Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics
Abstract
:1. Background
2. History
3. Antibiotic Resistance in Pediatrics
4. Application Strategies for Artificial Intelligence (AI) Against Antibiotic Resistance
4.1. Prediction, Assessment and Diagnosis of Pediatric Infectious Diseases
4.2. Appropriate Prescription of Antibiotics
4.3. Predicting Antibiotic Resistance
4.4. Artificial Intelligence and Pharmaceutical Industry
4.4.1. Antimicrobial Peptides
4.4.2. Discovery of New Antibiotics
5. Limitations of Artificial Intelligence (AI)
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shu, L.Q.; Sun, Y.K.; Tan, L.H.; Shu, Q.; Chang, A.C. Application of artificial intelligence in pediatrics: Past, present and future. World J. Pediatr. 2019, 15, 105–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sittig, D.F.; Wright, A.; Middleton, B. Clinical decision support: A 25 year retrospective and a 25 year vision. Yearb. Med. Inform. 2016, 25 (Suppl. 1), S103–S116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chumbita, M.; Torres, A.; Puerta-Alcalde, P.; Moreno-García, E.; Sanjuan, G.; Garcia-Pouton, N.; Soriano, A.; Torres, A.; Garcia-Vidal, C. Can artificial intelligence improve the management of pneumonia. J. Clin. Med. 2020, 9, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt-Erfurth, U.; Bogunović, H.; Sadeghipour, A.; Schlegl, T.; Langs, G.; Gerendas, B.S.; Osborne, A.; Waldstein, S.M. Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration. Ophthalmol. Retin. 2018, 2, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Artificial Intelligence (AI) vs. Machine Learning vs. Deep Learning. Available online: https://pathmind.com/wiki/ai-vs-machine-learning-vs-deep-learning (accessed on 8 May 2020).
- Sisodia, D.S.; Pachori, R.B.; Garg, L. Handbook of research on advancements of artificial intelligence in healthcare engineering. IGI Global 2020, 1–420. [Google Scholar] [CrossRef]
- Ferrucci, D.A.; Levas, A.; Bagchi, S.; Gondek, D.; Mueller, E.T. Watson: Beyond jeopardy! Artif. Intell. 2013, 199–200, 93–105. [Google Scholar] [CrossRef]
- Kokol, P.; Završnik, J.; Vosner, H.B. Artificial intelligence and pediatrics: A synthetic mini review. SSRN Electron. J. 2017. [Google Scholar] [CrossRef] [Green Version]
- McCauley, N.; Ala, M. The use of expert systems in the healthcare industry. Inf. Manag. 1992, 22, 227–235. [Google Scholar] [CrossRef]
- IBM’s Watson AI Saves Woman’s Life By Diagnosing Rare Form of Leukaemia. Available online: https://www.huffingtonpost.co.uk/entry/ibms-watson-ai-saves-womans-life-after-diagnosing-rare-form-of-leukaemia_uk_57a849ade4b04ca9b5d381ef?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAHR-9DReTAIMdLu3Fy_QOCDvPJaTQsrjRYQL3YSuR1JZNCFZ2As5_K1nSsDEZ8jgEssL9Nlofb17_p6bp_QQT42tP1eE0DarIIZkV0jAAfdLfgDSG0J4Utq7EiCwM8ho98TzLpog8FdcNDwgZgM27zWZ499N0hsDbOnWDUDKjCke (accessed on 8 May 2020).
- Computer Assisted Medical Diagnosis System for Inborn Errors of Metabolism. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-0021404463&origin=inward&txGid=107d02549aa1348852833e63ffdd96a4 (accessed on 8 May 2020).
- Watson the Pediatrician. Available online: https://www.clinicalresearchnewsonline.com/news/2016/02/05/watson-the-pediatrician (accessed on 8 May 2020).
