Antibiotic Resistance and Mobile Genetic Elements in Extensively Drug-Resistant Klebsiella pneumoniae Sequence Type 147 Recovered from Germany
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Bacterial Isolates and Transformants
3.2. Antimicrobial Susceptibility Testing
3.3. S1-Pulsed-Field Gel Electrophoresis (S1-PFGE) and Southern Blot Hybridisation
3.4. Whole Genome Sequencing (WGS) and Bioinformatics
3.5. Molecular Epidemiology, Resistome, Mobilome and Genome Annotation
3.6. Conjugation Experiments
4. Conlusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef]
- Peirano, G.; Bradford, P.A.; Kazmierczak, K.M.; Chen, L.; Kreiswirth, B.N.; Pitout, J.D.D. Importance of clonal complex 258 and IncF(K2-like) plasmids among a global collection of Klebsiella pneumoniae with bla(KPC). Antimicrob. Agents Chemother. 2017, 61, 5. [Google Scholar] [CrossRef] [Green Version]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Khan, A.U.; Maryam, L.; Zarrilli, R. Structure, genetics and worldwide spread of New Delhi Metallo-beta-lactamase (NDM): A threat to public health. BMC Microbiol. 2017, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- Bontron, S.; Nordmann, P.; Poirel, L. Transposition of Tn125 Encoding the NDM-1 Carbapenemase in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2016, 60, 7245–7251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EARS-Net. Surveillance of Antimicrobial Resistance in Europe 2018. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2018.pdf (accessed on 18 November 2019).
- David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; Abudahab, K.; Goater, R.; Giani, T.; Errico, G.; et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 2019, 4, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Robert Koch-Institut. Epidemiologisches Bulletin 31/2019. Available online: https://edoc.rki.de/handle/176904/6733 (accessed on 1 August 2019).
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.A.; Matsumura, Y. The global ascendency of OXA-48-Type carbapenemases. Clin Microbiol Rev. 2020, 33, 48. [Google Scholar] [CrossRef]
- Poirel, L.; Bonnin, R.A.; Nordmann, P. Genetic Features of the Widespread Plasmid Coding for the Carbapenemase OXA-48. Antimicrob. Agents Chemother. 2012, 56, 559–562. [Google Scholar] [CrossRef] [Green Version]
- Simner, P.J.; Antar, A.A.R.; Hao, S.; Gurtowski, J.; Tamma, P.D.; Rock, C.; Opene, B.N.A.; Tekle, T.; Carroll, K.C.; Schatz, M.C.; et al. Antibiotic pressure on the acquisition and loss of antibiotic resistance genes in Klebsiella pneumoniae. J. Antimicrob. Chemother. 2018, 73, 1796–1803. [Google Scholar] [CrossRef]
- Nahid, F.; Zahra, R.; Sandegren, L. A blaOXA-181-harbouring multi-resistant ST147 Klebsiella pneumoniae isolate from Pakistan that represent an intermediate stage towards pan-drug resistance. PLoS ONE 2017, 12, e0189438. [Google Scholar] [CrossRef]
- Avgoulea, K.; Di Pilato, V.; Zarkotou, O.; Sennati, S.; Politi, L.; Cannatelli, A.; Themeli-Digalaki, K.; Giani, T.; Tsakris, A.; Rossolini, G.M.; et al. Characterization of extensively drug-resistant or pandrug-resistant sequence type 147 and 101 OXA-48-producing Klebsiella pneumoniae causing bloodstream infections in patients in an intensive care unit. Antimicrob. Agents Chemother. 2018, 62, e02457-17. [Google Scholar] [CrossRef] [Green Version]
- Zautner, A.E.; Bunk, B.; Pfeifer, Y.; Sproer, C.; Reichard, U.; Eiffert, H.; Scheithauer, S.; Groβ, U.; Overmann, J.; Bohne, W. Monitoring microevolution of OXA-48-producing Klebsiella pneumoniae ST147 in a hospital setting by SMRT sequencing. J. Antimicrob. Chemother. 2017, 72, 2737–2744. [Google Scholar] [CrossRef] [Green Version]
