Genetic Variation Putatively Associated with Mycobacterium tuberculosis Resistance to Perchlozone, a New Thiosemicarbazone: Clues from Whole Genome Sequencing and Implications for Treatment of Multidrug-Resistant Tuberculosis
Abstract
:1. Introduction
2. Results
2.1. Mutations: Frequency and Impact
2.2. Mutations: Dynamic Changes
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Conflicts of Interest
References
- Vinogradova, T.I.; Aleksandrova, A.E.; Antonenkova, E.V.; Elokhina, V.N.; Nakhmanovich, A.S. Design and study of new agents having antitubercular activity: The original compound perchlosone as a potent agent of etiotropic therapy for tuberculosis. Probl. Tuberk. 1999, 3, 45–47. (In Russian) [Google Scholar]
- Yablonskiy, P.K.; Vinogradova, T.I.; Levashev, Y.N.; Pavlova, M.V.; Zilber, E.K.; Starshinova, A.A.; Sapozhnikova, N.V.; Chernokhaeva, I.V.; Archakova, L.I.; Zabolotnykh, N.V.; et al. Preclinical and clinical trials of the new tuberculosis drug perchlozon. Ter Arkh. 2016, 88, 111–115. (In Russian) [Google Scholar] [CrossRef] [PubMed]
- Churilov, L.; Korzhikov-Vlakh, V.; Sinitsyna, E.; Polyakov, D.; Darashkevich, O.; Poida, M.; Platonova, G.; Vinogradova, T.; Utekhin, V.; Zabolotnykh, N.; et al. Enhanced delivery of 4-thioureidoiminomethylpyridinium perchlorate in tuberculosis models with IgG functionalized poly(Lactic acid)-based particles. Pharmaceutics 2018, 11, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gushchin, A.S.; Vinogradova, T.I.; Yablonskiy, P.K.; Batyunin, G.A.; Zabolotnyh, N.V.; Vasilieva, S.N.; Maligin, A.V. Tuberculosis Drug Based on 4-Thioureido-Iminomethylpyridinium Perchlorate: Method of Preparation and Treatment. U.S. Patent 9,750,727 B2, 5 September 2017. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2011132114 (accessed on 27 September 2020).
- Dover, L.G.; Alahari, A.; Gratraud, P.; Gomes, J.M.; Bhowruth, V.; Reynolds, R.C.; Besra, G.S.; Kremer, L. EthA, a common activator of thiocarbamide-containing drugs acting on different mycobacterial targets. Antimicrob. Agents Chemother. 2007, 51, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Halloum, I.; Viljoen, A.; Khanna, V.; Craig, D.; Bouchier, C.; Brosch, R.; Coxon, G.; Kremer, L. Resistance to thiacetazone derivatives active against Mycobacterium abscessus involves mutations in the MmpL5 transcriptional repressor MAB_4384. Antimicrob. Agents Chemother. 2017, 61, e02509–02516. [Google Scholar] [CrossRef] [Green Version]
- Belardinelli, J.M.; Morbidoni, H.R. Mutations in the essential FAS II-hydroxyacylACP dehydratase complex confer resistance to thiacetazone in Mycobacterium tuberculosis and Mycobacterium kansasii. Mol. Microbiol. 2012, 86, 568–579. [Google Scholar] [CrossRef]
- Gopal, P.; Dick, T. The new tuberculosis drug Perchlozone® shows cross-resistance with thiacetazone. Int. J. Antimicrob. Agents 2015, 45, 430–433. [Google Scholar] [CrossRef]
- Dong, Y.; Qiu, X.; Shaw, N.; Xu, Y.; Sun, Y.; Li, X.; Li, J.; Rao, Z. Molecular basis for the inhibition of β-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis by flavonoid inhibitors. Protein Cell. 2015, 6, 504–517. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Tan, Y.; Hameed, H.M.A.; Liu, Z.; Chhotaray, C.; Liu, Y.; Lu, Z.; Cai, X.; Tang, Y.; Gao, Y.; et al. Detection of novel mutations associated with independent resistance and cross-resistance to isoniazid and prothionamide in Mycobacterium tuberculosis clinical isolates. Clin. Microbiol. Infect. 2019, 25, 10041.e1–10041.e7. [Google Scholar] [CrossRef]
- De Welzen, L.; Eldholm, V.; Maharaj, K.; Manson, A.L.; Earl, A.M.; Pym, A.M. Whole-transcriptome and -genome analysis of extensively drug-resistant Mycobacterium tuberculosis clinical Iisolates identifies downregulation of ethA as a mechanism of ethionamide resistance. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Chernokhaeva, I.; Pavlova, M.; Starshinova, A.; Sapozhnikova, N.; Belaeva, E.; Zhuravlev, V.; Archakova, L.; Yablonskii, P.; Starshinova, A. Therapy of pulmonary tuberculosis with multidrug-resistant Mycobacterium tuberculosis using tioureidoiminomethylpyridinium perchlorate (Perchlozon). Int. J. Tech. Res. Appl. 2015, 3, 59–62. [Google Scholar]
- Phthisiatry National Clinical Guidelines; Yablonsky, P.K. (Ed.) Moscow, Russia, 2015; p. 231. ISBN 978-5-9704-3675-2. Available online: https://spbniif.ru/upload/medialibrary/bd7/bd77ac5cda63ac2a20a0846242bb3db2.pdf (accessed on 27 September 2020).
