Antimicrobial Resistance Patterns in Organic and Conventional Dairy Herds in Sweden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Faecal Sampling
2.3. Collection of AMU Data
2.4. Antimicrobial Susceptibility Testing
2.5. Antimicrobial Resistance Patterns and Herd Production System
2.6. Ethical Statement
3. Results
3.1. Proportion of Tetracycline- and Nalidixic Acid-Resistant E. Coli
3.2. Antimicrobial Susceptibility
3.3. Association between AMU and AMR
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Neill, J. Tackling Drug Resistance Globally: Final Report. Wellcome Trust: London, UK, 2016. Available online: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf (accessed on 1 September 2020).
- Mölstad, S.; Löfmark, S.; Carlin, K.; Erntell, M.; Aspevall, O.; Blad, L.; Hanberger, H.; Hedin, K.; Hellman, J.; Norman, C.; et al. Lessons learnt during 20 years of the Swedish strategic programme against antibiotic resistance. Bull. World Health Organ. 2017, 95, 764–773. [Google Scholar] [CrossRef]
- Grundin, J.; Blanco-Penedo, I.; Fall, N.; Sternberg-Lewerin, S. The Swedish Experience—A Summary of the Swedish Efforts towards a Low and Prudent Use of Antibiotics in Animal Production. SLU Future Animals, Nature and Health Report No. 5. 2020. Available online: https://www.slu.se/en/Collaborative-Centres-and-Projects/slu-future-animals-nature-and-health/forskning/publications/rapporter/the-swedish-experience/ (accessed on 1 September 2020).
- Swedish Public Health Agency, Swedish Board of Agriculture. Swedish Work against Antibiotic Resistance—A One Health Approach. 2020. Available online: https://www2.jordbruksverket.se/download/18.693595921700d430c72b254f/1580906107699/ovr524.pdf (accessed on 1 September 2020).
- OIE Annual Report on Antimicrobial Agents Intended for Use in Animals. 2018. Available online: https://rr-africa.oie.int/wp-content/uploads/2019/09/annual_report_amr_3.pdf (accessed on 1 September 2020).
- European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2019, 17, 5598. [Google Scholar] [CrossRef]
- European Food Safety Authority and European Centre for Disease Prevention and Control: The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animalsand food in 2017/2018. EFSA J. 2020, 18, 6007. [CrossRef] [Green Version]
- Swedres-Svarm 2019. Sales of Antibiotics and Occurrence of Resistance in Sweden. Solna/Uppsala ISSN1650-6332. Available online: https://www.folkhalsomyndigheten.se/contentassets/fb80663bc7c94d678be785e3360917d1/swedres-svarm-2019.pdf (accessed on 1 September 2020).
- Harada, K.; Asai, T. Role of antimicrobial selective pressure and secondary factors on antimicrobial resistance prevalence in Escherichia coli from food-producing animals in Japan. J. Biomed. Biotechnol. 2010, 180682. [Google Scholar] [CrossRef] [Green Version]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. MIC and Zone Diameter Distributions and ECOFFs. 2018. Available online: https://www.eucast.org/mic_distributions_and_ecoffs/ (accessed on 1 September 2020).
- Swedres-Svarm 2017. Sales of Antibiotics and Occurrence of Resistance in Sweden. Solna/Uppsala ISSN1650-6332. Available online: https://www.sva.se/media/103hg3vh/swedres_svarm2017.pdf (accessed on 1 September 2020).
- USDA National Organic Program. 2002. Available online: https://www.ams.usda.gov/about-ams/programs-offices/national-organic-program (accessed on 1 September 2020).
- Sato, K.; Bartlett, P.C.; Saeed, M.A. Antimicrobial susceptibility of Escherichia coli isolates from dairy farms using organic versus conventional production methods. J. Am. Vet. Med. Assoc. 2005, 226, 589–594. [Google Scholar] [CrossRef] [PubMed]
- KRAV (Kontrollföreningen för Ekologisk Produktion). KRAV Regler. 2018. Available online: https://www.krav.se/regler/ (accessed on 1 September 2020). (In Swedish).
