Effect of Antibiotic Susceptibility and CYP3A4/5 and CYP2C19 Genotype on the Outcome of Vonoprazan-Containing Helicobacter pylori Eradication Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatment Regimen
2.1.1. CYP2C19, CYP3A4 and CYP3A5 Genotyping
2.1.2. Esophagogastroduodenoscopy
2.1.3. Infection Status and Measurement of Antibiotic Resistance
2.2. Data Analysis
3. Results
3.1. Susceptibility to Antimicrobial Agents
3.2. Eradication Rates in Vonoprazan-Containing Eradication Therapy
3.3. Complications
4. Discussion
4.1. Eradication Rate of Vonoprazan-Containing First-Line Eradication Therapy
4.2. Eradication Rate of Vonoprazan-Based First-Line Therapy for Clarithromycin-Resistant H. pylori Strains
4.3. Second-Line and Third-Line Vonoprazan-Containing Eradication Therapy
4.4. Vonoprazan-Containing Eradication Therapy and CYP3A4/5 and CYP2C19 Genotype
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asaka, M.; Sugiyama, T.; Kato, M.; Satoh, K.; Kuwayama, H.; Fukuda, Y.; Fujioka, T.; Takemoto, T.; Kimura, K.; Shimoyama, T.; et al. A multicenter, double-blind study on triple therapy with lansoprazole, amoxicillin and clarithromycin for eradication of Helicobacter pylori in Japanese peptic ulcer patients. Helicobacter 2001, 6, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Sato, R.; Okimoto, T.; Nasu, M.; Fujioka, T.; Kodama, M.; Kagawa, J.; Sato, S.; Abe, H.; Arita, T. Eradication rates of clarithromycin-resistant Helicobacter pylori using either rabeprazole or lansoprazole plus amoxicillin and clarithromycin. Aliment. Pharmacol. Ther. 2002, 16, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Furuta, T.; Shirai, N.; Takashima, M.; Xiao, F.; Hanai, H.; Sugimura, H.; Ohashi, K.; Ishizaki, T.; Kaneko, E. Effect of genotypic differences in CYP2C19 on cure rates for Helicobacter pylori infection by triple therapy with a proton pump inhibitor, amoxicillin, and clarithromycin. Clin. Pharmacol. Ther. 2001, 69, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Yamaoka, Y. Virulence factor genotypes of Helicobacter pylori affect cure rates of eradication therapy. Arch. Immunol. Ther. Exp. (Warsz.) 2009, 57, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, M.; Furuta, T.; Shirai, N.; Kodaira, C.; Nishino, M.; Ikuma, M.; Ishizaki, T.; Hishida, A. Evidence that the degree and duration of acid suppression are related to Helicobacter pylori eradication by triple therapy. Helicobacter 2007, 12, 317–323. [Google Scholar] [CrossRef]
- Shiota, S.; Nguyen, L.T.; Murakami, K.; Kuroda, A.; Mizukami, K.; Okimoto, T.; Kodama, M.; Fujioka, T.; Yamaoka, Y. Association of helicobacter pylori dupA with the failure of primary eradication. J. Clin. Gastroenterol. 2012, 46, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, M.; Furuta, T.; Shirai, N.; Kajimura, M.; Hishida, A.; Sakurai, M.; Ohashi, K.; Ishizaki, T. Different dosage regimens of rabeprazole for nocturnal gastric acid inhibition in relation to cytochrome P450 2C19 genotype status. Clin. Pharmacol. Ther. 2004, 76, 290–301. [Google Scholar] [CrossRef]