- Tan, Y.; Su, B.; Zheng, H.; Song, Y.; Wang, Y.; Pang, Y. Molecular characterization of prothionamide-resistant Mycobacterium tuberculosis isolates in Southern China. Front. Microbiol. 2017, 8, 2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueda, J.; Realpe, T.; Mejia, G.I.; Zapata, E.; Rozo, J.C.; Ferro, B.E.; Robledo, J. Genotypic analysis of genes associated with independent resistance and cross-resistance to isoniazid and ethionamide in Mycobacterium tuberculosis clinical isolates. Antimicrob. Agents Chemother. 2015, 59, 7805–7810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morlock, G.P.; Metchock, B.; Sikes, D.; Crawford, J.T.; Cooksey, R.C. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob. Agents. Chemother. 2003, 47, 3799–3805. [Google Scholar] [CrossRef] [Green Version]
- Vilchèze, C.; Jacobs, W.R. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: Genes, mutations, and causalities. Microbiol. Spectr. 2014, 2, MGM2–MGM14. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, C.H.; Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Improved resistance prediction in Mycobacterium tuberculosis by better handling of insertions and deletions, premature stop codons, and filtering of non-informative sites. Front. Microbiol. 2019, 10, 2464. [Google Scholar] [CrossRef]
- Chernyaeva, E.N.; Shulgina, M.V.; Rotkevich, M.S.; Dobrynin, P.V.; Simonov, S.A.; Shitikov, E.A.; Ischenko, D.S.; Karpova, I.Y.; Kostryukova, E.S.; Ilina, E.N.; et al. Genome-wide Mycobacterium tuberculosis variation (GMTV) database: A new tool for integrating sequence variations and epidemiology. Bmc Genom. 2014, 15, 308. [Google Scholar] [CrossRef] [Green Version]
- Grzegorzewicz, A.E.; Eynard, N.; Quémard, A.; North, E.J.; Margolis, A.; Lindenberger, J.J.; Jones, V.; Korduláková, J.; Brennan, P.J.; Lee, R.E.; et al. Covalent modification of the Mycobacterium tuberculosis FAS-II dehydratase by Isoxyl and Thiacetazone. ACS Infect. Dis. 2015, 1, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Köser, C. Implications of the Genetic Diversity within MTBC and M. canettii for the Development of New DST Assays. 2015. Available online: http://www.stoptb.org/wg/new_diagnostics/assets/documents/NDWD_AnnMtg2015_02-03_Claudio_KOSER.pdf (accessed on 27 September 2020).
