Assessment of Drivers of Antimicrobial Use and Resistance in Poultry and Domestic Pig Farming in the Msimbazi River Basin in Tanzania
Abstract
:1. Introduction
2. Results
2.1. Knowledge and Practices Regarding AMU and AMR in Poultry and Pig Farming
2.2. Perception and Attitudes on Antimicrobial Use
2.3. Perception and Attitudes on the Drivers of Antimicrobial Use and Resistance
2.4. Factors Associated with the Development and Spread of AMR in the Environment
2.5. Overarching Themes from in-Depth Interview and FGD
2.6. Diseases Affecting Poultry and Domestic Pigs and Drugs Used for Treatment
2.7. Antimicrobial Use and Accessibility
2.8. Experience in Diagnosis and Treatment of Diseases
2.9. Availability and Accessibility of Government Extension Officers
2.10. Laws and Regulations Regarding the Handling, Use and Dispensing Veterinary Drugs
2.11. Waste Management and Potential Sources of AMR Development and Spread in the Environment
2.12. Withdraw Period of Antimicrobials
3. Discussion
4. Materials and Methods
4.1. Study Site and Design
4.2. Sampling Strategy and Sample Size
4.3. Data Collection
4.4. Data Management and Analysis
4.5. Ethical Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kimbi, E.; Lekule, F.; Mlangwa, J.; Mejer, H.; Thamsorg, S.M. Smallholder domestic pigs production systems in Tanzania. J. Agric. Sci. Technol. 2015, 5, 47–60. [Google Scholar]
- Bernadether, T.R.; Douglas, R.C.; Gaspary, O.M.; Murugan, S.; Joram, B. Comparison of the prevalence of antibiotic-resistant Escherichia coli isolates from commercial-layer and free-range chickens in Arusha district, Tanzania. Afr. J. Microbiol. Res. 2016, 10, 1422–1429. [Google Scholar] [CrossRef] [Green Version]
- Bakari, G.G.; Mollel, E.; Max, R.A.; Muhairwa, A.P. Evaluation of Stress Hormone (Cortisol) Levels and Some Biochemical Parameters of Domestic pigs Kept Under Intensive Management Systems in Morogoro, Tanzania. J. Biol. Life Sci. 2018, 9, 78. [Google Scholar] [CrossRef]
- Maziku, M.; Desta, S.; Stapleton, J. Pork Production in the Tanzanian Livestock Master Plan. 2017. Available online: https://hdl.handle.net/10568/89060 (accessed on 24 October 2019).
- Lenox, O.P.; Said, H.M. Variations in village chicken management packages in two agro-ecological zones of Tanzania. Int. J. Livest. Prod. 2018, 9, 42–49. [Google Scholar] [CrossRef]
- Bessell, P.R.; Kushwaha, P.; Mosha, R.; Woolley, R.; Al-Riyami, L.; Gammon, N. Assessing the impact of a novel strategy for delivering animal health interventions to smallholder farmers. Prev. Vet. Med. 2017, 147, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Michael, S.; Mbwambo, N.; Mruttu, H.; Dotto, M.; Ndomba, C.; da Silva, M.; Makusaro, F.; Nandonde, S.; Crispin, J.; Shapiro, B.; et al. Tanzania Livestock Master Plan. United Republic of Tanzania. 2018. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/92405/livestockMasterPlan_Tanzania.pdf?sequence=1 (accessed on 23 October 2019).
- Muzzo, B.I.; Provenza, F.D. A review of strategies for overcoming challenges of beef production in Tanzania. Livest. Res. Rural Dev. 2018, 30, 1–11. [Google Scholar]
- Katakweba, A.A.S.; Muhairwa, A.P.; Lupindu, A.M.; Damborg, P.; Rosenkrantz, J.T.; Minga, U.M. First Report on a Randomized Investigation of Antimicrobial Resistance in Fecal Indicator Bacteria from Livestock, Poultry, and Humans in Tanzania. Microb. Drug Resist. 2018, 24, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Kimera, Z.I.; Mdegela, R.H.; Mhaiki, C.J.N.; Karimuribo, E.D.; Mabiki, F.; Nonga, H.E. Determination of oxytetracycline residues in cattle meat marketed in the Kilosa district, Tanzania. Onderstepoort J. Vet. Res. 2015, 82, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Msami, D.H. Poultry sector country review: Tanzania [Internet]. Food and Agriculture Organization of the United Nations. 2008. Available online: http://hdl.handle.net/20.500.12018/2637 (accessed on 12 February 2020).
