Silver Antibacterial Synergism Activities with Eight Other Metal(loid)-Based Antimicrobials against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus
Abstract
:1. Introduction
2. Result
2.1. Bacteriostatic and Bactericidal Potency of Various Metal(loid) Salts
2.2. Synergistic Bacteriostatic and Bactericidal Activity of Ag in Combinations with Other Metal-Based Antimicrobials
2.3. Comparison of Bacteriostatic and Bactericidal Synergism Effects of Metal(loid)-Based Antimicrobials
2.4. Antagonistic Activity of Ag in Combinations with other Metal(loid)-Based Antimicrobials
2.5. Recovery Potency of Bacteria after Exposure to the Combinations of Metal(loid)-Based Antimicrobial
2.6. Synergism Exposure Growth Curve Assays
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Culture Media
4.2. Stock and Working Metal(loid)-Based Antibiotic (MBA) Solutions
4.3. Minimum Inhibitory Concentration (MIC) Assay
4.4. Minimum Bactericidal Concentration (MBC) Assay and Recovery Potency of Bacteria
4.5. Synergism High-Throughput Susceptibility Testing of Microbial Planktonic Growth
4.6. Determination of FIC (Fractional Inhibitory Concentration) for the Detection of Synergism Effects
4.7. Synergism Exposure Growth Curve Assays
4.8. Statistical Tests and Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chokshi, A.; Sifri, Z.; Cennimo, D.; Horng, H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 2019, 11, 36. [Google Scholar]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Turner, R.J. Metal-based antimicrobial strategies. Microb. Biotechnol. 2017, 10, 1062–1065. [Google Scholar] [CrossRef]
- Harrison, J.J.; Ceri, H.; Stremick, C.A.; Turner, R.J. Biofilm susceptibility to metal toxicity. Environ. Microbiol. 2004, 6, 1220–1227. [Google Scholar] [CrossRef]
- Banin, E.; Lozinski, A.; Brady, K.M.; Berenshtein, E.; Butterfield, P.W.; Moshe, M.; Chevion, M.; Greenberg, E.P.; Banin, E. The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent. Proc. Natl. Acad. Sci. USA 2008, 105, 16761–16766. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, Y.; Thoendel, M.; Olakanmi, O.; Britigan, B.E.; Singh, P.K. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Investig. 2007, 117, 877–888. [Google Scholar] [CrossRef]
- Gugala, N.; Lemire, J.A.; Turner, R.J. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains. J. Antibiot. 2017, 70, 775–780. [Google Scholar] [CrossRef]
- Mikolay, A.; Huggett, S.; Tikana, L.; Grass, G.; Braun, J.; Nies, D.H. Survival of bacteria on metallic copper surfaces in a hospital trial. Appl. Microbiol. Biotechnol. 2010, 87, 1875–1879. [Google Scholar] [CrossRef]
- Muniyan, A.; Ravi, K.; Mohan, U.; Panchamoorthy, R. Characterization and in vitro antibacterial activity of saponin-conjugated silver nanoparticles against bacteria that cause burn wound infection. World J. Microbiol. Biotechnol. 2017, 33, 147. [Google Scholar] [CrossRef]
- Harrison, J.J.; Turner, R.J.; Joo, D.A.; Stan, M.A.; Chan, C.S.; Allan, N.D.; Vrionis, H.A.; Olson, M.E.; Ceri, H. Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2008, 52, 2870–2881. [Google Scholar] [CrossRef] [Green Version]
