Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil
2.2. Essential Oil Chemical Analysis
2.3. Antioxidant Activity Evaluation
2.3.1. DPPH Free Radical Scavenging Assay
2.3.2. β-Carotene Bleaching Test
2.4. Antibacterial and Anti-quorum sensing Properties Assessment: Solid Diffusion Assay
2.5. Determination of MIC Values: Resazurin Microtiter Method
2.6. Preparation of Bioactive Films
2.7. Characterization of Films
2.7.1. Infrared Spectra
2.7.2. Thermal Analysis
2.7.3. Grammage, Thickness, Mechanical and Optical Properties
2.7.4. Contact Angles and Surface Free Energy
2.7.5. Barrier Properties
Water Vapor Permeability
Oxygen Permeability
2.7.6. Antioxidant Activity
2.7.7. Antibacterial and Anti-quorum sensing Properties
2.7.8. Antibiofilm Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Rockrose EO
3.2. Antioxidant, Antibacterial and Anti-quorum sensing Properties of Rockrose EO
3.3. FTIR and DSC Analysis of the Films
3.4. Grammage, Thickness, Mechanical and Optical Properties
3.5. Contact Angles and Surface Free Energies
3.6. Barrier Properties
3.7. Antioxidant, Antibacterial and Anti-quorum sensing Properties of Bioactive Films
3.8. Antibiofilm Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gomes, L.P.; Souza, H.K.S.; Campiña, J.M.; Andrade, C.T.; Silva, A.F.; Gonçalves, M.P.; Paschoalin, V.M.F. Edible chitosan films and their nanosized counterparts exhibit antimicrobial activity and enhanced mechanical and barrier properties. Molecules 2019, 24, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galus, S.; Kibar, E.A.A.; Gniewosz, M.; Krasniewska, K. Novel materials in the preparation of edible films and coatings—A review. Coatings 2020, 10, 674. [Google Scholar] [CrossRef]
- Kraniewska, K.; Galus, S.; Gniewosz, M. Biopolymers-based materials containing silver nanoparticles as active packaging for food applications—A review. Int. J. Mol. Sci. 2020, 21, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, I.; Chang, Y.; Joo, E.; Song, H.J.; Eom, H.; Han, J. Development of biopolymer composite films using a microfluidization technique for carboxymethylcellulose and apple skin particles. Int. J. Mol. Sci. 2017, 18, 1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morsy, M.K.; Khalaf, H.H.; Sharoba, A.M.; El-Tanahi, H.H.; Cutter, C.N. Incorporation of Essential Oils and Nanoparticles in Pullulan Films to Control Foodborne Pathogens on Meat and Poultry Products. J. Food Sci. 2014, 79, M676–M684. [Google Scholar] [CrossRef] [PubMed]
- Krepker, M.; Shemesh, R.; Poleg, Y.D.; Kashi, Y.; Vaxman, A.; Segal, E. Active food packaging films with synergistic antimicrobial activity. Food Control 2017, 76, 17–126. [Google Scholar] [CrossRef]
- Nouri, A.; Yaraki, M.T.; Lajevardi, A.; Rahimi, T.; Tanzifi, M.; Ghorbanpour, M. An investigation of the role of fabrication process in the physicochemical properties of k-carrageenan-based films incorporated with Zataria mulriflora extract and nanoclay. Food Packag. Shelf Life 2020, 23, 100435. [Google Scholar] [CrossRef]
- Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Agarwal, S.; Gupta, V.K. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. Int. J. Biol. Macromol. 2018, 109, 1219–1231. [Google Scholar] [CrossRef]
- Higueras, L.; López-Carballo, G.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films. Int. J. Food Microbiol. 2014, 188, 53–59. [Google Scholar] [CrossRef]
- Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Wang, S. Biodegradable k-carrageenan/nanoclay nancomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. Int. J. Biol. Macromol. 2018, 115, 227–235. [Google Scholar] [CrossRef]
- Tabasum, S.; Noreen, A.; Maqsood, M.F.; Umar, H.; Akram, N.; Nazli, Z.; Chatha, S.A.S.; Zia, K.M. A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers. Int. J. Biol. Macromol. 2018, 120, 603–632. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, V.D.; Jani, G.K.; Khanda, S.M. Pullulan: An exopolysaccharide and its various applications. Carbohydr. Polym. 2013, 95, 540–549. [Google Scholar] [CrossRef]
- Shahbazi, Y. The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int. J. Biol. Macromol. 2017, 99, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Raimundo, J.R.; Frazão, D.F.; Domingues, J.L.; Quintela-Sabarís, C.; Dentinho, T.P.; Anjos, O.; Alves, M.; Delgado, F. Neglected Mediterranean plant species are valuable resources: The example of Cistus ladanifer. Planta 2018, 248, 1351–1364. [Google Scholar] [CrossRef] [PubMed]
- Tavares, C.S.; Martins, A.; Faleiro, M.L.; Miguel, M.G.; Duarte, L.C.; Gameiro, J.A.; Roseiro, L.B.; Figueiredo, A.C. Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L. Ind. Crops Prod. 2020, 144, 112034. [Google Scholar] [CrossRef]
- Alves-Ferreira, J.; Miranda, I.; Duarte, L.C.; Roseiro, L.B.; Lourenço, A.; Quilhó, T.; Cardoso, S.; Fernandes, M.C.; Carvalheiro, F.; Pereira, H. Cistus ladanifer as a source of chemicals: Structural and chemical characterization. Biomass Convers. Biorefin. 2019. [Google Scholar] [CrossRef]
- Frazão, D.F.; Raimundo, J.R.; Domingues, J.L.; Quintela-Sabarís, C.; Gonçalves, J.C.; Delgado, F. Cistus ladanifer (Cistaceae): A natural resource in Mediterranean-type ecosystems. Planta 2018, 247, 289–300. [Google Scholar] [CrossRef]
- Upadhyay, N.; Singh, V.K.; Dwivedy, A.K.; Das, S.; Chaudhari, A.K.; Dubey, N.K. Cistus ladanifer L. essential oil as a plant-based preservative against molds infesting oil seeds, aflatoxin B 1 secretion, oxidative deterioration and methylglyoxal biosynthesis. LWT-Food Sci. Technol. 2018, 92, 395–403. [Google Scholar] [CrossRef]
- Luís, Â.; Pereira, L.; Domingues, F.; Ramos, A. Development of a carboxymethyl xylan film containing licorice essential oil with antioxidant properties to inhibit the growth of foodborne pathogens. LWT-Food Sci. Technol. 2019, 111, 218–225. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Luís, Â.; Sousa, S.; Wackerlig, J.; Dobusch, D.; Duarte, A.P.; Pereira, L.; Domingues, F. Star anise (Illicium verum Hook. f.) essential oil: Antioxidant properties and antibacterial activity against Acinetobacter baumannii. Flavour Fragr. J. 2019, 34, 260–270. [Google Scholar] [CrossRef]