- Rojas, L.J.; Hujer, A.M.; Rudin, S.D.; Wright, M.S.; Domitrovic, T.N.; Marshall, S.H.; Hujer, K.M.; Richter, S.S.; Cober, E.; Perez, F.; et al. NDM-5 and OXA-181 beta-lactamases, a significant threat continues to spread in the Americas. Antimicrob. Agents Chemother. 2017, 61, e00454-17. [Google Scholar] [CrossRef] [Green Version]
- Peirano, G.; Chen, L.; Kreiswirth, B.N.; Pitout, J.D.D. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147. Antimicrob. Agents Chemother. 2020, 64, e01148-20. [Google Scholar] [CrossRef] [PubMed]
- Khong, W.X.; Marimuthu, K.; Teo, J.; Ding, Y.; Xia, E.; Lee, J.J.; Ong, R.T.-H.; Venkatachalam, I.; Cherng, B.; Pada, S.K.; et al. Tracking inter-institutional spread of NDM and identification of a novel NDM-positive plasmid, pSg1-NDM, using next-generation sequencing approaches. J. Antimicrob. Chemother. 2016, 71, 3081–3089. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.; Kaase, M.; Pfeifer, Y.; Fuchs, S.; Reuss, A.; von Laer, A.; Sin, M.A.; Korte-Berwanger, M.; Gatermann, S.; Werner, G. Genome-based analysis of carbapenemase-producing Klebsiella pneumoniae isolates from German hospital patients, 2008–2014. Antimicrob. Resist. Infect. Control 2018, 7, 62. [Google Scholar] [CrossRef]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Cao, J.M.; Shen, L.Z.; Bi, W.Z.; Zhang, X.X.; Liu, H.Y.; Lu, H.; Zhou, T. Molecular epidemiology of extensively drug-resistant Klebsiella pneumoniae outbreak in Wenzhou, Southern China. J. Med. Microbiol. 2016, 65, 1111–1118. [Google Scholar] [CrossRef]
- Zhou, T.L.; Zhang, Y.P.; Li, M.M.; Yu, X.; Sun, Y.; Xu, J.R. An outbreak of infections caused by extensively drug-resistant Klebsiella pneumoniae strains during a short period of time in a Chinese teaching hospital: Epidemiology study and molecular characteristics. Diagn. Microbiol. Infect. Dis. 2015, 82, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Haller, S.; Kramer, R.; Becker, K.; Bohnert, J.A.; Eckmanns, T.; Hans, J.B.; Hecht, J.; Heidecke, C.-D.; Hübner, N.-O.; Kramer, A.; et al. Extensively drug-resistant Klebsiella pneumoniae ST307 outbreak, north-eastern Germany, June to October 2019. Eurosurveillance 2019, 24, 1900734. [Google Scholar] [CrossRef] [Green Version]
- Albiger, B.; Glasner, C.; Struelens, M.J.; Grundmann, H.; Monnet, D.L.; the European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group. Carbapenemase-producing Enterobacteriaceae in Europe: Assessment by national experts from 38 countries, May 2015. Eurosurveillance 2015, 20, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Potron, A.; Rondinaud, E.; Poirel, L.; Belmonte, O.; Boyer, S.; Camiade, S.; Nordmann, P. Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D beta-lactamase from Enterobacteriaceae. Int. J. Antimicrob. Agents. 2013, 41, 325–359. [Google Scholar] [CrossRef] [PubMed]
- Potron, A.; Nordmann, P.; Lafeuille, E.; Al Maskari, Z.; Al Rashdi, F.; Poirel, L. Characterization of OXA-181, a carbapenem-Hydrolyzing Class D beta-lactamase from Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2011, 55, 4896–4899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, W. Extensive genomic variation within clonal bacterial groups resulted from homologous recombination. Mob. Genet. Elements. 2013, 3, e23463. [Google Scholar] [CrossRef] [Green Version]