- Sahara, S.; Sugimoto, M.; Uotani, T.; Ichikawa, H.; Yamade, M.; Iwaizumi, M.; Yamada, T.; Osawa, S.; Sugimoto, K.; Umemura, K.; et al. Twice-daily dosing of esomeprazole effectively inhibits acid secretion in CYP2C19 rapid metabolisers compared with twice-daily omeprazole, rabeprazole or lansoprazole. Aliment. Pharmacol. Ther. 2013, 38, 1129–1137. [Google Scholar] [CrossRef]
- Grayson, M.L.; Eliopoulos, G.M.; Ferraro, M.J.; Moellering, R.C., Jr. Effect of varying pH on the susceptibility of Campylobacter pylori to antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 1989, 8, 888–889. [Google Scholar] [CrossRef]
- Hunt, R.H. pH and Hp--gastric acid secretion and Helicobacter pylori: Implications for ulcer healing and eradication of the organism. Am. J. Gastroenterol. 1993, 88, 481–483. [Google Scholar]
- Hori, Y.; Imanishi, A.; Matsukawa, J.; Tsukimi, Y.; Nishida, H.; Arikawa, Y.; Hirase, K.; Kajino, M.; Inatomi, N. 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamin e monofumarate (TAK-438), a novel and potent potassium-competitive acid blocker for the treatment of acid-related diseases. J. Pharmacol. Exp. Ther. 2010, 335, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, K.; Sakurai, Y.; Shiino, M.; Funao, N.; Nishimura, A.; Asaka, M. Vonoprazan, a novel potassium-competitive acid blocker, as a component of first-line and second-line triple therapy for Helicobacter pylori eradication: A phase III, randomised, double-blind study. Gut 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shichijo, S.; Hirata, Y.; Niikura, R.; Hayakawa, Y.; Yamada, A.; Mochizuki, S.; Matsuo, K.; Isomura, Y.; Seto, M.; Suzuki, N.; et al. Vonoprazan versus conventional proton pump inhibitor-based triple therapy as first-line treatment against Helicobacter pylori: A multicenter retrospective study in clinical practice. J. Dig. Dis. 2016. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, D.; Akazawa, Y.; Takeshima, F.; Nakao, K.; Fukuda, Y. Safety and efficacy of Vonoprazan-based triple therapy against Helicobacter pylori infection: A single-center experience with 1118 patients. Therap. Adv. Gastroenterol. 2016, 9, 747–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayama, Y.; Toyoda, K.; Kusano, Y.; Suda, T.; Adachi, S.; Terauchi, I.; Oka, S.; Takahashi, M.; Tamano, M. Efficacy of vonoprazan-based second-line Helicobacter pylori eradication therapy in patients for whom vonoprazan-based fi rst-line treatment failed. Gut 2016. [Google Scholar] [CrossRef]
- Kawashima, K.; Ishihara, S.; Kinoshita, Y. Successful eradication of Helicobacter pylori infection with vonoprazan-based triple therapy after failure of PPI-based triple therapy. Dig. Liver Dis. 2016, 48, 688–689. [Google Scholar] [CrossRef]
- Ishizaki, T.; Horai, Y. Review article: Cytochrome P450 and the metabolism of proton pump inhibitors--emphasis on rabeprazole. Aliment. Pharmacol. Ther. 1999, 13 (Suppl. 3), 27–36. [Google Scholar] [CrossRef]
- Horai, Y.; Kimura, M.; Furuie, H.; Matsuguma, K.; Irie, S.; Koga, Y.; Nagahama, T.; Murakami, M.; Matsui, T.; Yao, T.; et al. Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP2C19 genotypes. Aliment. Pharmacol. Ther. 2001, 15, 793–803. [Google Scholar] [CrossRef]