- Chu, Y.; Xu, T.; Gao, C.C.; Liu, X.; Zhang, N.; Feng, X.; Liu, X.; Shen, X.; Tang, X. Evaluations of physicochemical and biological properties of pullulan-based films incorporated with cinnamon essential oil and Tween 80. Int. J. Biol. Macromol. 2019, 122, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Luís, Â.; Gallardo, E.; Ramos, A.; Domingues, F. Design and characterization of bioactive bilayer films: Release kinetics of isopropyl palmitate. Antibiotics 2020, 9, 443. [Google Scholar] [CrossRef] [PubMed]
- Luís, Â.; Domingues, F.; Ramos, A. Production of Hydrophobic Zein-Based Films Bioinspired by The Lotus Leaf Surface: Characterization and Bioactive Properties. Microorganisms 2019, 7, 267. [Google Scholar] [CrossRef] [Green Version]
- Luís, Â.; Silva, F.; Sousa, S.; Duarte, A.P.; Domingues, F. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling 2014, 30, 69–79. [Google Scholar] [CrossRef]
- Good, R.; Van Oss, C. The modern theory of contact angles and the hydrogen bond components of surface energies. In Modern Approaches to Wettability Applications; Schrader, M., Loeb, G., Eds.; Plenum Press: New York, NY, USA, 1991; pp. 1–27. [Google Scholar]
- Silva, Â.; Duarte, A.; Sousa, S.; Ramos, A.; Domingues, F.C. Characterization and antimicrobial activity of cellulose derivatives films incorporated with a resveratrol inclusion complex. LWT-Food Sci. Technol. 2016, 73, 481–489. [Google Scholar] [CrossRef]
- Queirós, L.C.C.; Sousa, S.C.L.; Duarte, A.F.S.; Domingues, F.C.; Ramos, A.M.M. Development of carboxymethyl xylan films with functional properties. J. Food Sci. Technol. 2017, 54, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.; Sousa, S.; Evtuguin, D.V.; Gamelas, J.A.F. Functionalized xylans in the production of xylan-coated paper laminates. React. Funct. Polym. 2017, 117, 89–96. [Google Scholar] [CrossRef]
- Gomes, P.B.; Mata, V.G.; Rodrigues, A.E. Characterization of the Portuguese-grown Cistus ladanifer essential oil. J. Essent. Oil Res. 2005, 17, 160–165. [Google Scholar] [CrossRef]
- Food Additive Status List. Available online: https://www.fda.gov/food/food-additives-petitions/food-additive-status-list (accessed on 17 September 2020).
- Substances Added to Food. Available online: https://www.accessdata.fda.gov/scripts/fdcc/?set=FoodSubstances&id=PINENEalpha&sort=Sortterm&order=ASC&startrow=1&type=basic&search=pinene (accessed on 17 September 2020).
- Hsouna, A.B.; Halima, N.B.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wu, N.; Zu, Y.; Fu, Y. Comparative anti-infectious bronchitis virus (IBV) activity of (-)-pinene: Effect on nucleocapsid (N) protein. Molecules 2011, 16, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Bhanger, M.I. Stabilization of sunflower oil by garlic extract during accelerated storage. Food Chem. 2007, 100, 246–254. [Google Scholar] [CrossRef]