- Deleger, L.; Brodzinski, H.; Zhai, H.; Li, Q.; Lingren, T.; Kirkendall, E.; Alessandrini, E.; Solti, I. Developing and evaluating an automated appendicitis risk stratification algorithm for pediatric patients in the emergency department. J. Am. Med. Inform. Assoc. 2013, 20, e212–e220. [Google Scholar] [CrossRef] [Green Version]
- Mani, S.; Ozdas, A.; Aliferis, C.; Varol, H.A.; Chen, Q.; Carnevale, R.; Chen, Y.; Romano-Keeler, J.; Nian, H.; Weitkamp, J.-H. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J. Am. Med. Inform. Assoc. 2014, 21, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.J.; Chamberlain, D.B.; Chamberlain, J.M. A machine learning approach to predicting need for hospitalization for pediatric asthma exacerbation at the time of emergency department triage. Acad. Emerg. Med. 2018, 25, 1463–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaiboonchoe, A.; Samarasinghe, S.; Kulasiri, G.D. Using emergent clustering methods to analyse short time series gene expression data from childhood leukemia treated with glucocorticoids. In Proceedings of the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia, 13–17 July 2009; pp. 741–747. [Google Scholar]
- Salazar, B.; Balczewski, E.A.; Ung, C.Y.; Zhu, S. Neuroblastoma, a paradigm for big data science in pediatric oncology. Int. J. Mol. Sci. 2016, 18, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramgopal, S.; Thome-Souza, S.; Jackson, M.; Kadish, N.E.; Fernández, I.S.; Klehm, J.; Bosl, W.; Reinsberger, C.; Schachter, S.; Loddenkemper, T. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 2014, 37, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Crippa, A.; Salvatore, C.; Perego, P.; Forti, S.; Nobile, M.; Molteni, M.; Castiglioni, I. Use of machine learning to identify children with autism and their motor abnormalities. J. Autism Dev. Disord. 2015, 45, 2146–2156. [Google Scholar] [CrossRef]
- Liu, W.; Li, M.; Yi, L. Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework. Autism Res. 2016, 9, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, U.; Chiné, V.; Pappalardo, M.; Gismondi, P.; Esposito, S. Improving the quality of hospital antibiotic use: Impact on multidrug-resistant bacterial infections in children. Front. Pharmacol. 2020, 11, 745. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis. Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Filice, G.; Drekonja, D.; Greer, N.; Butler, M.; Wagner, B.; Macdonald, R.; Carlyle, M.; Rutks, I.; Wilt, T.J. Antimicrobial Stewardship Programs in Inpatient Settings: A Systematic Review 2013; Department of Veterans Affairs (US): Washington, DC, USA, 2013.
- Komorowski, M.; Celi, L.A.; Badawi, O.; Gordon, A.C.; Faisal, A.A. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 2018, 24, 1716–1720. [Google Scholar] [CrossRef]
- Lamping, F.; Jack, T.; Rübsamen, N.; Sasse, M.; Beerbaum, P.; Mikolajczyk, R.T.; Boehne, M.; Karch, A. Development and validation of a diagnostic model for early differentiation of sepsis and non-infectious SIRS in critically ill children—A data-driven approach using machine-learning algorithms. BMC Pediatr. 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Liang, H.; Tsui, B.Y.; Ni, H.; Valentim, C.C.S.; Baxter, S.L.; Liu, G.; Cai, W.; Kermany, D.S.; Sun, X.; Chen, J.; et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat. Med. 2019, 25, 433–438. [Google Scholar] [CrossRef]