- Olmos Antillón, G.; Sjöström, K.; Fall, N.; Sternberg Lewerin, S.; Emanuelson, U. Antibiotic Use in Organic and Non-Organic Swedish Dairy Farms: A Comparison of Three Recording Methods. Front. Vet. Sci. 2020, 7, 843. [Google Scholar] [CrossRef]
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. J. Dairy Sci. 2015, 98, 500–516. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 1–11. [Google Scholar] [CrossRef]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J. Antimicrob. Chemother. 2006, 57, 154–155. [Google Scholar] [CrossRef] [Green Version]
- Krogh, M.A.; Nielsen, C.L.; Sørensen, J.T. Antimicrobial use in organic and conventional dairy herds. Animal 2020, 14, 2187–2193. [Google Scholar] [CrossRef]
- Pol, M.; Ruegg, P.L. Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin. J. Dairy Sci. 2007, 90, 249–261. [Google Scholar] [CrossRef]
- Österberg, J.; Wingstrand, A.; Jensen, A.N.; Kerouanton, A.; Cibin, V.; Barco, L.; Denis, M.; Aabo, S.; Bengtsson, B. Antibiotic resistance in Escherichia coli from pigs in organic and conventional farming in four European countries. PLoS ONE 2016, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fall, N.; Forslund, K.; Emanuelson, U. Reproductive performance, general health, and longevity of dairy cows at a Swedish research farm with both organic and conventional production. Livest. Sci. 2008, 118, 11–19. [Google Scholar] [CrossRef]
- Fall, N.; Emanuelson, U. Milk yield, udder health and reproductive performance in Swedish organic and conventional dairy herds. J. Dairy Res. 2009, 76, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, D.V.; Shaw, D.J.; Knight, H.I.; Davison, H.C.; Pearce, M.C.; Low, C.; Gunn, G.J.; Woolhouse, M.E.J. Age-related decline in carriage of ampicillin-resistant Escherichia coli in young calves. Appl. Environ. Microbiol. 2004, 70, 6927–6930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk factors for quinolone-resistant Escherichia coli in feces from preweaned dairy calves and postpartum dairy cows. J. Dairy Sci. 2015, 9, 6387–6398. [Google Scholar] [CrossRef] [PubMed]
- Tello, M.; Ocejo, M.; Oporto, B.; Hurtado, A. Prevalence of Cefotaxime-Resistant Escherichia coli Isolates from Healthy Cattle and Sheep in Northern Spain: Phenotypic and Genome-Based Characterization of Antimicrobial Susceptibility. Appl. Environ. Microbiol. 2020, 86, e00742. [Google Scholar] [CrossRef]
- Astorga, F.; Navarrete-Talloni, M.J.; Miro, M.P.; Bravo, V.; Toro, M.; Blondel, C.J.; Herve-Claude, L.P. Antimicrobial resistance in E. coli isolated from dairy calves and bedding material. Heliyon 2019, 5, e02773. [Google Scholar] [CrossRef]
- De Verdier, K.; Nyman, A.; Greko, C.; Bengtsson, B. Antimicrobial resistance and virulence factors in Escherichia coli from swedish dairy calves. Acta Vet. Scand. 2012, 54, 2. [Google Scholar] [CrossRef] [Green Version]
- Nyman, A. Treatment Incidence with Antibacterial Substances for Systemic Use in Controlled Herds 2001–2018. Available online: https://www.vxa.se/globalassets/dokument/statistik/antibiotikaforbrukning-2001-2018.pdf (accessed on 1 September 2020). (In Swedish).
- Swedish Veterinary Association. Guidelines for the Use of Antibiotics in Production Animals. Available online: https://svf.se/media/vd5ney4l/svfs-riktlinje-antibiotika-till-produktionsdjur-eng-2017.pdf (accessed on 1 September 2020).