- Ahmadi, F.; Sadeghi, S.; Modarresi, M.; Abiri, R.; Mikaeli, A. Chemical composition, in vitro anti-microbial, antifungal and antioxidant activities of the essential oil and methanolic extract of Hymenocrater longiflorus Benth., of Iran. Food Chem. Toxicol. 2010, 48, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Kashiri, M.; Cerisuelo, J.P.; Domínguez, I.; López-Carballo, G.; Muriel-Gallet, V.; Gavara, R.; Hernández-Muñoz, P. Zein films and coatings as carriers and release systems of Zataria multiflora Boiss. essential oil for antimicrobial food packaging. Food Hydrocoll. 2017, 70, 260–268. [Google Scholar] [CrossRef]
- Packiavathy, I.A.S.V.; Agilandeswari, P.; Musthafa, K.S.; Pandian, S.K.; Ravi, A.V. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram-negative bacterial pathogens. Food Res. Int. 2012, 45, 85–92. [Google Scholar] [CrossRef]
- Hezarkhani, M.; Yilmaz, E. Pullulan modification via poly (N-vinylimidazole) grafting. Int. J. Biol. Macromol. 2019, 123, 149–156. [Google Scholar] [CrossRef]
- Zuo, M.; Jiang, Z.; Guo, L.; Dong, F.; Guo, J.; Xu, X. Using α-Pinene-Modified Triethoxysilane as the New Cross-Linking Agent to Improve the Silicone Rubber Properties. ACS Omega 2019, 4, 11921–11927. [Google Scholar] [CrossRef] [Green Version]
- Hassannia-Kolaee, M.; Khodaiyan, F.; Pourahmad, R.; Shahabi-Ghahfarrokhi, I. Development of ecofriendly bionanocomposite: Whey protein isolate/pullulan films with nano-SiO2. Int. J. Biol. Macromol. 2016, 86, 139–144. [Google Scholar] [CrossRef]
- Malagurski, I.; Levic, S.; Nesic, A.; Mitric, M.; Pavlovic, V.; Dimitrijevic-Brankovic, S. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties. Carbohydr. Polym. 2017, 175, 55–62. [Google Scholar] [CrossRef]
- Zhang, W.; Shu, C.; Chen, Q.; Cao, J.; Jiang, W. The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to penicillium expansion of apple fruit. Food Chem. 2019, 299, 125109. [Google Scholar] [CrossRef]
- Mohsenabadi, N.; Rajaei, A.; Tabatabaei, M.; Mohsenifar, A. Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. Int. J. Biol. Macromol. 2018, 112, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Shao, P.; Chen, H.; Sun, P. Structural and physiochemical characterization of novel hydrophobic packaging films based on pullulan derivatives for fruits preservation. Carbohydr. Polym. 2019, 208, 276–284. [Google Scholar] [CrossRef]
- Sousa, A.M.M.; Gonçalves, M.P. Strategies to improve the mechanical strength and water resistance of agar films for food packaging applications. Carbohydr. Polym. 2015, 132, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Tonyali, B.; Cikrikci, S.; Oztop, M.H. Physicochemical and microstructural characterization of gum tragacanth added whey protein-based films. Food Res. Int. 2018, 105, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Luzi, F.; Dominici, F.; Armentano, I.; Fortunati, E.; Burgos, N.; Fiori, S.; Jiménez, A.; Kenny, J.M.; Torre, L. Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydr. Polym. 2019, 223, 115131. [Google Scholar] [CrossRef] [PubMed]