- Nonga, H.E.; Mariki, M.; Karimuribo, E.D. Assessment of Antimicrobial Usage and Antimicrobial Residues in Broiler Chickens in Morogoro Municipality, Tanzania. Pakistan J. Nutr. 2009, 8, 203–207. [Google Scholar] [CrossRef]
- Lekule, F.P.; Kyvsgaard, N.C. Improving pig husbandry in tropical resource-poor communities and its potential to reduce risk of porcine cysticercosis. Acta Trop. 2003, 87, 111–117. [Google Scholar] [CrossRef]
- Mbugi, E.V.; Kayunze, K.A.; Katale, B.Z.; Kendall, S.; Good, L.; Kibik, G.S. ‘One Health’ infectious diseases surveillance in Tanzania: Are we all on board the same flight? Onderstepoort J. Vet. Res. 2012, 79, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nonga, H.E.; Simon, C.; Karimuribo, E.D.; Mdegela, R.H. Assessment of antimicrobial usage and residues in commercial chicken eggs from smallholder poultry keepers in Morogoro municipality, Tanzania. Zoonoses Public Health 2010, 57, 339–344. [Google Scholar] [CrossRef]
- Katakweba, A.A.S.; Mtambo, M.M.A.; Olsen, J.E.; Muhairwe, A.P. Awareness of human health risks associated with the use of antimicrobials among livestock keepers and factors that contribute to selection of antibiotic resistance bacteria within livestock in Tanzania. Livist. Rural Res. Dev. 2012, 24, 1–14. [Google Scholar]
- Global Antibiotic Resistance Partnership-Tanzania Working Group. A Situation Analysis and Recommendations: Antibiotic Use and Resistance in Tanzania. Washington, DC and New Delhi: Center for Disease Dynamics, Economics & Policy. Available online: www.cddep.org/GARP (accessed on 19 January 2018).
- Wilson, R.; Swai, E. Pig Production in Tanzania: A Critical Review. Tropicultura 2014, 32, 46–53. [Google Scholar]
- Caudell, M.A.; Quinlan, M.B.; Subbiah, M.; Call, D.R.; Roulette, C.J.; Roulette, J.W. Antimicrobial use and veterinary care among agro-pastoralists in Northern Tanzania. PLoS ONE 2017, 12, e0170328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roulette, C.J.; Caudell, M.A.; Roulette, J.W.; Quinlan, R.J.; Quinlan, M.B.; Subbiah, M.; Call, D.R. A two-month follow-up evaluation testing interventions to limit the emergence and spread of antimicrobial resistant bacteria among Maasai of northern Tanzania. BMC Infect Dis. 2017, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kashoma, I.P.; Kassem, I.I.; Kumar, A.; Kessy, B.M.; Gebreyes, W.; Kazwala, R.R.; Rajashekara, G. Antimicrobial resistance and genotypic diversity of campylobacter isolated from domestic pigs, dairy, and beef cattle in Tanzania. Front. Microbiol. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Mshana, S.E.; Matee, M.; Rweyemamu, M. Antimicrobial resistance in human and animal pathogens in Zambia, Democratic Republic of Congo, Mozambique and Tanzania: An urgent need of a sustainable surveillance system. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Moremi, N.; Manda, E.V.; Falgenhauer, L.; Ghosh, H.; Imirzalioglu, C.; Matee, M.; Chakraborty, T.; Mshana, S.E. Predominance of CTX-M-15 among ESBL producers from environment and fish gut from the shores of Lake Victoria in Mwanza, Tanzania. Front. Microbiol. 2016, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sawe, S.F.; Shilla, D.A.; Machiwa, J.F. Assessment of enrichment, geo-accumulation and ecological risk of heavy metals in surface sediments of the Msimbazi mangrove ecosystem, coast of Dar es Salaam, Tanzania. Chem. Ecol. 2019, 35, 835–845. [Google Scholar] [CrossRef]