- LIF (Swedish Association of the Pharmaceutical Industry). FASS Djurläkemedel (Approved Veterinary Drugs in Sweden). 2020. Available online: https://www.fass.se/LIF/startpage?userType=1 (accessed on 1 September 2020). (In Swedish).
- Berendsen, B.; Pikkemaat, M.; Römkens, P.; Wegh, R.; Van Sisseren, M.; Stolker, L.; Nielen, M. Occurrence of chloramphenicol in crops through natural production by bacteria in soil. J. Agric. Food Chem. 2013, 61, 4004–4010. [Google Scholar] [CrossRef]
- Harada, K.; Asai, T.; Kojima, A.; Ishihara, K.; Takahashi, T. Role of coresistance in the development of resistance to chloramphenicol in Escherichia coli isolated from sick cattle and pigs. Am. J. Vet. Res. 2006, 67, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, D.A.; Zhao, S.; Tong, E.; Ayers, S.; Singh, A.; Bartholomew, M.J.; McDermott, P.F. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg. Infect. Dis. 2012, 18, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Aghapour, Z.; Gholizadeh, P.; Ganbarov, K.; Zahedi Bialvaei, A.; Saad Mahmood, S.; Tanomand, A.; Yousefi, M.; Asgharzadeh, M.; Yousefi, B.; Samadi Kafilet, H. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist. 2019, 12, 965–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albur, M.; Noel, A.; Bowker, K.; MacGowan, A. Colistin susceptibility testing: Time for a review. J. Antimicr. Chemother. 2014, 69, 1432–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccarelli, D.; Hesp, A.; Van Der Goot, J.; Joosten, P.; Sarrazin, S.; Wagenaar, J.A.; Dewulf, J.; Mevius, D.J. Antimicrobial resistance prevalence in commensal Escherichia coli from broilers, fattening turkeys, fattening pigs and veal calves in European countries and association with antimicrobial usage at country level. J. Med. Microbiol. 2020, 69, 4. [Google Scholar] [CrossRef]
- Literak, I.; Dolejska, M.; Rybarikova, J.; Cizek, A.; Strejckova, P.; Vyskocilova, M.; Friedman, M.; Klimes, J. Highly variable patterns of antimicrobial resistance in commensal Escherichia coli isolates from pigs, sympatric rodents, and flies. Microb. Drug Resist. 2009, 15, 229–237. [Google Scholar] [CrossRef]
- Atterby, C.; Börjesson, S.; Ny, S.; Järhult, J.D.; Byfors, S.; Bonnedahl, J. ESBL-producing Escherichia coli in Swedish gulls—A case of environmental pollution from humans? PLoS ONE 2017, 12, 1–13. [Google Scholar] [CrossRef]
- Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. [Google Scholar] [CrossRef]
Substance | Calf Isolates | Environmental Isolates | ||
---|---|---|---|---|
Herd Treated a | Herd Not Treated | Herd Treated | Herd Not Treated | |
Ampicillin a1 | N = 53 | N = 1 | N = 53 | N = 1 |
Average MIC | 54 | 2 | 22 | 3 |
Median MIC | 2 | 2 | 2 | 2 |
%resistant | 22 | 0 | 12 | 0 |
Ciprofloxacin a2 | N = 6 | N = 48 | N = 6 | N = 48 |
Average MIC | 0.055 b | 0.036 | 0.040 | 0.035 |
Median MIC | 0.030 | 0.030 | 0.030 | 0.030 |