- World Health Organization. WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment; World Health Organization: Geneva, Switzerland, 2019; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Ismail, N.A.; Mvusi, L.; Nanoo, A.; Dreyer, A.; Omar, S.V.; Babatunde, S.; Molebatsi, T.; van der Walt, M.; Adelekan, A.; Deyde, V.; et al. Prevalence of drug-resistant tuberculosis and imputed burden in South Africa: A national and sub-national cross-sectional survey. Lancet Infect. Dis. 2018, 18, 779–787. [Google Scholar] [CrossRef]
- Vyazovaya, A.A.; Akhmedova, G.M.; Solovieva, N.S.; Gerasimova, A.A.; Starkova, D.A.; Turkin, E.N.; Zhuravlev VYu Narvskaya, O.V.; Mokrousov, I.V. Molecular epidemiology of tuberculosis in the Kaliningrad region of Russia: 10 years after. Russ. J. Infect. Immun. 2017, 7, 367–374. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- van Embden, J.D.; Cave, M.D.; Crawford, J.T.; Dale, J.W.; Eisenach, K.D.; Gicquel, B.; Hermans, P.; Martin, C.; McAdam, R.; Shinnick, T.M.; et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: Recommendations for a standardized methodology. J. Clin. Microbiol. 1993, 31, 406–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsolaki, A.G.; Gagneux, S.; Pym, A.S.; Goguet de la Salmoniere, Y.O.; Kreiswirth, B.N.; Van Soolingen, D.; Small, P.M. Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis. J. Clin. Microbiol. 2005, 43, 3185–3191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokrousov, I.; Narvskaya, O.; Vyazovaya, A.; Otten, T.; Jiao, W.W.; Gomes, L.L.; Suffys, P.N.; Shen, A.D.; Vishnevsky, B. Russian “successful” clone B0/W148 of Mycobacterium tuberculosis Beijing genotype: A multiplex PCR assay for rapid detection and global screening. J. Clin. Microbiol. 2012, 50, 3757–3759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shitikov, E.; Kolchenko, S.; Mokrousov, I.; Bespyatykh, J.; Ischenko, D.; Ilina, E.; Govorun, V. Evolutionary pathway analysis and unified classification of East Asian lineage of Mycobacterium tuberculosis. Sci. Rep. 2017, 7, 9227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokrousov, I.; Chernyaeva, E.; Vyazovaya, A.; Skiba, Y.; Solovieva, N.; Valcheva, V.; Levina, K.; Malakhova, N.; Jiao, W.W.; Gomes, L.L.; et al. Rapid assay for detection of the epidemiologically important central Asian/Russian strain of the Mycobacterium tuberculosis Beijing genotype. J. Clin. Microbiol. 2018, 56, e01551–17. [Google Scholar] [CrossRef] [Green Version]
- Shitikov, E.; Vyazovaya, A.; Malakhova, M.; Guliaev, A.; Bespyatykh, J.; Proshina, E.; Pasechnik, O.; Mokrousov, I. Simple assay for detection of the central Asia outbreak clade of the Mycobacterium tuberculosis Beijing genotype. J. Clin. Microbiol. 2019, 57, e00215–19. [Google Scholar] [CrossRef] [Green Version]
- Sekizuka, T.; Yamashita, A.; Murase, Y.; Iwamoto, T.; Mitarai, S.; Kato, S.; Kuroda, M. TGS-TB: Total genotyping solution for Mycobacterium tuberculosis using short-read whole-genome sequencing. PLoS ONE 2015, 10, e0142951. [Google Scholar] [CrossRef]
Pt. | Phenotypic Resistance Profile of the First Isolate | Treatment Scheme | Possible PCZ Resistance Mutations: Position in the Reference Genome, Position in Gene, Comment | M. tuberculosis Genotype |
---|---|---|---|---|
1. | HRSEthCsPAS | ZELfxAmLzdBq | 4327363 CT > C, ethA 106 GA > G, pre-existed | Beijing B0/W148 |
2. | HRSEKmCmEthOfxCsAmPAS | ZMfxLzdPczBq | 4327363 CT > C, ethA 106 GA > G, pre-existed | Beijing B0/W148 |
3. | HRSEOfxEthPAS | CmZMfxTrdPczBq | 4327363 CT > C, ethA 106 GA > G, pre-existed | Beijing B0/W148 |
4. | HSREKmCmEthOfxAmPAS | ZCsCmMfxLfxPczBq | 4327363 CT > C, ethA 106 GA > G, pre-existed 4326770 TA > T, ethA 702 CT > C, emerged | Beijing B0/W148 |
5. | HRSZEKmCmOfxCsPth | AmZLfxPASPczBq | 4327363 CT > C, ethA 106 GA > G, pre-existed | Beijing B0/W148 |