- Shirai, N.; Furuta, T.; Moriyama, Y.; Okochi, H.; Kobayashi, K.; Takashima, M.; Xiao, F.; Kosuge, K.; Nakagawa, K.; Hanai, H.; et al. Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH. Aliment. Pharmacol. Ther. 2001, 15, 1929–1937. [Google Scholar] [CrossRef]
- Shirai, N.; Furuta, T.; Xiao, F.; Kajimura, M.; Hanai, H.; Ohashi, K.; Ishizaki, T. Comparison of lansoprazole and famotidine for gastric acid inhibition during the daytime and night-time in different CYP2C19 genotype groups. Aliment. Pharmacol. Ther. 2002, 16, 837–846. [Google Scholar] [CrossRef]
- Yamasaki, H.; Kawaguchi, N.; Nonaka, M.; Takahashi, J.; Morohashi, A.; Hirabayashi, H.; Moriwaki, T.; Asahi, S. In vitro metabolism of TAK-438, vonoprazan fumarate, a novel potassium-competitive acid blocker. Xenobiotica 2016, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Ban, H.; Hira, D.; Kamiya, T.; Otsuka, T.; Inatomi, O.; Bamba, S.; Terada, T.; Andoh, A. Letter: CYP3A4/5 genotype status and outcome of vonoprazan-containing Helicobacter pylori eradication therapy in Japan. Aliment. Pharmacol. Ther. 2017, 45, 1009–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, K.; Takemoto, T. An Endoscopic Recognition of the Atrophic Border and its Significance in Chronic Gastritis. Endoscopy 1969, 1, 87–97. [Google Scholar] [CrossRef]
- Sugimoto, M.; Ban, H.; Ichikawa, H.; Sahara, S.; Otsuka, T.; Inatomi, O.; Bamba, S.; Furuta, T.; Andoh, A. Efficacy of the Kyoto Classification of Gastritis in Identifying Patients at High Risk for Gastric Cancer. Intern. Med. 2017, 56, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Adamek, R.J.; Szymanski, C.; Pfaffenbach, B. Pantoprazole versus omeprazole in one-week low-dose triple therapy for curve of H. pylori infection. Am. J. Gastroenterol. 1997, 92, 1949–1950. [Google Scholar]
- Kagami, T.; Sahara, S.; Ichikawa, H.; Uotani, T.; Yamade, M.; Sugimoto, M.; Hamaya, Y.; Iwaizumi, M.; Osawa, S.; Sugimoto, K.; et al. Potent acid inhibition by vonoprazan in comparison with esomeprazole, with reference to CYP2C19 genotype. Aliment. Pharmacol. Ther. 2016, 43, 1048–1059. [Google Scholar] [CrossRef]
- Goddard, A.F.; Jessa, M.J.; Barrett, D.A.; Shaw, P.N.; Idstrom, J.P.; Cederberg, C.; Spiller, R.C. Effect of omeprazole on the distribution of metronidazole, amoxicillin, and clarithromycin in human gastric juice. Gastroenterology 1996, 111, 358–367. [Google Scholar] [CrossRef]
- Scott, D.; Weeks, D.; Melchers, K.; Sachs, G. The life and death of Helicobacter pylori. Gut 1998, 43 (Suppl. 1), S56–S60. [Google Scholar] [CrossRef]
- Kajihara, Y.; Shimoyama, T.; Mizuki, I. Analysis of the cost-effectiveness of using vonoprazan-amoxicillin-clarithromycin triple therapy for first-line Helicobacter pylori eradication. Scand. J. Gastroenterol. 2016, 1–4. [Google Scholar] [CrossRef]
- Yamada, S.; Kawakami, T.; Nakatsugawa, Y.; Suzuki, T.; Fujii, H.; Tomatsuri, N.; Nakamura, H.; Sato, H.; Okuyama, Y.; Kimura, H.; et al. Usefulness of vonoprazan, a potassium ion-competitive acid blocker, for primary eradication of Helicobacter pylori. World J. Gastrointest. Pharmacol. Ther. 2016, 7, 550–555. [Google Scholar] [CrossRef]