- Darmon, E.; Leach, D.R.F. Bacterial Genome Instability. Microbiol. Mol. Biol. Rev. 2014, 78, 1–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smet, A.; Van Nieuwerburgh, F.; Vandekerckhove, T.T.M.; Martel, A.; Deforce, D.; Butaye, P.; Haesebrouck, F. Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: Insertional events of transposons and insertion sequences. PLoS ONE 2010, 5, e11202. [Google Scholar] [CrossRef]
- Miriagou, V.; Carattoli, A.; Tzelepi, E.; Villa, L.; Tzouvelekis, L.S. IS26-Associated In4-type integrons forming multiresistance loci in enterobacterial plasmids. Antimicrob. Agents Chemother. 2005, 49, 3541–3543. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef]
- Casjens, S.R.; Gilcrease, E.B.; Huang, W.M.; Bunny, K.L.; Pedulla, M.L.; Ford, M.E.; Houtz, J.M.; Hatfull, G.F.; Hendrix, R.W. The pKO2 linear plasmid prophage of Klebsiella oxytoca. J. Bacteriol. 2004, 186, 1818–1832. [Google Scholar]
- Garcia-Fernandez, A.; Fortini, D.; Veldman, K.; Mevius, D.; Carattoli, A. Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. J. Antimicrob. Chemother. 2009, 63, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, K.L.; Wootton, L.; Day, M.R.; Threlfall, E.J. Plasmid-mediated quinolone resistance determinant qnrS1 found in Salmonella enterica strains isolated in the UK. J. Antimicrob. Chemother. 2007, 59, 1071–1075. [Google Scholar] [CrossRef] [Green Version]
- Branger, C.; Ledda, A.; Billard-Pomares, T.; Doublet, B.; Barbe, V.; Roche, D.; Médigue, C.; Arlet, G.; Denamur, E. Specialization of small non-conjugative plasmids in Escherichia coli according to their family types. Microb. Genom. 2019, 5, e000281. [Google Scholar] [CrossRef]
- Biehl, L.M.; Higgins, P.; Wille, T.; Peter, K.; Hamprecht, A.; Peter, S.; Dörfel, D.; Vogel, W.; Häfner, H.; Lemmen, S.; et al. Impact of single room contact precautions on hospital-acquisition and transmission of multidrug-resistant Escherichia coli: A prospective multicentre cohort-study in haematological and oncological wards. Clin. Microbiol. Infect. 2019, 25, 1013–1020. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard-Tenth Edition: M07. 10th ed. 2015. Available online: https://clsi.org/media/1632/m07a10_sample.pdf (accessed on 9 January 2020).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolejska, M.; Villa, L.; Poirel, L.; Nordmann, P.; Carattoli, A. Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance nodulation cell division/multidrug efflux pump. J. Antimicrob. Chemother. 2013, 68, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [Green Version]
- Antipov, D.; Korobeynikov, A.; McLean, J.S.; Pevzner, P.A. HYBRIDSPADES: An algorithm for hybrid assembly of short and long reads. Bioinformatics 2016, 32, 1009–1015. [Google Scholar] [CrossRef] [Green Version]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [Green Version]
- Antipov, D.; Hartwick, N.; Shen, M.; Raiko, M.; Lapidus, A.; Pevzner, P.A. plasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics 2016, 32, 3380–3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Been, M.; Pinholt, M.; Top, J.; Bletz, S.; Mellmann, A.; van Schaik, W.; Brouwer, E.; Rogers, M.; Kraat, Y.; Bonten, M.; et al. Core genome multilocus sequence typing scheme for high- resolution typing of Enterococcus faecium. J. Clin. Microbiol. 2015, 53, 3788–3797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, R.R.; Heinz, E.; Holt, K.E.; Wyres, K.L. Kaptive Web: User-Friendly Capsule and Lipopolysaccharide Serotype Prediction for Klebsiella Genomes. J. Clin. Microbiol. 2018, 56, e00197-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; Garcia-Fernandez, A.; Larsen, M.V.; Lund, O.; Villa, L.; Frank Møller, A.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Plasmid | Replicon | Size (bp) | Antimicrobial Resistance Determinants | Isolate No. | ||