- Noronha, C.M.; Carvalho, S.M.; Lino, R.C.; Barreto, P.L.M. Characterization of antioxidant methylcellulose film incorporated with α-tocopherol nanocapsules. Food Chem. 2014, 159, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Yeddes, W.; Djebali, K.; Wannes, W.A.; Horchani-Naifer, K.; Hammami, M.; Younes, I.; Tounsi, M.S. Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using mixture design and response surface methodology. Int. J. Biol. Macromol. 2020, 154, 92–103. [Google Scholar] [CrossRef]
- Dashipour, A.; Razavilar, V.; Shojaee-Aliabadi, S.; German, J.B.; Ghanati, K.; Khakpour, M.; Khaksar, R. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. Int. J. Biol. Macromol. 2015, 72, 606–613. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, I.; Gonzalez-Aguilar, G.A.; Ponce, A.; Moreira, M.R.; Roura, S.I.; Ayala-Zavala, J.F. Oregano essential oil-pectin edible films as anti-quorum sensing and food antimicrobial agents. Front. Microbiol. 2014, 5, 1–7. [Google Scholar]
Retention Time (min) | Compound | % Relative |
---|---|---|
6.42 | 1,2,3-Trimethylcyclopentene | 0.13 |
6.65 | 1,3-Dimethylcyclohexene | 0.02 |
9.73 | 1,2,4,4-Tetramethylcyclopentene | 0.63 |
10.64 | trans-Pinane | 0.12 |
13.03 | Tricyclene | 1.56 |
13.93 | α-Pinene | 39.25 |
14.05 | α-Thujene | 0.24 |
14.71 | Toluene | 0.03 |
15.93 | α-Fenchene | 0.15 |
16.48 | Camphene | 8.22 |
19.14 | β-Pinene | 0.57 |
20.02 | Sabinene | 0.29 |
20.25 | Verbenene | 0.87 |
22.86 | β-Myrcene | 0.11 |
23.14 | α-Phellandrene | 0.12 |
24.17 | α-Terpinene | 0.37 |
25.29 | Menthatriene isomer | 0.14 |
25.59 | Limonene | 1.61 |
26.34 | 1,8-Cineole | 0.29 |
26.46 | β-Phellandrene | 0.88 |
26.75 | 1,2,3-p-Menthatriene | 0.15 |
28.86 | Dehydroxy-cis-linalool oxide | 0.09 |
29.01 | γ-Terpinene | 0.92 |
29.28 | p-Mentha-1,5,8-triene | 0.08 |
29.57 | Styrene | 0.02 |
30.81 | p-Cymene | 3.47 |
31.76 | α-Terpinolene | 0.25 |
32.45 | p-Cymenyl | 0.07 |
33.51 | Unknown alcohol | 0.32 |
34.61 | 2,2,6-Trimethylcyclohexanone | 3.20 |
34.96 | Pinol | 0.10 |
37.00 | cis-Rose oxide | 0.08 |
38.12 | trans-Rose oxide | 0.03 |
40.58 | Bornyl chloride | 0.34 |
40.75 | Isophorone isomer | 0.28 |
42.20 | α-Campholenal | 0.21 |
42.87 | α-p-Dimethylstyrene | 0.51 |
44.66 | α-Cubenene | 0.07 |
44.96 | Vitispirane | 0.43 |
46.75 | α-Ylangene | 0.48 |
46.85 | Unknown sesquiterpene | 0.70 |
47.39 | α-Copaene | 0.57 |
47.82 | Unknown alcohol | 0.15 |
48.22 | 3-Nonen-2-one | 0.22 |
48.50 | Unknown alcohol | 0.30 |
48.95 | Camphor | 0.83 |
49.67 | Unknown sesquiterpene | 0.03 |
49.88 | α-Gurjunene | 0.05 |
49.93 | Linalool | 0.35 |
51.00 | Isopinocamphone | 1.04 |
52.36 | Pinocarvone | 0.77 |
53.07 | Bornyl acetate | 5.06 |
54.15 | Terpinen-4-ol | 1.42 |
54.52 | trans-β-Caryophyllene | 0.32 |
54.99 | Aromadendrene | 0.08 |
55.28 | Unknown sesquiterpene | 0.02 |
55.75 | β-Cyclocitral | 0.06 |
56.33 | Myrtenal | 0.83 |
57.20 | Unknown sesquiterpene | 0.18 |
57.48 | trans-Pinocarveol | 5.48 |
57.75 | Allo-aromadendrene | 1.10 |
57.97 | α-Phellandren-8-ol (I) | 0.05 |
58.25 | trans-Cadina-1(6),4-diene | 0.12 |
59.81 | Myrtenyl acetate | 0.46 |
60.00 | α-Terpineol | 0.19 |
60.23 | α-Amorphene | 0.11 |
60.33 | Borneol | 1.25 |
60.71 | Dehydro-aromadendrane | 0.08 |