- Kayombo, M.C.; Mayo, A.W. Assessment of Microbial Quality of Vegetables Irrigated with Polluted Waters in Dar es Salaam City, Tanzania. Environ. Ecol. Res. 2018, 6, 229–239. [Google Scholar] [CrossRef]
- Mrutu, A.; Nkotagu, H.; Luilo, G. Spatial distribution of heavy metals in Msimbazi River mangrove sediments in Dar es Salaam coastal zone, Tanzania. Int. J. Environ. Sci. 2013, 3, 1641–1655. [Google Scholar]
- Mwegoha, W.; Leonard, L.S.; Kihampa, C. Heavy metal pollutions and urban agriculture in Msimbazi River valley: Health risk and public awareness. Int. J. Plant. Anim. Environ. Stud. 2012, 2, 107–118. [Google Scholar]
- Ngassapa, F.N.; Othman, O.C.; Mihayo, D.; Kilulya, K.F. Speciation of lead, chromium, cadmium, copper and zinc in sediments and plants along Msimbazi river in Dar es Salaam, Tanzania. Tanzania J. Sci. 2018, 44, 136–151. [Google Scholar]
- Moses, J.S.; Isabela, T.M.; Fredrick, E.J. Impacts of waste on macroinvertebrate assemblages of Msimbazi River, Tanzania. Int. J. Biodivers. Conserv. 2018, 10, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Eltayb, A.; Barakat, S.; Marrone, G.; Shaddad, S.; Sta, C. Antibiotic Use and Resistance in Animal Farming: A Quantitative and Qualitative Study on Knowledge and Practices among Farmers in Khartoum, Sudan. Zoonoses Public Health 2012, 59, 330–338. [Google Scholar] [CrossRef]
- Donkor, E.S.; Newman, M.J.; Yeboah-Manu, D. Epidemiological aspects of non-human antibiotic usage and resistance: Implications for the control of antibiotic resistance in Ghana. Trop. Med. Int. Health 2012, 17, 462–468. [Google Scholar] [CrossRef]
- Alhaji, N.B.; Isola, T.O. Antimicrobial usage by pastoralists in food animals in North-central Nigeria: The associated socio-cultural drivers for antimicrobials misuse and public health implications. One Health 2018, 6, 41–47. [Google Scholar] [CrossRef]
- Kamini, M.G.; Keutchatang, F.T.; Mafo, H.Y.; Kansci, G.; Nama, G.M. Antimicrobial usage in the chicken farming in yaoundé, Cameroon: A cross-sectional study. Int. J. Food Contam. 2016, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Ojo, O.E.; Fabusoro, E.; Majasan, A.A.; Dipeolu, M.A. Antimicrobials in animal production: Usage and practices among livestock farmers in Oyo and Kaduna States of Nigeria. Trop. Anim. Health Prod. 2016, 48, 189–197. [Google Scholar] [CrossRef]
- Coyne, L.; Arief, R.; Benigno, C.; Giang, V.N.; Huong, L.Q.; Jeamsripong, S. Characterizing antimicrobial use in the livestock sector in three south east asian countries (Indonesia, thailand, and vietnam). Antibiotics 2019, 8, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, M.B.; Syed-Hussain, S.S.; Ramanoon, S.Z.; Saharee, A.A.; Ahmad, N.I.; Noraziah, M.Z.; Khalid, S.F.; Naseeha, D.S.; Syahirah, A.A.; Mansor, R. Knowledge, attitude and perception regarding antimicrobial resistance and usage among ruminant farmers in Selangor, Malaysia. Prev. Vet. Med. 2018, 156, 76–83. [Google Scholar] [CrossRef]
- Osei Sekyere, J. Antibiotic types and handling practices in disease management among pig farms in Ashanti Region, Ghana. J. Vet. Med. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Abdo, M.; Samson, H.G.G.; Kefyalew, G. Challenges and Opportunities of Small Scale Poultry Production System in Jigjiga Zone, Somali Regional State, Ethiopia. Poult. Fish Wildl. Sci. 2016, 4, 1–6. [Google Scholar]