7. | HRSEKmCmAmPthOfxPASCs | ZLfxTrdPczBq | 4326533 G > A, ethA 314 ACC > ATC/Thr > Ile, likely pre-existed | Beijing CAO |
8. | HRSZKmCmAmOfxPth | ECsLfxLzdPczBq | 4326533 G > A, ethA 314 ACC > ATC/Thr > Ile, likely pre-existed | Beijing CAO |
9. | HSREKmEthOfxAmZPASCs | ZLfxClzPczBq | 4327363 CT > C, ethA 106 GA > G, pre-existed 731967 G > C, hadA 13 CGG > CCC/Arg > Pro, pre-existed | Beijing B0/W148 |
11. | HRSZEEthOfxCmPAS | AmCsLfxPczBq | 4327363 CT > C, ethA 106 GA > G, pre-existed | Beijing B0/W148 |
Pt | Phenotypic Resistance Profile of the First Isolate | Treatment Scheme | Possible PCZ Resistance Mutations: Position in the Reference Genome, Position in Gene, Comment | M. tuberculosis Genotype |
---|---|---|---|---|
6. | HRSEKmOfx | ZCmMfxTrdPthBq | 4327363 CT > C, ethA 106 GA > G, pre-existed | Beijing B0/W148 |
10. | HSREKmEtoOfxCs | AmZLfxPASBq | - | Beijing B0/W148 |
Mutation, Position in Gene, Codon (Amino Acid Change) | Possible Impact | This Study, Number of Patients | Frequency, %, Range of Mutant Short Sequencing Reads in Different Isolates | Presence in GMTV Database*: Number of Isolates and Details |
---|---|---|---|---|
ethA 106 GA > G | Deletion and frameshift: premature stop codon 62-TAG and considerably abridged 61 amino acid protein | 7 | 35–100 | 36 isolates from Russia, Samara (n = 31) and St. Petersburg (n = 5); 14 ETH/PTH resistant to and 12 were susceptible; all belong to the Beijing B0/W148-cluster (out of 141 B0/W148 isolates present in GMTV) |
ethA 702 CT > C | Deletion and frameshift: premature stop codon 265-TGA and half-abridged 264 amino acid protein | 1 | 12–53 | 6 isolates from Samara (n = 3) and St. Petersburg (n = 3); 5 ETH/PTH resistant; all belong to the Beijing genotype, 3 of 6 Beijing B0/W148-cluster |
ethA 314 ACC > ATC (Thr > Ile) | Substitution with low PAM1 score** (=3) and likely impact on the protein structure | 2 | 100 | 18 isolates, originating from the Samara region in central Russia (n = 17) and St. Petersburg (n = 1); 4 were resistant to ETH/PTH and 7 were susceptible. All 18 belong to the Beijing CAO cluster (out of 65 CAO isolates present in GMTV) |
hadA 13 CGG > CCC (Arg > Pro) | Substitution with low PAM1 score (=5) and likely impact on the protein structure | 1 | 100 | Not present |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokrousov, I.; Vyazovaya, A.; Akhmedova, G.; Solovieva, N.; Turkin, E.; Zhuravlev, V. Genetic Variation Putatively Associated with Mycobacterium tuberculosis Resistance to Perchlozone, a New Thiosemicarbazone: Clues from Whole Genome Sequencing and Implications for Treatment of Multidrug-Resistant Tuberculosis. Antibiotics 2020, 9, 669. https://doi.org/10.3390/antibiotics9100669
Mokrousov I, Vyazovaya A, Akhmedova G, Solovieva N, Turkin E, Zhuravlev V. Genetic Variation Putatively Associated with Mycobacterium tuberculosis Resistance to Perchlozone, a New Thiosemicarbazone: Clues from Whole Genome Sequencing and Implications for Treatment of Multidrug-Resistant Tuberculosis. Antibiotics. 2020; 9(10):669. https://doi.org/10.3390/antibiotics9100669
Chicago/Turabian StyleMokrousov, Igor, Anna Vyazovaya, Gulnora Akhmedova, Natalia Solovieva, Eugeni Turkin, and Viacheslav Zhuravlev. 2020. "Genetic Variation Putatively Associated with Mycobacterium tuberculosis Resistance to Perchlozone, a New Thiosemicarbazone: Clues from Whole Genome Sequencing and Implications for Treatment of Multidrug-Resistant Tuberculosis" Antibiotics 9, no. 10: 669. https://doi.org/10.3390/antibiotics9100669
APA StyleMokrousov, I., Vyazovaya, A., Akhmedova, G., Solovieva, N., Turkin, E., & Zhuravlev, V. (2020). Genetic Variation Putatively Associated with Mycobacterium tuberculosis Resistance to Perchlozone, a New Thiosemicarbazone: Clues from Whole Genome Sequencing and Implications for Treatment of Multidrug-Resistant Tuberculosis. Antibiotics, 9(10), 669. https://doi.org/10.3390/antibiotics9100669