Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Setting and Clinical Specimens
4.2. Antimicrobial Susceptibility Testing and MIC Determination
4.3. Phenotypic Detection of ESBL
4.4. PCR Analysis and Sequencing
4.4.1. Extraction of Bacterial DNA
4.4.2. Molecular Detection of ESBL, PMQR, AME and TMP-SMX Resistance Genes
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Alvarez, M.; Tran, J.H.; Chow, N.; Jacoby, G.A. Epidemiology of conjugative plasmid-mediated AmpC beta-lactamases in the United States. Antimicrob. Agents Chemother. 2004, 48, 533–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurana, S.; Mathur, P.; Kapil, A.; Valsan, C.; Behera, B. Molecular epidemiology of beta-lactamase producing nosocomial Gram-negative pathogens from North and South Indian hospitals. J. Med. Microbiol. 2017, 66, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Yugendran, T.; Harish, B.N. High incidence of plasmid-mediated quinolone resistance genes among ciprofloxacin-resistant clinical isolates of Enterobacteriaceae at a tertiary care hospital in Puducherry, India. PeerJ 2016, 4, e1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Zhang, W.; Pan, W.; Yin, J.; Pan, Z.; Gao, S.; Jiao, X. Prevalence of qnr, aac(6′)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the environment. Antimicrob. Agents Chemother. 2012, 56, 3423–3427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C.J.; Nordmann, P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother. 2007, 60, 394–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacoby, G.A.; Strahilevitz, J.; Hooper, D.C. Plasmid-mediated quinolone resistance. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chang, M.; Zhang, X.; Cai, P.; Dai, Y.; Song, T.; Wu, Z.; Xu, H.; Qiao, M. Functional Identification and Evolutionary Analysis of Two Novel Plasmids Mediating Quinolone Resistance in Proteus vulgaris. Microorganisms 2020, 8. [Google Scholar] [CrossRef]
- Teramae, M.; Osawa, K.; Shigemura, K.; Kitagawa, K.; Shirakawa, T.; Fujisawa, M.; Miyara, T. Prevalence of Quinolone Resistance of Extended-Spectrum β-Lactamase-Producing Escherichia coli with ST131-fimH30 in a City Hospital in Hyogo, Japan. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [Green Version]
- Haidar, G.; Alkroud, A.; Cheng, S.; Churilla, T.M.; Churilla, B.M.; Shields, R.K.; Doi, Y.; Clancy, C.J.; Nguyen, M.H. Association between the Presence of Aminoglycoside-Modifying Enzymes and In Vitro Activity of Gentamicin, Tobramycin, Amikacin, and Plazomicin against Klebsiella pneumoniae Carbapenemase- and Extended-Spectrum-β-Lactamase-Producing Enterobacter Species. Antimicrob. Agents Chemother. 2016, 60, 5208–5214. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Martínez, M.; Ruiz Del Castillo, B.; Lecea-Cuello, M.J.; Rodríguez-Baño, J.; Pascual, Á.; Martínez-Martínez, L. Prevalence of Aminoglycoside-Modifying Enzymes in Escherichia coli and Klebsiella pneumoniae Producing Extended Spectrum β-Lactamases Collected in Two Multicenter Studies in Spain. Microb. Drug Resist. 2018, 24, 367–376. [Google Scholar] [CrossRef]
- Winn, W.; Allen, S.; Janda, W.; Koneman, E.; Procop, G. Introduction to microbiology part II: Guidelines for the Collection, Transport, Processing, Analysis and Reporting of Cultures from Specific Specimen Sources. In Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, 6th ed.; Lippincott William & Wilkins: Philadelpia, PA, USA, 2006; pp. 67–105. [Google Scholar]