- Bbosa, G.S.; Mwebaza, N. Global irrational antibiotics/antibacterial drugs use: A current and future health and environmental consequences. Microbiology 2013, 3, 1645–1655. [Google Scholar]
- Olatoye, I.O.; Basiru, A. Antibiotic Usage and Oxytetracycline Residue in African Catfish (Clarias gariepinus in Ibadan, Nigeria). World J. Fish Mar. Sci. 2013, 5, 302–309. [Google Scholar]
- Bedada, A.H.; Zewde, B.M.; Zewde, B.M. Tetracycline residue levels in slaughtered beef cattle from three slaughterhouses in central Ethiopia. Glob Vet. 2012, 8, 546–554. [Google Scholar]
- Guetiya, W.R.E.; Zambou, N.F.; Anyangwe, F.F.; Njimou, J.R.; Coman, M.M.; Verdenelli, M.C.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. Br. Poult. Sci. 2016, 57, 483–493. [Google Scholar] [CrossRef]
- Fortini, D.; Fashae, K.; Garcia-Fernandez, A.; Villa, L.; Carattoli, A. Plasmid-mediated quinolone resistance and -lactamases in Escherichia coli from healthy animals from Nigeria. J. Antimicrob. Chemother. 2011, 66, 1269–1272. [Google Scholar] [CrossRef]
- Rousham, E.K.; Unicomb, L.; Islam, M.A. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: Integrating behavioural, epidemiological and one health approaches. Proc. R. Soc. B Biol. Sci. 2018, 285, 1876. [Google Scholar] [CrossRef]
- Barton, M.D. Antibiotic use in animal feed and its impact on human health. Nutr Res Rev. 2000, 13, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Adesokan, H.K.; Akanbi, I.O.I.M.; Obaweda, R.A.; Vuuren, V.; Bogaard, V.D. Pattern of antimicrobial usage in livestock animals in south-western Nigeria: The need for alternative plans. Onderstepoort J. Vet. Res. 2015, 82, 1–6. [Google Scholar] [CrossRef]
- Tufa, T.B.; Gurmu, F.; Beyi, A.F.; Hogeveen, H.; Beyene, T.J.; Ayana, D.; Woldemariyam, F.T.; Hailemariam, E.; Gutema, F.D.; Stegeman , J.A. Veterinary medicinal product usage among food animal producers and its health implications in Central Ethiopia. BMC Vet. Res. 2018, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sirdar, M.M.; Picard, J.; Bisschop, S.; Gummow, B. A questionnaire survey of poultry layer farmers in Khartoum State, Sudan, to study their antimicrobial awareness and usage patterns. Onderstepoort J. Vet. Res. 2012, 79, 1–8. [Google Scholar] [CrossRef]
- Schar, D.; Sommanustweechai, A.; Laxminarayan, R.; Tangcharoensathien, V. Surveillance of antimicrobial consumption in animal production sectors of low- and middle- income countries: Optimizing use and addressing antimicrobial resistance. PLoS ONE 2018, 15, e1002521. [Google Scholar] [CrossRef] [Green Version]
- Tanzania UR of the Animal Welfare Act No. 19. 2008. Available online: https://www.mifugouvuvi.go.tz/publications/45 (accessed on 1 April 2020).
- Tanzania UR of the Environmental Management Act No.20. 2004. Available online: https://www.vpo.go.tz/publications/legislations (accessed on 14 April 2020).
- Tanzania UR of the Veterinary Act (Code of Conduct for Veterinary Paraprofessionals and Paraprofessionals Assistants) Regulations. 2005. Available online: https://www.mifugouvuvi.go.tz/publications/45 (accessed on 14 April 2020).