---|---|---|---|---|---|---|
HKP0018 | HKP0064 | HKP0067 | ||||
pHKP0018.1 | ColKP3 | 6103 | blaOXA-181 | + | + | + |
pHKP0018.2 | IncR | 66,330 | blaCTX-M-15b, blaOXA-1, blaTEM-1B, aac(6’)Ib-cr, aac(3)-IIa, strA, strB, qnrS1, sul1, dfrA1, tet(A), catB3-like | + | - | - |
pHKP0064.2 | IncR | 70,762 | blaCTX-M-15b, blaOXA-1, blaTEM-1B, aac(6’)Ib-cr, aac(3)-IIa, strA, strB, qnrS1, sul1, dfrA1, tet(A), catB3-like | - | + | + |
pHKP0018.3 | IncFIB | 113,014 | - | + | + | + |
pHKP0018.4 | NT a | 57,450 | - | + | + | + |
pHKP0018.5 | Col-like | 8428 | - | + | + | + |
pHKP0018.6 | Col-like | 5499 | - | + | + | + |
pHKP0018.7 | NT a | 2044 | - | + | + | + |
pHKP0018.8 | Col-like | 1459 | - | + | + | + |
Antimicrobial Agent | MIC (mg/L) | Susceptibility a | ||
---|---|---|---|---|
HKP0018 | HKP0064 | HKP0067 | ||
Amikacin | 8 | 8 | 8 | S |
Ampicillin | >128 | >128 | >128 | R |
Aztreonam | >128 | >128 | >128 | R |
Ceftazidime | 128 | 128 | 128 | R |
Chloramphenicol | 32 | 32 | 32 | R |
Ciprofloxacin | 128 | 128 | 128 | R |
Colistin b | 1 | 2 | 1 | S |
Gentamicin | 128 | 128 | 128 | R |
Imipenem | 8 | 8 | 8 | R |
Levofloxacin | 64 | 64 | 64 | R |
Meropenem | 32 | 32 | 32 | R |
Minocycline c | 64 | 64 | 64 | R |
Rifampicin d | 64 | 64 | 64 | - |
Tetracycline c | 128 | 128 | 128 | R |
Ticarcillin | >128 | >128 | >128 | R |
Tigecycline b | 2 | 2 | 2 | R |
Trimethoprim | 128 | 128 | 128 | R |
Isolate | Date of Isolation | Source | Department | Ward | ST |
---|---|---|---|---|---|
HKP0018 | 16.02.2015 | Rectal swab | Haematology/Oncology | C5A | 147 |
HKP0064 | 08.05.2015 | Throat swab | Haematology/Oncology | 1G | 147 |
HKP0067 | 19.05.2015 | Rectal swab | Haematology/Oncology | C5A | 147 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xanthopoulou, K.; Carattoli, A.; Wille, J.; Biehl, L.M.; Rohde, H.; Farowski, F.; Krut, O.; Villa, L.; Feudi, C.; Seifert, H.; et al. Antibiotic Resistance and Mobile Genetic Elements in Extensively Drug-Resistant Klebsiella pneumoniae Sequence Type 147 Recovered from Germany. Antibiotics 2020, 9, 675. https://doi.org/10.3390/antibiotics9100675
Xanthopoulou K, Carattoli A, Wille J, Biehl LM, Rohde H, Farowski F, Krut O, Villa L, Feudi C, Seifert H, et al. Antibiotic Resistance and Mobile Genetic Elements in Extensively Drug-Resistant Klebsiella pneumoniae Sequence Type 147 Recovered from Germany. Antibiotics. 2020; 9(10):675. https://doi.org/10.3390/antibiotics9100675
Chicago/Turabian StyleXanthopoulou, Kyriaki, Alessandra Carattoli, Julia Wille, Lena M. Biehl, Holger Rohde, Fedja Farowski, Oleg Krut, Laura Villa, Claudia Feudi, Harald Seifert, and et al. 2020. "Antibiotic Resistance and Mobile Genetic Elements in Extensively Drug-Resistant Klebsiella pneumoniae Sequence Type 147 Recovered from Germany" Antibiotics 9, no. 10: 675. https://doi.org/10.3390/antibiotics9100675
APA StyleXanthopoulou, K., Carattoli, A., Wille, J., Biehl, L. M., Rohde, H., Farowski, F., Krut, O., Villa, L., Feudi, C., Seifert, H., & Higgins, P. G. (2020). Antibiotic Resistance and Mobile Genetic Elements in Extensively Drug-Resistant Klebsiella pneumoniae Sequence Type 147 Recovered from Germany. Antibiotics, 9(10), 675. https://doi.org/10.3390/antibiotics9100675