- Plattner, M.; Gysin, M.; Haldimann, K.; Becker, K.; Hobbie, S.N. Epidemiologic, Phenotypic, and Structural Characterization of Aminoglycoside-Resistance Gene aac(3)-IV. Int. J. Mol. Sci. 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Nam, Y.S.; Lee, H.J. Prevalence of plasmid-mediated quinolone resistance genes among ciprofloxacin-nonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in Korea. Can. J. Infect. Dis. Med. Microbiol. 2014, 25, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moland, E.S.; Hanson, N.D.; Black, J.A.; Hossain, A.; Song, W.; Thomson, K.S. Prevalence of newer beta-lactamases in gram-negative clinical isolates collected in the United States from 2001 to 2002. J. Clin. Microbiol. 2006, 44, 3318–3324. [Google Scholar] [CrossRef] [Green Version]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Guo, Q.; Xu, X.; Wang, X.; Ye, X.; Wu, S.; Hooper, D.C.; Wang, M. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob. Agents Chemother. 2009, 53, 1892–1897. [Google Scholar] [CrossRef] [Green Version]
- Majlesi, A.; Kakhki, R.K.; Mozaffari Nejad, A.S.; Mashouf, R.Y.; Roointan, A.; Abazari, M.; Alikhani, M.Y. Detection of plasmid-mediated quinolone resistance in clinical isolates of Enterobacteriaceae strains in Hamadan, West of Iran. Saudi J. Biol. Sci. 2018, 25, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Wareham, D.W.; Umoren, I.; Khanna, P.; Gordon, N.C. Allele-specific polymerase chain reaction (PCR) for rapid detection of the aac(6′)-Ib-cr quinolone resistance gene. Int. J. Antimicrob. Agents 2010, 36, 476–477. [Google Scholar] [CrossRef]
- Yamane, K.; Wachino, J.; Suzuki, S.; Arakawa, Y. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob. Agents Chemother. 2008, 52, 1564–1566. [Google Scholar] [CrossRef] [Green Version]
- Miró, E.; Grünbaum, F.; Gómez, L.; Rivera, A.; Mirelis, B.; Coll, P.; Navarro, F. Characterization of aminoglycoside-modifying enzymes in enterobacteriaceae clinical strains and characterization of the plasmids implicated in their diffusion. Microb. Drug Resist. 2013, 19, 94–99. [Google Scholar] [CrossRef]
- Berçot, B.; Poirel, L.; Nordmann, P. Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: High prevalence among NDM-1 producers. Diagn. Microbiol. Infect. Dis. 2011, 71, 442–445. [Google Scholar] [CrossRef]
- Arabi, H.; Pakzad, I.; Nasrollahi, A.; Hosainzadegan, H.; Azizi Jalilian, F.; Taherikalani, M.; Samadi, N.; Monadi Sefidan, A. Sulfonamide Resistance Genes (sul) M in Extended Spectrum Beta Lactamase (ESBL) and Non-ESBL Producing Escherichia coli Isolated From Iranian Hospitals. Jundishapur J. Microbiol. 2015, 8, e19961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azargun, R.; Sadeghi, M.R.; Soroush Barhaghi, M.H.; Samadi Kafil, H.; Yeganeh, F.; Ahangar Oskouee, M.; Ghotaslou, R. The prevalence of plasmid-mediated quinolone resistance and ESBL-production in Enterobacteriaceae isolated from urinary tract infections. Infect. Drug Resist. 2018, 11, 1007–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usai, D.; Donadu, M.; Bua, A.; Molicotti, P.; Zanetti, S.; Piras, S.; Corona, P.; Ibba, R.; Carta, A. Enhancement of antimicrobial activity of pump inhibitors associating drugs. J. Infect. Dev. Ctries. 2019, 13, 162–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, N.; Suhani, S.; Purkaystha, A.; Begum, M.K.; Raihan, T.; Alam, M.J.; Islam, K.; Azad, A.K. Identification of AcrAB-TolC Efflux Pump Genes and Detection of Mutation in Efflux Repressor AcrR from Omeprazole Responsive Multidrug-Resistant Escherichia coli Isolates Causing Urinary Tract Infections. Microbiol. Insights 2019, 12, 1178636119889629. [Google Scholar] [CrossRef] [Green Version]
- Yewale, P.P.; Lokhande, K.B.; Sridhar, A.; Vaishnav, M.; Khan, F.A.; Mandal, A.; Swamy, K.V.; Jass, J.; Nawani, N. Molecular profiling of multidrug-resistant river water isolates: Insights into resistance mechanism and potential inhibitors. Environ. Sci. Pollut. Res. Int. 2020, 27, 27279–27292. [Google Scholar] [CrossRef]
- El-Badawy, M.F.; Tawakol, W.M.; El-Far, S.W.; Maghrabi, I.A.; Al-Ghamdi, S.A.; Mansy, M.S.; Ashour, M.S.; Shohayeb, M.M. Molecular Identification of Aminoglycoside-Modifying Enzymes and Plasmid-Mediated Quinolone Resistance Genes among Klebsiella pneumoniae Clinical Isolates Recovered from Egyptian Patients. Int. J. Microbiol. 2017, 2017, 8050432. [Google Scholar] [CrossRef] [Green Version]