- Beaudoin, M.; Kabanza, F.; Nault, V.; Valiquette, L. Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs. Artif. Intell. Med. 2016, 68, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, M.; Kabanza, F.; Nault, V.; Valiquette, L. An antimicrobial prescription surveillance system that learns from experience. AI Mag. 2014, 35, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Swaminathan, S.; Pasipanodya, J.G.; Ramachandran, G.; Kumar, A.K.H.; Srivastava, S.; Deshpande, D.; Nuermberger, E.; Gumbo, T. Drug concentration thresholds predictive of therapy failure and death in children with tuberculosis: Bread crumb trails in random forests. Clin. Infect. Dis. 2016, 63 (Suppl. 3), S63–S74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oonsivilai, M.; Mo, Y.; Luangasanatip, N.; Lubell, Y.; Miliya, T.; Tan, P.; Loeuk, L.; Turner, P.; Cooper, B.S. Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children’s hospital in Cambodia. Wellcome Open Res. 2018, 3, 131. [Google Scholar] [CrossRef]
- Kilbridge, P.M.; Noirot, L.A.; Reichley, R.M.; Berchelmann, K.M.; Schneider, C.; Heard, K.; Nelson, M.; Bailey, T.C. Computerized surveillance for adverse drug events in a pediatric hospital. J. Am. Med. Informatics Assoc. 2009, 16, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Yelin, I.; Snitser, O.; Novich, G.; Katz, R.; Tal, O.; Parizade, M.; Chodick, G.; Koren, G.; Shalev, V.; Kishony, R. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat. Med. 2019, 25, 1143–1152. [Google Scholar] [CrossRef]
- Feretzakis, G.; Loupelis, E.; Sakagianni, A.; Kalles, D.; Martsoukou, M.; Lada, M.; Skarmoutsou, N.; Christopoulos, C.; Valakis, K.; Velentza, A.; et al. Using machine learning techniques to aid empirical antibiotic therapy decisions in the intensive care unit of a general hospital in Greece. Antibiotics 2020, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Greenberg, D.E.; Pifer, R.; Jiang, S.; Xiao, G.; Shelburne, S.A.; Koh, A.Y.; Xie, Y.; Zhan, X. VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning. PLoS Comput. Biol. 2020, 16, e1007511. [Google Scholar] [CrossRef]
- CRyPTIC Consortium and the 100,000 Genomes Project; Allix-Béguec, C.; Arandjelovic, I.; Bi, L.; Beckert, P.; Bonnet, M. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N. Engl. J. Med. 2018, 379, 1403–1415. [Google Scholar]
- Yoshida, M.; Hinkley, T.; Tsuda, S.; Abul-Haija, Y.M.; McBurney, R.T.; Kulikov, V.; Mathieson, J.S.; Reyes, S.G.; Castro, M.D.; Cronin, L. Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem 2018, 4, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Baltzer, S.A.; Baltzer, S.A.; Brown, M.H. Antimicrobial peptides—Promising alternatives to conventional antibiotics. J. Mol. Microbiol. Biotechnol. 2011, 20, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 2012, 11, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Medina-Franco, J.L.; Yoo, J.; Dueñas-González, A. Chapter 13—DNA Methyltransferase Inhibitors for Cancer Therapy. Epigenetic Technological Applications; Academic Press: London, UK, 2015; pp. 265–290. [Google Scholar]
- Mohimani, H.; Kersten, R.D.; Liu, W.T.; Wang, M.; Purvine, S.O.; Wu, S.; Brewer, H.M.; Pasa-Tolic, L.; Bandeira, N.; Moore, B.S.; et al. Automated genome mining of ribosomal peptide natural products. ACS Chem. Biol. 2014, 9, 1545–1551. [Google Scholar] [CrossRef]
- Iwasaki, T.; Saido-Sakanaka, H.; Asaoka, A.; Taylor, D.; Ishibashi, J.; Yamakawa, M. In vitro activity of diastereomeric antimicrobial peptides alone and in combination with antibiotics against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. J. Insect Biotechnol. Sericol. 2007, 76, 25–29. [Google Scholar]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A deep learning approach to antibiotic discovery. Cell 2020, 180, 688–702.e13. [Google Scholar] [CrossRef] [Green Version]
- Bias Test to Prevent Algorithms Discriminating Unfairly. Available online: https://www.newscientist.com/article/mg23431195-300-bias-test-to-prevent-algorithms-discriminating-unfairly/ (accessed on 8 May 2020).
- Google DeepMind 1.6 m Patient Record Deal ’Inappropriate’. Available online: https://www.theguardian.com/technology/2017/may/16/google-deepmind-16m-patient-record-deal-inappropriate-data-guardian-royal-free (accessed on 8 May 2020).