- Shinozaki, S.; Nomoto, H.; Kondo, Y.; Sakamoto, H.; Hayashi, Y.; Yamamoto, H.; Lefor, A.K.; Osawa, H. Comparison of vonoprazan and proton pump inhibitors for eradication of Helicobacter pylori. Kaohsiung J. Med. Sci. 2016, 32, 255–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, M.; Yamaoka, Y. Role of Vonoprazan in Helicobacter pylori Eradication Therapy in Japan. Front. Pharmacol. 2018, 9, 1560. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Oshima, T.; Horikawa, T.; Tozawa, K.; Tomita, T.; Fukui, H.; Watari, J.; Miwa, H. Systematic review with meta-analysis: Vonoprazan, a potent acid blocker, is superior to proton-pump inhibitors for eradication of clarithromycin-resistant strains of Helicobacter pylori. Helicobacter 2018, e12495. [Google Scholar] [CrossRef]
- Dong, S.Q.; Singh, T.P.; Wei, X.; Yao, H.; Wang, H.L. Review: A Japanese population-based meta-analysis of vonoprazan versus PPI for Helicobacter pylori eradication therapy: Is superiority an illusion? Helicobacter 2017, 22. [Google Scholar] [CrossRef]
- Furuta, T.; Sugimoto, M.; Kodaira, C.; Nishino, M.; Yamade, M.; Uotani, T.; Sahara, S.; Ichikawa, H.; Yamada, T.; Osawa, S.; et al. Sitafloxacin-based third-line rescue regimens for Helicobacter pylori infection in Japan. J. Gastroenterol. Hepatol. 2014, 29, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Furuta, T.; Ando, T.; Nakajima, T.; Inui, Y.; Oshima, T.; Tomita, T.; Mabe, K.; Sasaki, M.; Suganuma, T.; et al. Multi-center randomized controlled study to establish the standard third-line regimen for Helicobacter pylori eradication in Japan. J. Gastroenterol. 2013, 48, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Suzuki, H.; Matsuzaki, J.; Tsugawa, H.; Fukuhara, S.; Miyoshi, S.; Hirata, K.; Seino, T.; Matsushita, M.; Masaoka, T.; et al. Efficacy of 10-day Sitafloxacin-Containing Third-Line Rescue Therapies for Helicobacter pylori Strains Containing the gyrA Mutation. Helicobacter 2016, 21, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Sahara, S.; Ichikawa, H.; Kagami, T.; Uotani, T.; Furuta, T. High Helicobacter pylori cure rate with sitafloxacin-based triple therapy. Aliment. Pharmacol. Ther. 2015, 42, 477–483. [Google Scholar] [CrossRef]
- Sue, S.; Shibata, W.; Sasaki, T.; Kaneko, H.; Irie, K.; Kondo, M.; Maeda, S. Randomized Trial of Vonoprazan- Versus PPI-Based Third-Line Triple Therapy With Sitafloxacin for Helicobacter pylori. J. Gastroenterol. Hepatol. 2018. [Google Scholar] [CrossRef]
- Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011, 11, 274–286. [Google Scholar] [CrossRef] [Green Version]
- Hesselink, D.A.; Bouamar, R.; Elens, L.; van Schaik, R.H.; van Gelder, T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin. Pharmacokinet. 2014, 53, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Staatz, C.E.; Goodman, L.K.; Tett, S.E. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin. Pharmacokinet. 2010, 49, 141–175. [Google Scholar] [CrossRef] [PubMed]