- Rivardo, F.; Martinotti, M.G.; Turner, R.J.; Ceri, H. The activity of silver against Escherichia coli biofilm is increased by a lipopeptide biosurfactant. Can. J. Microbiol. 2010, 56, 272–278. [Google Scholar] [CrossRef]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109. [Google Scholar] [CrossRef]
- Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016, 9, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Barillo, D.J.; Marx, D.E. Silver in medicine: A brief history BC 335 to present. Burns 2014, 40, S3–S8. [Google Scholar] [CrossRef]
- Ewald, A.; Glückermann, S.K.; Thull, R.; Gbureck, U. Antimicrobial titanium/silver PVD coatings on titanium. Biomed. Eng. Online 2006, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Makvandi, P.; Wang, C.Y.; Zare, E.N.; Borzacchiello, A.; Niu, L.-N.; Tay, F.R. Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 2020. [Google Scholar] [CrossRef]
- Wang, H.; Yan, A.; Liu, Z.; Yang, X.; Xu, Z.; Wang, Y.; Wang, R.; Koohi-Moghadam, M.; Hu, L.; Xia, W. Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. PLoS Biol. 2019, 17, e3000292. [Google Scholar] [CrossRef] [Green Version]
- Gugala, N.; Lemire, J.; Chatfield-Reed, K.; Yan, Y.; Chua, G.; Turner, R.J. Using a chemical genetic screen to enhance our understanding of the antibacterial properties of silver. Genes 2018, 9, 344. [Google Scholar] [CrossRef] [Green Version]
- Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; Van Houdt, R. Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals 2013, 26, 609–621. [Google Scholar] [CrossRef]
- Percival, S.L.; Bowler, P.; Russell, D. Bacterial resistance to silver in wound care. J. Hosp. Infect. 2005, 60, 1–7. [Google Scholar] [CrossRef]
- Sütterlin, S.; Dahlö, M.; Tellgren-Roth, C.; Schaal, W.; Melhus, Å. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species. J. Hosp. Infect. 2017, 96, 256–261. [Google Scholar] [CrossRef]
- Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 2006, 119, S3–S10. [Google Scholar] [CrossRef]
- Fischbach, M.A. Combination therapies for combating antimicrobial resistance. Curr. Opin. Microbiol. 2011, 14, 519–523. [Google Scholar] [CrossRef] [Green Version]
- Cottarel, G.; Wierzbowski, J. Combination drugs, an emerging option for antibacterial therapy. Trends Biotechnol. 2007, 25, 547–555. [Google Scholar] [CrossRef]
- Davis, K.E.; Joseph, S.J.; Janssen, P.H. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 2005, 71, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Hasman, H.; Bjerrum, M.J.; Christiansen, L.E.; Hansen, H.C.B.; Aarestrup, F.M. The effect of pH and storage on copper speciation and bacterial growth in complex growth media. J. Microbiol. Methods 2009, 78, 20–24. [Google Scholar] [CrossRef]
- Angle, J.S.; Chaney, R.L.; Rhee, D. Bacterial resistance to heavy metals related to extractable and total metal concentrations in soil and media. Soil Biol. Biochem. 1993, 25, 1443–1446. [Google Scholar] [CrossRef]