- Tanzania UR of National Livestock Policy. 2006. Available online: https://www.mifugouvuvi.go.tz/publications/45 (accessed on 14 April 2020).
- Tanzania UR of the Veterinary Act (Procedures for Registration Examinations for Veterinarian and Veterinary Specialists Regulations. 2005. Available online: https://www.mifugouvuvi.go.tz/publications/45 (accessed on 14 April 2020).
- Tanzania UR of the Veterinary Act (Veterinary Practice by Paraprofessionals and Paraprofessional Assistants) Regulation. 2005. Available online: https://www.mifugouvuvi.go.tz/publications/45 (accessed on 1 April 2020).
- Tanzania UR of the Hides, Skins and Leather Trade Act No. 18. 2008. Available online: https://www.mifugouvuvi.go.tz/publications/45 (accessed on 14 April 2020).
- Tanzania UR of the Veterinary Act No.16. Tanzania. 2003. Available online: https://www.mifugouvuvi.go.tz/publications/45 (accessed on 1 April 2020).
- Tanzania UR of the Meat Industry Act No. 10. 2006. Available online: https://www.mifugouvuvi.go.tz/publications/45 (accessed on 18 December 2019).
- Tanzania UR of National Fisheries Policy. 2015. Available online: https://www.mifugouvuvi.go.tz/publications/45 (accessed on 14 April 2020).
- Subbiah, M.; Caudell, M.A.; Mair, C.; Davis, M.A.; Matthews, L.; Quinlan, R.J.; Quinlan, M.B.; Lyimo, B.; Buza, J.; Keyyu, J.; et al. Antimicrobial resistant enteric bacteria are widely distributed amongst people, animals and the environment in Tanzania. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tanzania UR of Tanzania National Action Plan on Antimicrobial Resitance 2017-2022. 2017,76. Available online: www.afro.who.int (accessed on 16 February 2018).
- Moser, A.; Korstjens, I. Series: Practical guidance to qualitative research. Part 3: Sampling, data collection and analysis. Eur. J. Gen. Pract. 2018, 24, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Strauss, A.C. Basic qualitative research: Grounded theory procedures and techniques. In Basics of Qualitaive Research; SAGE publications: Washington, DC, USA, 1990. [Google Scholar]
- Karimuribo, E.D.; Mutagahywa, E.; Sindato, C.; Mboera, L.; Mwabukusi, M.; Kariuki, N.M. A Smartphone App (AfyaData) for Innovative One Health Disease Surveillance from Community to National Levels in Africa: Intervention in Disease Surveillance. JMIR Public Health Surveill. 2017, 3, e94. [Google Scholar] [CrossRef]
Characteristics | Number (n = 113) | Percentage (%) |
---|---|---|
Sex | ||
Male | 54 | 47.8 |
Female | 59 | 52.2 |
Marital status | ||
Married | 72 | 63.7 |
Single | 28 | 24.8 |
Widower/widow | 13 | 11.5 |
Age (years) | ||
18–34 years | 18 | 15.9 |
35–44 years | 46 | 40.7 |
45 years and above | 49 | 43.4 |
Education level | ||
None | 4 | 3.50 |
Primary school | 38 | 33.6 |
Secondary school | 53 | 46.9 |
College education | 18 | 15.9 |
Main occupation | ||
Pig farming | 4 | 3.50 |
Poultry farming | 25 | 22.1 |
Pig and poultry farming | 19 | 16.8 |