- Asada, A.; Bamba, S.; Morita, Y.; Takahashi, K.; Imaeda, H.; Nishida, A.; Inatomi, O.; Sugimoto, M.; Sasaki, M.; Andoh, A. The effect of CYP3A5 genetic polymorphisms on adverse events in patients with ulcerative colitis treated with tacrolimus. Dig. Liver Dis. 2016. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 307) | First-Line Regimen (n = 213) | Second-Line Regimen (n = 54) | Third-Line Regimen (n = 40 ) | P Value |
---|---|---|---|---|---|
Age (years) | 62.3 ± 13.1 | 62.8 ± 13.0 | 61.9 ± 13.7 | 69.6 ± 13.1 | 0.381 |
Sex (male/female) | 160/147 | 109/104 | 32/22 | 19/21 | 0.471 |
Body weight (kg) | 59.5 ± 11.1 | 59.1 ± 10.8 | 59.4 ± 9.1 | 62.1 ± 15.0 | 0.598 |
Height (cm) | 161.7 ± 8.7 | 161.1 ± 9.0 | 163.5 ± 7.1 | 162.8 ± 8.5 | 0.100 |
Drinking (none/ past/ current) | 143/17/133 | 105/13/87 | 23/3/24 | 15/1/22 | 0.471 |
Smoking (none/ past/ current) | 188/76/29 | 131/53/21 | 30/15/5 | 27/8/3 | 0.867 |
CYP2C19 genotype (UR/EM/IM/PM) | 10/79/170/48 | 7/55/111/40 | 3/11/34/6 | 0/13/25/2 | 0.381 |
CYP3A4 genotype (*1/*1, *1/*22, *22/*22) | 307/0/0 | 213/0/0 | 54/0/0 | 40/0/0 | 1.000 |
CYP3A5 genotype (*1/*1, *1/*3, *3/*3) | 14/66/88 | 10/46/59 | 2/16/17 | 2/4/12 | 0.364 |
Sensitivity to antimicrobial agents | |||||
Clarithromycin (sensitive/resistant) | 92/102 | 82/56 | 7/24 | 3/22 | < 0.001 |
Amoxicillin (sensitive/not sensitive/resistant) | 150/44/0 | 118/20/0 | 21/10/0 | 11/14/0 | < 0.001 |
Metronidazole (sensitive/resistant) | 168/26 | 127/11 | 28/3 | 13/12 | < 0.001 |
Endoscopic findings | |||||
Gastric atrophy | 1.8 ± 0.4 | 1.8 ± 0.4 | 1.8 ± 0.5 | 1.7 ± 0.4 | 0.752 |
Intestinal metaplasia | 0.8 ± 0.7 | 0.9 ± 0.7 | 0.8 ± 0.7 | 0.7 ± 0.8 | 0.649 |
Enlarged folds | 0.2 ± 0.4 | 0.2 ± 0.4 | 0.3 ± 0.5 | 0.2 ± 0.4 | 0.714 |
Nodular gastritis | 0.0 ± 0.2 | 0.0 ± 0.2 | 0.1 ± 0.2 | 0.1 ± 0.2 | 0.934 |
Diffuse redness | 1.6 ± 0.5 | 1.6 ± 0.5 | 1.6 ± 0.5 | 1.4 ± 0.5 | 0.028 |
Total | 4.5 ± 1.3 | 4.5 ± 1.3 | 4.5 ± 1.3 | 4.1 ± 1.4 | 0.186 |
Parameters | Total (n = 307) | First-Line Regimen (n = 213) | Second-Line Regimen (n = 54) | Third-Line Regimen (n = 40) |
---|---|---|---|---|
Total eradication rate | 86.3% (265/307) | 84.5% (180/213) | 92.6% (50/54) | 87.5% (35/40) |
CYP2C19 genotype | ||||
UM (n = 10) | 70.0% (7/10) | 57.1% (4/7) | 100% (3/3) | NA |
EM (n = 79) | 88.6% (70/79) | 90.9% (50/55) | 90.9% (10/11) | 76.9% (10/13) |
IM (n = 170) | 85.3% (145/170) | 81.1% (90/111) | 94.1% (5/6) | 92.0% (23/25) |
PM (n = 48) | 89.6% (43/48) | 90.0% (36/40) | 83.3% (32/34) | 100% (2/2) |
CYP3A5 | ||||
*1/*1 (n = 14) | 92.9% (13/14) | 90.0% (9/10) | 100% (2/2) | 100% (2/2) |
*1/*3 (n = 66) | 83.3% (55/66) | 80.4% (37/46) | 93.8% (15/16) | 75.0% (3/4) |
*3/*3 (n = 88) | 85.2% (75/88) | 84.7% (50/59) | 94.1% (16/17) | 75.0% (9/12) |
Clarithromycin (sensitive/resistant) | ||||
Sensitive | 91.3% (84/92) | 91.5% (75/82) | 85.7% (6/7) | 100% (3/3) |
Resistant | 78.4% (80/102) * | 71.4% (40/56) * | 95.8% (23/24) | 77.3% (17/22) |
Amoxicillin (sensitive/not sensitive/resistant) | ||||
Sensitive | 87.3% (131/150) | 85.6% (101/118) | 95.2% (20/21) | 90.9% (10/11) |