- Heesterbeek, D.; Martin, N.; Velthuizen, A.; Duijst, M.; Ruyken, M.; Wubbolts, R.; Rooijakkers, S.; Bardoel, B. Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics. Sci. Rep. 2019, 9, 1–10. [Google Scholar]
- Medici, S.; Peana, M.; Nurchi, V.M.; Zoroddu, M.A. Medical uses of silver: History, myths, and scientific evidence. J. Med. Chem. 2019, 62, 5923–5943. [Google Scholar] [CrossRef]
- Presentato, A.; Turner, R.J.; Vásquez, C.C.; Yurkov, V.; Zannoni, D. Tellurite-dependent blackening of bacteria emerges from the dark ages. Environ. Chem. 2019, 16, 266–288. [Google Scholar] [CrossRef]
- Zannoni, D.; Borsetti, F.; Harrison, J.J.; Turner, R.J. The bacterial response to the chalcogen metalloids Se and Te. Adv. Microb. Physiol. 2007, 53, 1–312. [Google Scholar]
- Pugin, B.; Cornejo, F.A.; García, J.A.; Díaz-Vásquez, W.A.; Arenas, F.A.; Vásquez, C.C. Thiol-mediated reduction of Staphylococcus aureus tellurite resistance. Adv. Microbiol. 2014. [Google Scholar] [CrossRef] [Green Version]
- Molina-Quiroz, R.C.; Muñoz-Villagrán, C.M.; De La Torre, E.; Tantaleán, J.C.; Vásquez, C.C.; Pérez-Donoso, J.M. Enhancing the antibiotic antibacterial effect by sub lethal tellurite concentrations: Tellurite and cefotaxime act synergistically in Escherichia coli. PLoS ONE 2012, 7, e35452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Li, J.; Wu, C.; Wu, Q.; Li, J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 2005, 16, 1912. [Google Scholar] [CrossRef]
- Zou, L.; Wang, J.; Gao, Y.; Ren, X.; Rottenberg, M.E.; Lu, J.; Holmgren, A. Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, J.J.; Turner, R.J.; Ceri, H. High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiol. 2005, 5, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gugala, N.; Vu, D.; Parkins, M.D.; Turner, R.J. Specificity in the susceptibilities of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus clinical isolates to six metal antimicrobials. Antibiotics 2019, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghafari, A.; Elmorsy, E.; Fikry, E.; Alrowaili, M.; Carter, W.G. The heavy metals lead and cadmium are cytotoxic to human bone osteoblasts via induction of redox stress. PLoS ONE 2019, 14, e0225341. [Google Scholar] [CrossRef] [Green Version]
- Eze, C.T.; Michelangeli, F.; Otitoloju, A.A. In vitro cyto-toxic assessment of heavy metals and their binary mixtures on mast cell-like, rat basophilic leukemia (RBL-2H3) cells. Chemosphere 2019, 223, 686–693. [Google Scholar]
- Liu, J.; Gefen, O.; Ronin, I.; Bar-Meir, M.; Balaban, N.Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 2020, 367, 200–204. [Google Scholar]
- Pizzolato-Cezar, L.R.; Okuda-Shinagawa, N.M.; Machini, M.T. Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance. Front. Microbiol. 2019, 10, 1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Cesare, A.; Fontaneto, D.; Doppelbauer, J.; Corno, G. Fitness and recovery of bacterial communities and antibiotic resistance genes in urban wastewaters exposed to classical disinfection treatments. Environ. Sci. Technol. 2016, 50, 10153–10161. [Google Scholar] [CrossRef] [PubMed]