Pig and poultry farming with other business | 65 | 57.5 |
Experience in animal farming | ||
Less than 6 months | 4 | 3.50 |
More than 6 months | 109 | 96.5 |
Characteristics | n (%) | Ever Heard of Antimicrobials (Yes) | Knowledge on Antimicrobial Use in Animals (Yes) | Source of Knowledge on Antimicrobial Use (Family Members, Friends and Neighbours) | Adequate Knowledge on Management of Farm Animals (Yes) | Knowledge on Antimicrobial Resistance (No) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χ2 | p-Value | Χ2 | p-Value | Χ2 | p-Value | Χ2 | p-Value | Χ2 | p-Value | ||
Sex | 0.22 | 0.64 | 1.28 | 0.26 | 3.31 | 0.18 | 1.51 | 0.22 | 2.04 | 0.15 | |
Male | 54(47.8) | ||||||||||
Female | 59(52.2) | ||||||||||
Age | 0.05 | 0.98 | 0.87 | 0.93 | 0.96 | 0.62 | 6.46 | 0.09 | 0.31 | 0.86 | |
18–34 years | 18(15.9) | ||||||||||
35–44 years | 46(40.7) | ||||||||||
45 years and above | 49(43.4) | ||||||||||
Education level | 8.17 | 0.04 * | 4.56 | 0.60 | 12.07 | 0.01 * | 0.18 | 0.91 | 6.47 | 0.09 | |
None | 4(3.5) | ||||||||||
Primary school | 38(33.6) | ||||||||||
Secondary school | 53(46.9) | ||||||||||
College education | 18(15.9) | ||||||||||
Experience in farming | 16.42 | 0.00 * | 6.88 | 0.03 * | 3.78 | 0.04 * | 0.68 | 0.41 | 2.84 | 0.92 | |
Less than 6 months | 4(3.5) | ||||||||||
6 months and above | 109(96.5) |
Variables with Respective Response | Sex | Age | Education Level | Experience in Farming | |||||
---|---|---|---|---|---|---|---|---|---|
N (%) | Χ2 | p-Value | Χ2 | p-Value | Χ2 | p-Value | Χ2 | p-Value | |
Ever used antimicrobials (Yes) | 99(87.6) | 1.74 | 0.18 | 2.95 | 0.62 | 9.46 | 0.02 * | 5.40 | 0.02 * |
Frequency of using antimicrobials in animals (Following disease outbreak) | 63(55.8) | 3.07 | 0.22 | 5.84 | 0.21 | 12.65 | 0.04 * | 1.32 | 0.85 |
Methods used in diagnosis of the diseases affecting domestic pigs/poultry (Clinical signs) | 108(95.6) | 3.31 | 0.58 | 2.56 | 0.28 | 2.13 | 0.55 | 4.15 | 0.04 * |
Provider of treatment to animals in your farm (Farmer/ family member) | 85(75.2) | 2.49 | 0.11 | 1.96 | 0.38 | 7.14 | 0.68 | 1.42 | 0.23 |
Time of treatment in domestic pigs and poultry (During disease occurrence) | 70(61.9) | 1.72 | 0.42 | 4.54 | 0.34 | 15.42 | 0.02 * | 6.59 | 0.37 |
Access to veterinary services (Yes) | 95(84.1) | 7.71 | 0.05 * | 3.06 | 0.22 | 4.96 | 0.18 | 10.81 | 0.01 * |
Source of drugs (Veterinary centres) | 101(89.4) | 2.20 | 0.65 | 2.07 | 0.35 | 1.51 | 0.92 | 1.49 | 0.48 |
Possibility of underestimating dose during disease treatment (True) | 71(62.8) | 3.01 | 0.97 | 1.33 | 0.52 | 1.21 | 0.75 | 2.26 | 0.61 |
Stocking of antimicrobials at home (Yes) | 71(62.8) | 2.57 | 0.45 | 3.90 | 0.14 | 1.37 | 0.71 | 2.54 | 0.11 |
Time for drug storage (1-2 months) | 58(51.3) | 2.56 | 0.1 | 1.88 | 0.39 | 1.88 | 0.59 | 4.90 | 0.03 * |
Practicing group/mass treatment in domestic pig/ poultry farming (True) | 100(88.5) | 2.21 | 0.64 | 2.19 | 0.91 | 8.26 | 0.04 * | 16.42 | 0.00 * |