Not sensitive | 75.0% (33/44) | 70.0% (14/20) | 90.0% (9/10) | 71.4% (10/14) |
Metronidazole (sensitive/resistant) | ||||
Sensitive | 85.1% (143/168) | 82.7% (105/127) | 92.9% (26/28) | 92.3% (12/13) |
Resistant | 80.8% (21/26) | 90.9% (10/11) | 100% (3/3) | 66.7% (8/12) |
Factor | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p-Value | Odds Ratio | 95% CI | p-Value | |
Male | 1.830 | 0.849–3.940 | 0.123 | 3.329 | 1.149–9.645 | 0.027 |
Age | 0.994 | 0.967–1.022 | 0.662 | |||
Smoking, past | 1.048 | 0.428–2.566 | 0.918 | |||
Smoking, current | 0.982 | 0.264–3.661 | 0.979 | |||
Drinking, current | 1.151 | 0.552–2.538 | 0.728 | |||
Endoscopic gastric atrophy | 1.593 | 0.558–4.552 | 0.384 | |||
Endoscopic intestinal metaplasia | 1.445 | 0.861–2.426 | 0.163 | 1.193 | 0.589–2.417 | 0.625 |
Endoscopic diffuse redness | 2.868 | 1.092–7.530 | 0.032 | 0.882 | 0.278–2.803 | 0.832 |
Endoscopic total score | 1.470 | 1.057–2.043 | 0.022 | |||
CYP2C19 IM (vs. CYP2C19 EM | 1.575 | 0.652–3.803 | 0.313 | |||
CYP2C19 PM (vs. CYP2C19 EM) | 0.750 | 0.210–2.677 | 0.710 | |||
CYP3A5 *3/*3 type (vs. *1 carrier) | 0.828 | 0.309–2.219 | 0.707 | |||
Clarithromycin -R (vs. clarithromycin-S) | 4.286 | 1.628–11.279 | 0.003 | 5.788 | 1.916–17.485 | 0.002 |
Amoxicillin-NS (vs. amoxicillin-S) | 2.546 | 0.860–7.541 | 0.092 | 2.593 | 0.759–8.851 | 0.128 |
Parameters | Total (n = 260) | First-Line Regimen (n = 181) | Second-Line Regimen (n = 47) | Third-Line Regimen (n = 32) | P value |
---|---|---|---|---|---|
None | 197 (75.8%) | 141 (77.9%) | 33 (70.2%) | 23 (71.9%) | 0.472 |
Diarrhea | 19 (7.3%) | 11 (6.1%) | 4 (8.5%) | 4 (12.5%) | |
Loose stool | 18 (6.9%) | 8 (4.4%) | 8 (17.0%) | 2 (6.2%) | |
Abdominal pain | 9 (3.5%) | 6 (3.3%) | 1 (2.1%) | 2 (6.2%) | |
Allergic reaction | 10 (3.8%) | 9 (5.0%) | 1 (2.1%) | 0 (0%) | |
Other | 7 (2.7%) | 6 (3.3%) | 0 (0%) | 1 (3.1%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugimoto, M.; Hira, D.; Murata, M.; Kawai, T.; Terada, T. Effect of Antibiotic Susceptibility and CYP3A4/5 and CYP2C19 Genotype on the Outcome of Vonoprazan-Containing Helicobacter pylori Eradication Therapy. Antibiotics 2020, 9, 645. https://doi.org/10.3390/antibiotics9100645
Sugimoto M, Hira D, Murata M, Kawai T, Terada T. Effect of Antibiotic Susceptibility and CYP3A4/5 and CYP2C19 Genotype on the Outcome of Vonoprazan-Containing Helicobacter pylori Eradication Therapy. Antibiotics. 2020; 9(10):645. https://doi.org/10.3390/antibiotics9100645
Chicago/Turabian StyleSugimoto, Mitsushige, Daiki Hira, Masaki Murata, Takashi Kawai, and Tomohiro Terada. 2020. "Effect of Antibiotic Susceptibility and CYP3A4/5 and CYP2C19 Genotype on the Outcome of Vonoprazan-Containing Helicobacter pylori Eradication Therapy" Antibiotics 9, no. 10: 645. https://doi.org/10.3390/antibiotics9100645
APA StyleSugimoto, M., Hira, D., Murata, M., Kawai, T., & Terada, T. (2020). Effect of Antibiotic Susceptibility and CYP3A4/5 and CYP2C19 Genotype on the Outcome of Vonoprazan-Containing Helicobacter pylori Eradication Therapy. Antibiotics, 9(10), 645. https://doi.org/10.3390/antibiotics9100645