- Tavares, A.; Carvalho, C.; Faustino, M.A.; Neves, M.G.; Tomé, J.P.; Tomé, A.C.; Cavaleiro, J.A.; Cunha, Â.; Gomes, N.; Alves, E. Antimicrobial photodynamic therapy: Study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs 2010, 8, 91–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, T.C.; Mok, W.W.; Murawski, A.M.; Brynildsen, M.P. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lemire, J.A.; Kalan, L.; Bradu, A.; Turner, R.J. Silver oxynitrate, an unexplored silver compound with antimicrobial and antibiofilm activity. Antimicrob. Agents Chemother. 2015, 59, 4031–4039. [Google Scholar] [CrossRef] [Green Version]
- Monych, N.K.; Turner, R.J. Multiple Compounds Secreted by Pseudomonas aeruginosa Increase the tolerance of Staphylococcus aureus to the Antimicrobial Metals Copper and Silver. Msystems 2020, 5. [Google Scholar] [CrossRef]
- Leber, A.L. (Ed.) Synergism testing: Broth microdilution checkerboard and broth macrodilution method. In Clinical Microbiology Procedures Handbook; ASM Press: Washington, DC, USA, 2016; Chapter 5.16. [Google Scholar]
- Bonapace, C.R.; Bosso, J.A.; Friedrich, L.V.; White, R.L. Comparison of methods of interpretation of checkerboard synergy testing. Diagn. Microbiol. Infect. Dis. 2002, 44, 363–366. [Google Scholar] [CrossRef]
- Ruan, Z.; Cui, J.; He, Z.; Guo, Y.; Jia, X.; Huang, X. Synergistic Effects from Combination of Cryptotanshinone and Fosfomycin Against Fosfomycin-Susceptible and Fosfomycin-Resistant Staphylococcus aureus. Infect. Drug Resist. 2020, 13, 2837. [Google Scholar] [CrossRef]
- Ayerbe-Algaba, R.; Gil-Marqués, M.L.; Jiménez-Mejías, M.E.; Sánchez-Encinales, V.; Parra-Millán, R.; Pachón-Ibáñez, M.E.; Pachón, J.; Smani, Y. Synergistic activity of niclosamide in combination with colistin against colistin-susceptible and colistin-resistant Acinetobacter baumannii and Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2018, 8, 348. [Google Scholar] [CrossRef] [Green Version]
MBAs | E. coli | S. aureus | P. aeruginosa | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MHB | LB | SWF | MHB | LB | SWF | MHB | LB | SWF | ||
MIC Mode (range) (mM) | Ag | 0.015 (0.015–0.65) | 0.125 (0.03–0.125) | 0.125 (0.065–0.25) | 0.03 (0.03–0.125) | 0.125 (0.125–0.25) | 0.125 (0.06–0.25) | 0.03 (0.015–0.065) | 0.125 (0.06–0.125) | 0.125 (0.15–0.25) |
Cu | 8 (4–16) | 4 (4–16) | 1 (1–4) | 8 (4–8) | 8 (4–16) | 2 (1–4) | 8 (4–32) | 8 (4–16) | 4 (2–4) | |
Ga * | 8 (4–16) | 8 (8–32) | 2 (2–4) | 8 (4–32) | 12.5 (12.5–25) | 25 (6.25–25) | 0.8 (0.4–1.6) | 0.8 (0.4–1.6) | 4 (2–4) | |
Zn | 2 (1–4) | 2 (1–2) | 2 (1–4) | 4 (1–4) | 2 (1–4) | 2 (1–4) | 8 (4–16) | 8 (4–8) | 8 (4–16) | |
Te | 0.25 (0.015–0.25) | 0.015 (0.015–0.65) | 0.25 (0.125–0.25) | 6.25 (1.6–12.5) | 0.2 (0.2–1.6) | 50< | 0.06 (0.06–0.012) | 0.015 (0.015–0.65) | 0.25 (0.03–0.25) | |
Se | >50 | >50 | >50 (25->50) | >50 | >50 | >50 | >50 | >50 | >50 | |
Al | 25 (6.25–25) | 6.25 (6.25–25) | 12.5 (12.5–25) | >50 | 12.5 (6.25–25) | 25 (6.25–25) | 6.25 (6.25–12.5) | 12.5 (12.5–25) | 6.25 (6.25–25) | |
