochalasin D | Inhibitor |
Rab5 | Promote bacterial movements within the host cell | [112] | ||
NWASP | Production of actin-comet tails to facilitate movement | [112] | Wiskostatin | Inhibitor |
TMEM59 | Activation of selective-autophagy | [113] | ||
RAPGEF3 | Induction of autophagy | [114] | Salirasib * | Inhibitor |
RAP2B | Induction of autophagy | [114] | ||
S. aureus-Induced Host Cell Death | ||||
Caspase 2 | S. aureus-induced apoptosis | [115] | Z-VDVAD-FMK | Inhibitor |
Caspase 9 | S. aureus-induced apoptosis | [116] | Z-LEHD-FMK | Inhibitor |
NLRP3 | S. aureus-induced pyronecrosis | [117] | MCC950 * | Inhibitor |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo-Santano, N.; Behrends, V.; Letek, M. Host-Targeted Therapeutics against Multidrug Resistant Intracellular Staphylococcus aureus. Antibiotics 2019, 8, 241. https://doi.org/10.3390/antibiotics8040241
Bravo-Santano N, Behrends V, Letek M. Host-Targeted Therapeutics against Multidrug Resistant Intracellular Staphylococcus aureus. Antibiotics. 2019; 8(4):241. https://doi.org/10.3390/antibiotics8040241
Chicago/Turabian StyleBravo-Santano, Natalia, Volker Behrends, and Michal Letek. 2019. "Host-Targeted Therapeutics against Multidrug Resistant Intracellular Staphylococcus aureus" Antibiotics 8, no. 4: 241. https://doi.org/10.3390/antibiotics8040241
APA StyleBravo-Santano, N., Behrends, V., & Letek, M. (2019). Host-Targeted Therapeutics against Multidrug Resistant Intracellular Staphylococcus aureus. Antibiotics, 8(4), 241. https://doi.org/10.3390/antibiotics8040241