60.78 | Ledene | 0.33 |
61.46 | Verbenone | 0.26 |
61.63 | β-Himachalene + α-Phellandren-8-ol (II) | 0.25 |
62.53 | Carvyl acetate | 0.16 |
62.67 | Carvone | 0.14 |
64.31 | Δ-Cadinene | 0.58 |
65.73 | Myrtenol | 0.71 |
65.89 | Unknown alcohol | 0.11 |
68.10 | trans-Carveol | 0.31 |
68.95 | trans-Calamenene | 0.23 |
73.74 | α-Calacorene | 0.23 |
74.80 | Palustrol | 0.11 |
77.48 | Unknown sesquiterpenol | 0.11 |
79.95 | Ledol | 0.64 |
80.87 | Cubeban-11-ol | 0.03 |
82.19 | Viridiflorol | 2.04 |
83.68 | Spathulenol | 0.11 |
84.73 | Eugenol | 0.05 |
86.05 | Unknown sesquiterpenol | 0.21 |
86.30 | Junenol | 0.05 |
86.66 | Ambrox | 0.08 |
88.45 | β-Eudesmol | 0.04 |
98.47 | Unknown diterpene | 0.06 |
Total identified | 95.36 | |
Monoterpenes | 51.00 | |
Monoterpenoids | 22.53 | |
Cyclic unsaturated | 4.10 | |
Sesquiterpenoids | 3.48 | |
Sesquiterpenes | 3.15 | |
Others | 11.10 |
Method | Parameters | Essential Oil | Gallic Acid | p-Value | BHT | p-Value |
---|---|---|---|---|---|---|
DPPH | IC50 (%) | 0.90 ± 0.10 | 0.23 ± 0.01 | 0.007 * | - | - |
AAI | 5.73 ± 0.89 | 22.56 ± 0.20 | 0.001 * | - | - | |
Antioxidant activity | Very strong | Very strong | - | - | - | |
β-carotene bleaching | IC50 (%) | 0.48 ± 0.04 | - | - | 3.58 ± 0.02 | <0.001 * |
Microorganisms | Essential Oil (15 µL/disc) a | Tetracycline (30 µg/disc) or Resveratrol (5 µg/disc) b | DMSO (15 µL/disc) c | p-Values |
---|---|---|---|---|
S. aureus ATCC 25923 | 18.84 ± 0.58 | 30.65 ± 1.92 | 6.00 ± 0.00 | 0.005 ab,* 0.001 ac,* |
L. monocytogenes LMG 16779 | 17.01 ± 0.06 | 18.45 ± 0.69 | 6.00 ± 0.00 | 0.068 ab <0.001 ac,* |
E. faecalis ATCC 29212 | 13.77 ± 1.17 | 25.30 ± 2.00 | 6.00 ± 0.00 | 0.002 ab,* 0.007 ac,* |
B. cereus ATCC 11778 | 18.28 ± 0.45 | 30.60 ± 1.95 | 6.00 ± 0.00 | 0.006 ab,* <0.001 ac,* |
E. coli ATCC 25922 | 11.01 ± 1.34 | 23.84 ± 0.72 | 6.00 ± 0.00 | 0.001 ab,* 0.023 ac,* |
S. Typhimurium ATCC 13311 | 7.80 ± 1.00 | 19.63 ± 1.01 | 6.00 ± 0.00 | <0.001 ab,* 0.089 ac |
P. aeruginosa ATCC 27853 | 6.54 ± 0.76 | 11.56 ± 0.86 | 6.00 ± 0.00 | 0.002 ab,* 0.344 ac |
C. violaceum ATCC 12472 | 9.69 ± 0.44 | 8.49 ± 0.20 | 0.00 ± 0.000 | 0.027 ab,* 0.001 ac,* |
Microorganisms | Essential Oil (µL/mL) | Tetracycline (µg/mL) | DMSO (%, v/v) |
---|---|---|---|
S. aureus ATCC 25923 | 16 | 0.06 | >2 |
L. monocytogenes LMG 16779 | 8 | 0.06 | >2 |
E. faecalis ATCC 29212 | 8 | 0.06 | >2 |
B. cereus ATCC 11778 | 2 | 0.06 | >2 |
E. coli ATCC 25922 | 32 | 0.06 | >2 |
S. Typhimurium ATCC 13311 | 32 | 0.24 | >2 |
P. aeruginosa ATCC 27853 | 32 | 0.24 | >2 |
Properties | Control Film (without Rockrose EO) | Film with Rockrose EO | p-Value | |
---|---|---|---|---|
Grammage (g/m2) | 83.44 ± 0.64 | 87.17 ± 0.90 | 0.006 * | |
Thickness (µm) | 54.11 ± 2.72 | 61.80 ± 0.63 | 0.034 * | |
Mechanical properties | Elongation at break (%) | 3.15 ± 0.17 | 2.34 ± 0.07 | 0.007 * |
Tensile index (N.m/g) | 37.33 ± 1.78 | 24.73 ± 1.22 | 0.001 * | |
Elastic modulus (MPa) | 2881.40 ± 102.27 | 2244.42 ± 173.71 | 0.010 * | |
Optical properties | L* (lightness) | 21.94 ± 0.34 | 28.00 ± 0.53 | <0.001 * |