Ni | 4 (2–8) | 2 (1–4) | 1 (1–4) | 4 (2–8) | 2 (1–4) | 2 (1–2) | 8 (2–16) | 8 (2–8) | 2 (1–4) | |
Au | 0.25 (0.25–0.5) | 0.1 (0.1–0.25) | 0.5 (0.25–0.5) | 0.1 (0.06–0.125) | 0.2 (0.125–0.25) | 0.25 (0.25–0.5) | 0.25 (0.25–0.5) | 0.25 (0.25–0.5) | 0.25 (0.25–1) | |
MBC Mode (range) (mM) | Ag | 0.125 (0.015–0.25) | 0.25 (0.125–4) | 0.25 (0.065–0.5) | 1 (0.25–1) | 1 (0.5–1) | 1 (0.5–1) | 0.125 (0.03–0.25) | 0.25 (0.125–0.25) | 0.5 (0.5–1) |
Cu | 8 (4–16) | 8 (4–16) | 2 (1–4) | 16 (4–32) | 16 (8–16) | 8 (4–32) | 8 (4–16) | 16 (4–32) | 4 (2–4) | |
Ga * | 12.5 (12.5–25) | 25 (12.5–50) | 6.25 (6.25–25) | 12.5 (12.5–50) | 25 (6.25–25) | 50 (6.25–50) | 3.1 (1.5–12.5) | 6.25 (6.25–12.5) | 8 (4–16) | |
Zn | 16 (4–32) | 2 (2–4) | 12.5 | 8 (2–16) | 2 (1–4) | 8 (8–16) | 8 (2–16) | 16 | 12.5 | |
Te | 0.25 (0.25–0.5) | 0.125 (0.015–0.125) | 0.25 (0.125–0.25) | 6.25 (1.6–12.5) | 0.2 (0.2–6) | 50< | 0.125 (0.125–0.25) | 0.25 (0.125–0.25) | 1 (1–4) | |
Se | >50 | >50 | >50 | >50 | >50 | >50 | >50 | >50 | >50 | |
Al * | 25 (12.5–25) | 6.25 (6.25–25) | 12.5 (12.5–25) | >50 | 25 (12.5–25) | 25 (3–50) | 12.5 (12.5–25) | 50 (25–100) | 25 (12.5–50) | |
Ni | 4 (2–8) | 2 (1–4) | 1 (1–4) | 8 (2–16) | 4 (2–8) | 8 (2–16) | >32 | 16 (4–32) | 4 (2–8) | |
Au | 0.5 (0.5–8) | 0.25 (0.25–2) | 0.5 (0.5–2) | 0.25 (0.25–1) | 0.2 (0.2–1) | 0.5 (0.5–4) | 0.5 (0.25–0.5) | 0.5 (0.25–0.5) | 0.5 (0.5–1) |
Metal(loid)-Based Antibiotic | Bacteriostatic Synergism (MIC) | Bactericidal Synergism (MBC) | |||||||
---|---|---|---|---|---|---|---|---|---|
Media | Bacteria | Agent A | Agent B | FIC | Interpretation | Concentrations (mM) | FBC | Interpretation | Concentrations (mM) |
SWF | S. aureus | Ag | Te | 0.094> | Synergy | 0.007 Ag + 3 Te | 0.3 | Synergy | 0.03 Ag + 6 Te |
SWF | P. aeruginosa | Ag | Te | 0.3 | Synergy | 0.007 Ag + 0.125 Te | 0.27 | Synergy | 0.007 Ag + 0.25 Te |
SWF | P. aeruginosa | Ag | Au | 0.36 | Synergy | 0.03 Ag + 0.125 Au | 0.18 | Synergy | 0.03 Ag + 0.125 Au |
LB | E. coli | Ag | Au | 0.37 | Synergy | 0.007 Ag + 0.062 Au | 0.49 | Synergy | 0.031 Ag + 0.031 Au |
LB | E. coli | Ag | Zn | 0.37 | Synergy | 0.031 Ag + 0.25 Zn | 0.5 | Synergy | 0.125 Ag + 1 Zn |
MHB | P. aeruginosa | Ag | Au | 0.47 | Synergy | 0.007 Ag + 0.062 Au | 0.12 | Synergy | 0.015 Ag + 0.03 Au |
LB | S. aureus | Ag | Au | 1.1 | Partial synergy | 0.065 Ag + 0.125 Au | 0.138 | Synergy | 0.065 Ag + 0.008 Au |
LB | S. aureus | Ag | Au | 1.1 | Partial synergy | 0.065 Ag + 0.125 Au | 0.138 | Synergy | 0.065 Ag + 0.008 Au |
SWF | S. aureus | Ag | Zn | 0.5 | Synergy | 0.065 Ag + 0.25 Zn | 0.25 | Synergy | 0.125 Ag + 1 Zn |
MHB | E. coli | Ag | Zn | 0.9 | Partial synergy | 0.007 Ag +1 Zn | 0.31 | Synergy | 0.015 Ag + 4 Zn |
LB | P. aeruginosa | Ag | Zn | 0.37 | Synergy | 0.031 Ag + 1 Zn | 0.5 | Synergy | 0.125 Ag + 0.25 Zn |
SWF | S. aureus | Ag | Au | 0.47 | Synergy | 0.007 Ag + 0.125 Au | 0.49 | Synergy | 0.031 Ag + 0.25 Au |
SWF | E. coli | Ag | Au | 0.48 | Synergy | 0.007Ag + 0.125 Au | 0.3 | Synergy | 0.031 Ag + 0.062 Au |
SWF | E. coli | Ag | Te | 0.48 | Synergy | 0.031 Ag + 0.031 Te | 0.36 | Synergy | 0.015 Ag + 0.06 Te |