Variables with Respective Response | N (%) | Sex | Age | Education Level | Experience in Farming | ||||
---|---|---|---|---|---|---|---|---|---|
Χ2 | p-Value | Χ2 | p-Value | Χ2 | p-Value | Χ2 | p-Value | ||
Farming of poultry/domestic pig must be accompanied by antimicrobial use (True) | 67(59.3) | 1.32 | 0.25 | 2.43 | 0.29 | 3.92 | 0.27 | 2.20 | 0.16 |
Farmers who use antimicrobial are very knowledgeable on how to administer them (False) | 71(62.8) | 2.01 | 0.98 | 6.56 | 0.04 * | 3.40 | 0.93 | 2.45 | 0.12 |
Antimicrobial usage in domestic pigs/poultry farming may be risky to human health (True) | 75(66.4) | 0.54 | 0.46 | 1.18 | 0.55 | 6.73 | 0.08 | 3.14 | 0.71 |
Antimicrobials are used to prevent diseases in poultry/domestic pigs (True) | 110(97.3) | 2.82 | 0.09 | 4.49 | 0.11 | 3.86 | 0.83 | 3.11 | 0.74 |
Animal deaths are highly reduced through the use of antimicrobials (True) | 88(77.9) | 1.92 | 0.17 | 1.72 | 0.42 | 2.12 | 0.55 | 1.87 | 0.17 |
It is possible to reduce antimicrobial use in animal farming and yet achieve maximum production (True) | 60(53.1) | 1.15 | 0.9 | 1.57 | 0.75 | 13.03 | 0.01 * | 2.02 | 0.89 |
Some drugs are not effective to treat particular infection(s) (True) | 93(82.3) | 2.05 | 0.83 | 3.46 | 0.79 | 5.87 | 0.12 | 6.97 | 0.03 * |
Seasons when experiencing most disease occurrence (Rainy season) | 49(43.4) | 2.53 | 0.77 | 2.72 | 0.77 | 5.81 | 0.45 | 3.57 | 0.75 |
Variables with Respective Response | N (%) | Sex | Age | Education Level | Experience in Farming | ||||
---|---|---|---|---|---|---|---|---|---|
Χ2 | p-Value | Χ2 | p-Value | Χ2 | p-Value | Χ2 | p-Value | ||
Use of combination of drugs is necessary for effective treatment of animal diseases (True) | 73(64.6) | 7.35 | 0.007 * | 0.53 | 0.85 | 0.57 | 0.75 | 0.19 | 0.66 |
Antimicrobials used in humans are also used domestic pig and poultry farming (True) | 55(48.7) | 7.53 | 0.006 * | 6.16 | 0.04 * | 8.37 | 0.004 * | 1.15 | 0.28 |
Private veterinary drug sellers leads to uncontrolled handling and use of veterinary drugs (True) | 81(71.7) | 2.40 | 0.12 | 0.43 | 0.81 | 1.88 | 0.59 | 0.96 | 0.33 |
Antimicrobials are used to enhance growth of poultry and/or domestic pig (True) | 67(59.3) | 3.01 | 0.99 | 0.17 | 0.92 | 3.91 | 0.27 | 0.42 | 0.52 |
Inadequate veterinary/extension services contributes to drugs administration by farmers (True) | 108 (95.6) | 0.13 | 0.72 | 0.92 | 0.63 | 20.82 | 0.000 * | 4.15 | 0.04 * |
It is better to have a stock of veterinary drugs at home (True) | 56(49.6) | 0.88 | 0.53 | 1.06 | 0.58 | 1.01 | 0.79 | 4.07 | 0.04 * |
Inadequate of knowledge on infection, prevention, and control of animal diseases (True) | 105(92.9) | 1.02 | 0.89 | 4.53 | 0.10 | 12.78 | 0.005 * | 2.02 | 0.16 |
Profit maximization necessitate misuse of antimicrobials to shorten period of poultry/domestic pig farming (True) | 69 (61.1) | 2.42 | 0.12 | 0.72 | 0.7 | 16.15 | 0.001 * | 1.21 | 0.64 |
Awareness of withdrawal periods among poultry/ domestic pig farmers (True) | 82(72.6) | 3.12 | 0.07 | 3.39 | 0.18 | 0.38 | 0.94 | 1.06 | 0.3 |