%resistant | 14 | 2 | 7 | 2 |
Nalidixic acid a2 | N = 6 | N = 48 | N = 6 | N = 48 |
Average MIC | 21 | 7 | 3 | 6 |
Median MIC | 4 | 2 | 5 | 4 |
%resistant | 10 | 2 | 0 | 2 |
Gentamicin a3 | N = 20 | N = 34 | N = 20 | N = 34 |
Average MIC | 0.60 | 0.56 | 0.58 | 0.71 |
Median MIC | 0.50 | 0.50 | 0.50 | 0.50 |
%resistant | 0.5 | 0 | 0 | 4 |
Streptomycin a3 | N = 20 | N = 34 | N = 20 | N = 34 |
Average MIC | 69 | 67 | 42 | 10 |
Median MIC | 8 | 8 | 8 | 6 |
%resistant | 32 | 44 | 20 | 10 |
Tetracycline a4 | N = 10 | N = 44 | N = 10 | N = 44 |
Average MIC | 7 | 10 | 5 | 3 |
Median MIC | 2 | 2 | 2 | 2 |
%resistant | 19 | 23 | 16 | 13 |
Sulfamethoxazole a5 | N = 8 | N = 46 | N = 8 | N = 46 |
Average MIC | 850 | 590 | 463 | 264 |
Median MIC | 320 | 160 | 80 | 160 |
%resistant | 42 | 29 | 22 | 14 |
Trimethoprim a5 | N = 8 | N = 46 | N = 8 | N = 46 |
Average MIC | 2.22 | 2.31 | 5.86 | 2.32 |
Median MIC | 0.50 | 0.50 | 0.50 | 0.50 |
%resistant | 6 | 6 | 17 | 8 |
Substance | Calf Isolates | Environmental Isolates | ||
---|---|---|---|---|
Organic | Conventional | Organic | Conventional | |
Ampicillin %R | 25 | 18 | 12 | 9 |
DCD penicillins | 0.584 | 1.170 | 0.584 | 1.170 |
Ciprofloxacin %R | 3 | 5 | 0 | 2 |
Nalidixic acid %R | 3 | 5 | 0 | 4 |
DCD enrofloxacin | 0.002 | 0.002 | 0.002 | 0.002 |
Gentamicin %R | 0 | 0.8 | 0 | 2 |
Streptomycin %R | 30 | 40 | 14 | 13 |
DCD dihydrostreptomycin | 0.102 | 0.167 | 0.102 | 0.167 |
Tetracycline %R | 20 | 21 | 14 | 11 |
DCD oxitetracycline | 0.010 | 0.005 | 0.010 | 0.005 |
Sulfamethoxazole %R | 29 | 34 | 12 | 17 |
Trimethoprim %R | 7 | 5 | 8 | 8 |
DCD trimethoprim/sulfa | 0.021 | 0.012 | 0.021 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sjöström, K.; Hickman, R.A.; Tepper, V.; Olmos Antillón, G.; Järhult, J.D.; Emanuelson, U.; Fall, N.; Sternberg Lewerin, S. Antimicrobial Resistance Patterns in Organic and Conventional Dairy Herds in Sweden. Antibiotics 2020, 9, 834. https://doi.org/10.3390/antibiotics9110834
Sjöström K, Hickman RA, Tepper V, Olmos Antillón G, Järhult JD, Emanuelson U, Fall N, Sternberg Lewerin S. Antimicrobial Resistance Patterns in Organic and Conventional Dairy Herds in Sweden. Antibiotics. 2020; 9(11):834. https://doi.org/10.3390/antibiotics9110834
Chicago/Turabian StyleSjöström, Karin, Rachel A. Hickman, Viktoria Tepper, Gabriela Olmos Antillón, Josef D. Järhult, Ulf Emanuelson, Nils Fall, and Susanna Sternberg Lewerin. 2020. "Antimicrobial Resistance Patterns in Organic and Conventional Dairy Herds in Sweden" Antibiotics 9, no. 11: 834. https://doi.org/10.3390/antibiotics9110834
APA StyleSjöström, K., Hickman, R. A., Tepper, V., Olmos Antillón, G., Järhult, J. D., Emanuelson, U., Fall, N., & Sternberg Lewerin, S. (2020). Antimicrobial Resistance Patterns in Organic and Conventional Dairy Herds in Sweden. Antibiotics, 9(11), 834. https://doi.org/10.3390/antibiotics9110834