MHB | E. coli | Ag | Au | 0.48 | Synergy | 0.015 Ag + 0.125 Au | 0.49 | Synergy | 0.031 Ag + 0.031 Au |
LB | P. aeruginosa | Ag | Au | 0.48 | Synergy | 0.03 Ag + 0.062 Au | 0.49 | Synergy | 0.031 Ag + 0.125 Au |
MHB | S. aureus | Ag | Cu | 0.49 | Synergy | 0.031 Ag + 2 Cu | 0.31 | Synergy | 0.031 Ag + 4 Cu |
MHB | P. aeruginosa | Ag | Ni | 0.5 | Synergy | 0.007 Ag + 1 Ni | 0.23 | Synergy | 0.007 Ag + 8 Ni |
MHB | S. aureus | Ag | Zn | 0.5 | Synergy | 0.031 Ag + 0.125 Zn | 0.31 | Synergy | 0.125 Ag + 0.5 Zn |
SWF | E. coli | Ag | Zn | 0.5 | Synergy | 0.007 Ag + 3 Zn | 1 | Partial synergy | 0.007 Ag + 12.5 Zn |
MHB | S. aureus | Ag | Ni | 0.51 | Synergy | 0.015 Ag + 0.125 Ni | 1 | Partial synergy | 0.007 Ag + 8 Ni |
SWF | P. aeruginosa | Ag | Zn | 0.53 | Synergy | 0.125 Ag + 0.2 Zn | 0.49 | Synergy | 0.125 Ag + 3 Zn |
LB | P. aeruginosa | Ag | Ni | 0.55 | Synergy | 0.007 Ag + 4 Ni | 0.51 | Synergy | 0.065 Ag + 4 Ni |
SWF | P. aeruginosa | Ag | Ni | 0.55 | Synergy | 0.007 Ag + 2 Ni | 0.62 | Synergy | 0.25 Ag + 0.5 Ni |
LB | E. coli | Ag | Cu | 0.58 | Synergy | 0.065 Ag + 0.5 Cu | 0.5 | Synergy | 0.065 Ag + 2 Cu |
SWF | E. coli | Ag | Ni | 0.6 | Synergy | 0.007 Ag + 1 Ni | 1 | Partial synergy | 0.007 Ag + 1 Ni |
MHB | E. coli | Ag | Se | 0.6 | Synergy | 0.015 Ag + 12.5 Se | ND | ND | ND |
LB | S. aureus | Ag | Zn | 0.62 | Synergy | 0.015 Ag + 1 Zn | 0.5 | Synergy | 0.125 Ag + 0.5 Zn |
MHB | E. coli | Ag | Al | 0.62 | Synergy | 0.015 Ag + 0.1 Al | 1.1 | Partial synergy | 0.125 Ag + 6.25 Al |
LB | E. coli | Ag | Ni | 0.7 | Synergy | 0.065 Ag + 0.5 Ni | 1.05 | Partial synergy | 0.007 Ag + 2 Ni |
MHB | E. coli | Ag | Ni | 0.7 | Synergy | 0.065 Ag + 1 Ni | 1.05 | Partial synergy | 0.007 Ag + 4 Ni |
MHB | E. coli | Ag | Te | 0.7 | Synergy | 0.007 Ag + 0.06 Te | 1.06 | Partial synergy | 0.015 Ag + 0.015 Te |
MHB | S. aureus | Ag | Te | 0.7 | Synergy | 0.007 Ag + 0.06 Te | 1.06 | Partial synergy | 0.015 Ag + 0.015 Te |
MHB | P. aeruginosa | Ag | Zn | 0.72 | Synergy | 0.007 Ag + 4 Zn | 0.31 | Synergy | 0.031 Ag + 0.5 Zn |
MHB | P. aeruginosa | Ag | Te | 0.73 | Synergy | 0.015 Ag + 0.015 Te | 0.96 | Partial synergy | 0.015 Ag + 0.06 Te |
SWF | P. aeruginosa | Ag | Cu | 0.75 | Synergy | 0.065 Ag + 2 Cu | 0.75 | Synergy | 0.25 Ag + 1 Cu/0.125 Ag + 2 Cu |
LB | S. aureus | Ag | Ni | 0.76 | Synergy | 0.125 Ag + 1 Ni | 1 | Partial synergy | 0.007 Ag + 4 Ni |
SWF | E. coli | Ag | Al | 0.76 | Synergy | 0.065 Ag + 6.25 Al | 1 | Partial synergy | 0.007 Ag + 12.5 Al |
SWF | S. aureus | Ag | Ni | 0.97 | Partial synergy | 0.031 Ag + 1 Ni | 0.37 | Synergy | 0.125 Ag + 1 Ni |
SWF | S. aureus | Ag | Cu | 1 | Partial synergy | 0.065 Ag + 1 Cu | 0.56 | Synergy | 0.25 Ag + 0.5 Cu |
MHB | E. coli | Ag | Cu | 1 | Partial synergy | 0.065 Ag + 0.5 Cu | 0.6 | Synergy | 0.125 Ag + 1 Cu |
LB | S. aureus | Ag | Cu | 1 | Partial synergy | 0.25 Ag + 0.5 Cu | 0.65 | Synergy | 0.25 Ag + 1 Cu |
SWF | E. coli | Ag | Cu | 1 | Partial synergy | 0.065 Ag + 0.5 Cu | 0.76 | Synergy | 0.065 Ag + 1 Cu |
MHB | S. aureus | Ag | Al | 1 | Partial synergy | 0.015 Ag + 0.1 Al | 1 | Partial synergy | 0.031 Ag + 0.4 Al |