Variables with Respective Response | N (%) | Sex | Age | Education Level | Experience in Farming | ||||
---|---|---|---|---|---|---|---|---|---|
Χ2 | p-Value | Χ2 | p-Value | Χ2 | p-Value | Χ2 | p-Value | ||
Solid wastes containing drug left over from households are disposed directly into the environment (Yes) | 89(78.8) | 2.64 | 0.1 | 4.78 | 0.92 | 5.32 | 0.14 | 0.35 | 0.85 |
Agricultural activities that use manure obtained from animals (Yes) | 105(92.9) | 0.75 | 0.38 | 1.29 | 0.52 | 12.78 | 0.005 | 11.62 | 0.001 * |
Household slurry released directly into rivers (Yes) | 45(39.8) | 6.25 | 0.01 * | 1.01 | 0.61 | 6.37 | 0.95 | 0.18 | 0.67 |
Leakage of surface water pipes that provide mixing of manure and other wastes into water bodies (Yes) | 68(60.2) | 0.33 | 0.56 | 2.39 | 0.82 | 0.36 | 0.85 | 0.38 | 0.54 |
River water used for irrigation and farming activities (Yes) | 105(92.9) | 2.01 | 0.89 | 3.17 | 0.92 | 3.38 | 0.34 | 11.61 | 0.001 * |
Pharmaceutical industries discharge effluents directly into the river (Yes) | 20(17.7) | 0.57 | 0.48 | 1.12 | 0.57 | 3.91 | 0.27 | 0.15 | 0.69 |
Frequent floods during rainy season (Yes) | 78(69) | 1.32 | 0.25 | 4.61 | 0.1 | 1.52 | 0.67 | 0.34 | 0.56 |
Uncontrolled disposal of human and veterinary drugs from different sources (Yes) | 96(85) | 2.29 | 0.13 | 0.64 | 0.79 | 4.45 | 0.22 | 3.96 | 0.04 * |
Access to emptying sewage systems during flooding (Yes) | 86(76.1) | 0.24 | 0.62 | 3.89 | 0.14 | 1.57 | 0.67 | 3.03 | 0.96 |
Disposal of wastes from the household into rivers (Yes) | 89(78.8) | 1.01 | 0.92 | 6.98 | 0.03 * | 0.22 | 0.57 | 3.97 | 0.04 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimera, Z.I.; Frumence, G.; Mboera, L.E.G.; Rweyemamu, M.; Mshana, S.E.; Matee, M.I.N. Assessment of Drivers of Antimicrobial Use and Resistance in Poultry and Domestic Pig Farming in the Msimbazi River Basin in Tanzania. Antibiotics 2020, 9, 838. https://doi.org/10.3390/antibiotics9120838
Kimera ZI, Frumence G, Mboera LEG, Rweyemamu M, Mshana SE, Matee MIN. Assessment of Drivers of Antimicrobial Use and Resistance in Poultry and Domestic Pig Farming in the Msimbazi River Basin in Tanzania. Antibiotics. 2020; 9(12):838. https://doi.org/10.3390/antibiotics9120838
Chicago/Turabian StyleKimera, Zuhura I., Gasto Frumence, Leonard E. G. Mboera, Mark Rweyemamu, Stephen E. Mshana, and Mecky I. N. Matee. 2020. "Assessment of Drivers of Antimicrobial Use and Resistance in Poultry and Domestic Pig Farming in the Msimbazi River Basin in Tanzania" Antibiotics 9, no. 12: 838. https://doi.org/10.3390/antibiotics9120838
APA StyleKimera, Z. I., Frumence, G., Mboera, L. E. G., Rweyemamu, M., Mshana, S. E., & Matee, M. I. N. (2020). Assessment of Drivers of Antimicrobial Use and Resistance in Poultry and Domestic Pig Farming in the Msimbazi River Basin in Tanzania. Antibiotics, 9(12), 838. https://doi.org/10.3390/antibiotics9120838