- Cabitza, F.; Alderighi, C.; Rasoini, R.; Gensini, G.F. “Handle with care”: About the potential unintended consequences of oracular artificial intelligence systems in medicine. Recenti Progress. Med. 2017, 108, 397–401. [Google Scholar] [CrossRef]
- Facebook Shuts Down Robots After They Invent Their Own Language. Available online: https://www.telegraph.co.uk/technology/2017/08/01/facebook-shuts-robots-invent-language/ (accessed on 8 May 2020).
- Schwalbe, N.; Wahl, B. Artificial intelligence and the future of global health. Lancet 2020, 395, 1579–1586. [Google Scholar] [CrossRef]
- Peiffer-Smadja, N.; Rawson, T.M.; Ahmad, R.; Buchard, A.; Georgiou, P.; Lescure, F.X.; Birgand, G.; Holmes, A.H. Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clin. Microbiol. Infect. 2020, 26, 584–595. [Google Scholar] [CrossRef]
AI Application in Fighting Antimicrobial Resistance | Definition | Advantages | Limitations |
---|---|---|---|
AI, health industry and antibiotics | |||
1. Antimicrobial peptides | Natural functional polymers, defensive elements for all multicellular organisms to counter bacterial invasion and infection. | - low risk of resistance development; - multiple antimicrobial mechanisms of action; - ease of synthesis thanks to AI. | - high toxicity to eukaryotic cells; - high cost of large-scale production; - initial appearance of cross resistance associated with widespread use; - onset of allergic reactions. |
2. Discovery of new antibiotics | Discovery or development of antibacterial agents structurally different from known antibiotics. | - ability to develop new molecules with targeted and broad-spectrum bioactivity; - reduced time and labor costs for development. | - need for training libraries to contain molecules with physicochemical properties consistent with those of antibacterial drugs yet sufficiently diverse; - need for selection of the most appropriate approach compound development and minimizing toxicity. |
AI, pediatric practice and infectious diseases | |||
Prediction of antibiotic resistance | Using machine learning (ML) techniques to predict the susceptibility of a microbial agent to an antibiotic. | - ability to exploit genomic information to predict the bacterial phenotype (VAMPr); - ability to help the clinician select the correct antibiotic. | - lack of complete genotypes in the NCBI database for each microorganism - need for integrating large amounts of data (laboratory, clinical, geographical) |
Appropriate prescription of antibiotics | Selection of the appropriate therapy for the suspected agent, the appropriate dose and the correct route of administration. | - automated decision support systems for the review of antimicrobial prescriptions at hospital level; - ability to receive feedback for automatic and continuous improvement - guideline-based operation. | - lack of staff in systems management; - need for available health funds. |
Prediction of infection severity | Automatic learning tools for the recognition of infectious pathology and correct management of complications. | - ability to distinguish infectious diseases, including sepsis, from non-infectious diseases - provision of decision support for the doctor; - ability to reduce mortality. | - need for accurate and complete data collection; - inability to obtain laboratory data from the beginning of illness. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanelli, U.; Pappalardo, M.; Chinè, V.; Gismondi, P.; Neglia, C.; Argentiero, A.; Calderaro, A.; Prati, A.; Esposito, S. Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics. Antibiotics 2020, 9, 767. https://doi.org/10.3390/antibiotics9110767
Fanelli U, Pappalardo M, Chinè V, Gismondi P, Neglia C, Argentiero A, Calderaro A, Prati A, Esposito S. Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics. Antibiotics. 2020; 9(11):767. https://doi.org/10.3390/antibiotics9110767
Chicago/Turabian StyleFanelli, Umberto, Marco Pappalardo, Vincenzo Chinè, Pierpacifico Gismondi, Cosimo Neglia, Alberto Argentiero, Adriana Calderaro, Andrea Prati, and Susanna Esposito. 2020. "Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics" Antibiotics 9, no. 11: 767. https://doi.org/10.3390/antibiotics9110767
APA StyleFanelli, U., Pappalardo, M., Chinè, V., Gismondi, P., Neglia, C., Argentiero, A., Calderaro, A., Prati, A., & Esposito, S. (2020). Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics. Antibiotics, 9(11), 767. https://doi.org/10.3390/antibiotics9110767