LB | E. coli | Ag | Al | 1 | Partial synergy | 0.031 Ag + 0.4 Al | 1.1 | Partial synergy | 0.125 Ag + 25 Al |
SWF | P. aeruginosa | Ag | Al | 1 | Partial synergy | 0.125 Ag + 0.2 Al | 1.25 | antagonistic | 0.007 Ag + 50 Al |
SWF | S. aureus | Ag | Al | 1 | Partial synergy | 0.065 Ag + 12.5 Al | 1.25 | antagonistic | 0.007 Ag + 50 Al |
LB | P. aeruginosa | Ag | Cu | 1 | Partial synergy | 0.065 Ag + 0.5 Cu | O.5 | Synergy | 0.065 Ag + 4 Cu |
MHB | P. aeruginosa | Ag | Cu | 1 | Partial synergy | 0.065 Ag + 0.5 Cu | O.5 | Synergy | 0.065 Ag + 4 Cu |
MHB | S. aureus | Ag | Au | 1.1 | Partial synergy | 0.015 Ag + 0.062 Au | 0.58 | Synergy | 0.065 Ag + 0.016 Au |
LB | S. aureus | Ag | Al | 1.1 | Partial synergy | 0.031 Ag + 0.8 Al | ND | ND | ND |
LB | P. aeruginosa | Ag | Al | 1.2 | antagonistic | 0.015 Ag + 0.2 Al | 1.2 | 0.62 | 0.015 Ag + 1.5 Al |
LB | S. aureus | Ag | Te | 1.25 | Antagonistic | 0.065 Ag + 0.004 Te | 0.73 | Synergy | 0.25 Ag + 0.06 Te/0.5 Ag + 0.03 Te |
MHB | P. aeruginosa | Ag | Al | 1.5 | antagonistic | 0.015 Ag + 0.2 Al | ND | ND | ND |
LB | E. coli | Ag | Te | 1.9 | Antagonistic | 0.065 Ag + 0.004 Te | 0.75 | Synergy | 0.025 Ag + 0.062 Te/0. 5 Ag + 0.062 Te |
LB | P. aeruginosa | Ag | Te | 1.98 | Antagonistic | 0.065 Ag + 0.016 Te | 0.55 | Synergy | 0.007 Ag + 0.125 Te/0.065 Ag + 0.008 Te |
LB | E. coli | Ag | Se | ND | ND | ND | ND | ND | ND |
SWF | E. coli | Ag | Se | ND | ND | 0.065 Ag + 3 Se | ND | ND | 0.065 Ag + 12.5 Se |
LB | P. aeruginosa | Ag | Se | ND | ND | ND | ND | ND | ND |
MHB | P. aeruginosa | Ag | Se | ND | ND | 0.015 Ag + 25 Se | ND | ND | ND |
SWF | P. aeruginosa | Ag | Se | ND | ND | 0.065 Ag + 25 Se | ND | ND | 0.125 Ag + 12.5 Se |
LB | S. aureus | Ag | Se | ND | ND | 0.065 Ag + 25 Se | ND | ND | 0.125 Ag + 12.5 Se |
MHB | S. aureus | Ag | Se | ND | ND | ND | ND | ND | ND |
SWF | S. aureus | Ag | Se | ND | ND | ND | ND | ND | 0.125 Ag + 0.8 Se |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pormohammad, A.; Turner, R.J. Silver Antibacterial Synergism Activities with Eight Other Metal(loid)-Based Antimicrobials against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibiotics 2020, 9, 853. https://doi.org/10.3390/antibiotics9120853
Pormohammad A, Turner RJ. Silver Antibacterial Synergism Activities with Eight Other Metal(loid)-Based Antimicrobials against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibiotics. 2020; 9(12):853. https://doi.org/10.3390/antibiotics9120853
Chicago/Turabian StylePormohammad, Ali, and Raymond J. Turner. 2020. "Silver Antibacterial Synergism Activities with Eight Other Metal(loid)-Based Antimicrobials against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus" Antibiotics 9, no. 12: 853. https://doi.org/10.3390/antibiotics9120853
APA StylePormohammad, A., & Turner, R. J. (2020). Silver Antibacterial Synergism Activities with Eight Other Metal(loid)-Based Antimicrobials against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibiotics, 9(12), 853. https://doi.org/10.3390/antibiotics9120853