a* (redness) | −0.17 ± 0.02 | −0.24 ± 0.01 | 0.013 * | |
b* (yellowness) | −1.26 ± 0.11 | −1.18 ± 0.06 | 0.347 | |
Transparency (%) | 96.28 ± 0.22 | 94.66 ± 0.14 | 0.001 * |
Properties | Control Film (without Rockrose EO) | Film with Rockrose EO | p-Values | ||
---|---|---|---|---|---|
Lower Side a | Upper Side b | Lower Side c | Upper Side d | ||
Water contact angle (°) | 66.17 ± 1.79 | 64.99 ± 3.11 | 77.01 ± 2.10 | 70.58 ± 2.11 | 0.003 ac,* 0.070 bd |
Ethylene glycol contact angle (°) | 59.07 ± 1.96 | 49.94 ± 0.79 | 71.72 ± 2.70 | 63.77 ± 1.32 | 0.004 ac,* <0.001 bd,* |
Diiodomethane contact angle (°) | 31.43 ± 1.33 | 37.06 ± 0.44 | 32.81 ± 0.79 | 36.74 ± 1.20 | 0.213 ac 0.699 bd |
Total surface free energy, ɤT (mN/m) | 40.93 ± 2.05 | 43.11 ± 2.16 | 33.48 ± 1.67 | 37.49 ± 1.87 | 0.009 ac,* 0.028 bd,* |
Dispersive component, ɤD (mN/m) | 13.29 ± 0.66 | 11.85 ± 0.59 | 22.95 ± 1.15 | 25.79 ± 1.29 | 0.001 ac,* 0.001 bd,* |
Polar component, ɤP (mN/m) | 27.63 ± 1.38 | 31.26 ± 1.56 | 10.53 ± 0.53 | 11.70 ± 0.59 | 0.001 ac,* 0.001 bd,* |
Permeability | Control Film (without Rockrose EO) | Film with Rockrose EO | p-Value | |
---|---|---|---|---|
Water vapor | WVTR (g/m2.day) | 29.14 ± 3.38 | 30.77 ± 3.66 | 0.601 |
WVP (g/Pa.day.m) (×10−6) | 1.19 ± 0.14 | 1.44 ± 0.17 | 0.123 | |
Oxygen | OTR (cm3/m2.day) | 5038.32 ± 215.92 | 12820.78 ± 1160.76 | 0.006 * |
OP (cm3.µm/m2.day.kPa) | 2971.00 ± 56.57 | 8160.00 ± 226.98 | <0.001 * |
Properties | Control Film (without Rockrose EO) | Film with Rockrose EO | p-Value | |
---|---|---|---|---|
β-carotene bleaching test | % Inhibition | 69.67 ± 1.75 | 76.52 ± 3.90 | 0.076 |
Antibacterial | S. aureus ATCC 25923 | 0.00 ± 0.00 (-) | 6.00 ± 0.00 (+) | <0.001 * |
L. monocytogenes LMG 16779 | 0.00 ± 0.00 (-) | 6.00 ± 0.00 (+) | <0.001 * | |
E. faecalis ATCC 29212 | 0.00 ± 0.00 (-) | 6.00 ± 0.00 (+) | <0.001 * | |
B. cereus ATCC 11778 | 0.00 ± 0.00 (-) | 6.00 ± 0.00 (+) | <0.001 * | |
E. coli ATCC 25922 | 0.00 ± 0.00 (-) | 0.00 ± 0.00 (-) | <0.001 * | |
S. Typhimurium ATCC 13311 | 0.00 ± 0.00 (-) | 0.00 ± 0.00 (-) | <0.001 * | |
P. aeruginosa ATCC 27853 | 0.00 ± 0.00 (-) | 0.00 ± 0.00 (-) | <0.001 * | |
Inhibition zone (mm) | C. violaceum ATCC 12472 | 0.00 ± 0.00 | 6.00 ± 0.00 | <0.001 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luís, Â.; Ramos, A.; Domingues, F. Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging Applications. Antibiotics 2020, 9, 681. https://doi.org/10.3390/antibiotics9100681
Luís Â, Ramos A, Domingues F. Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging Applications. Antibiotics. 2020; 9(10):681. https://doi.org/10.3390/antibiotics9100681
Chicago/Turabian StyleLuís, Ângelo, Ana Ramos, and Fernanda Domingues. 2020. "Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging Applications" Antibiotics 9, no. 10: 681. https://doi.org/10.3390/antibiotics9100681
APA StyleLuís, Â., Ramos, A., & Domingues, F. (2020). Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging Applications. Antibiotics, 9(10), 681. https://doi.org/10.3390/antibiotics9100681