- Doma, A.O.; Popescu, R.; Mitulețu, M.; Muntean, D.; Dégi, J.; Boldea, M.V.; Radulov, I.; Dumitrescu, E.; Muselin, F.; Puvača, N.; et al. Comparative Evaluation of qnrA, qnrB, and qnrS Genes in Enterobacteriaceae Ciprofloxacin-Resistant Cases, in Swine Units and a Hospital from Western Romania. Antibiotics (Basel) 2020, 9. [Google Scholar] [CrossRef]
- Hammadi, A.; Aga, Q.; Nimer, N.; Shinu, P.; Nair, A. Antimicrobial resistance and presence of Class 1 integrons in Pseudomonas aeruginosa isolates from burn and wound infections. J. Pharm. Negat. Results 2020, 11, 36. [Google Scholar]
- Kumar, N.; Singh, V.A.; Pottathil, S. Metallo-β-lactamase- and serine carbapenemase-producing Klebsiella spp.: A global challenge. J. Glob. Antimicrob. Resist. 2018, 12, 185–186. [Google Scholar] [CrossRef]
- Shinu, P.; Singh, V.; Nair, A. Isoniazid and rifampin drug susceptibility testing: Application of 2,3,5-triphenyl tetrazolium chloride assay and microscopic-observation drug-susceptibility assay directly on Ziehl-Neelsen smear positive sputum specimens. Braz. J. Infect. Dis. 2016, 20, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Venugopala, K.N.; Tratrat, C.; Chandrashekharappa, S.; Attimarad, M.; Sreeharsha, N.; Nair, A.B.; Pottathil, S.; Venugopala, R.; Al-Attraqchi, O.H.A.; Morsy, M.A. Anti-tubercular potency and computationally-assessed drug-likeness and toxicology of diversely substituted indolizines. Indian J. Pharma. Educ. Res. 2019, 53, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.F.; Chang, X.; Ye, Y.; Wang, Z.X.; Shao, Y.B.; Shi, W.; Li, X.; Li, J.B. Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. Int. J. Antimicrob. Agents 2011, 37, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Kanda, N.; Hashimoto, H.; Sonoo, T.; Naraba, H.; Takahashi, Y.; Nakamura, K.; Hatakeyama, S. Gram-negative Organisms from Patients with Community-Acquired Urinary Tract Infections and Associated Risk Factors for Antimicrobial Resistance: A Single-Center Retrospective Observational Study in Japan. Antibiotics (Basel) 2020, 9. [Google Scholar] [CrossRef]
- Blahna, M.T.; Zalewski, C.A.; Reuer, J.; Kahlmeter, G.; Foxman, B.; Marrs, C.F. The role of horizontal gene transfer in the spread of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. J. Antimicrob. Chemother. 2006, 57, 666–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wayne, P. Performance standards for antimicrobial susceptibility testing: 20th informational supplement. In CLSI Document M100-S20; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010. [Google Scholar]
- Thomson, K.S.; Sanders, C.C. Detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae: Comparison of the double-disk and three-dimensional tests. Antimicrob. Agents Chemother. 1992, 36, 1877–1882. [Google Scholar] [CrossRef] [Green Version]
- Montiel-Riquelme, F.; Calatrava-Hernández, E.; Gutiérrez-Soto, M.; Expósito-Ruiz, M.; Navarro-Marí, J.M.; Gutiérrez-Fernández, J. Clinical Relevance of Antibiotic Susceptibility Profiles for Screening Gram-negative Microorganisms Resistant to Beta-Lactam Antibiotics. Microorganisms 2020, 8. [Google Scholar] [CrossRef]
Target Gene | Primer Name | Primer Sequence (5′–3′) | Annealing Temperature (°C) | Amplicon/Product Size (bp) | References |
---|---|---|---|---|---|
ESBL genes | TEM | F AGATCAGTTGGGTGCACGAG | 52 °C | 750 | [14] |
R TGCTTAATCAGTGAGGCACC | |||||
SHV | F GGGAAACGGAACTGAATGAG | 55 °C | 380 | [14] | |
R TTAGCGTTGCCAGTGCTCG | |||||
CTX-M1 | F TTAGGAARTGTGCCGCTGYA | 60 °C | 688 | [15] | |
R CGATATCGTTGGTGGTRCCAT | |||||
PER | F GCTCCGATAATGAAAGCGT | 60 °C | 520 | [15] | |
R TTCGGCTTGACTCGGCTGA | |||||
VEB | F CATTTCCCGATGCAAAGCGT | 60 °C | 648 | [15] | |
R CGAAGTTTCTTTGGACTCTG | |||||
PMQR gene | qnrA | F AGAGGATTTCTCACGCCAGG | 57 °C | 630 | [4] |
R GCAGCACTATKACTCCCAAGG | |||||
qnrB | F GGMATHGAAATTCGCCACTG | 57 °C | 264 | [5] | |
R TTTGCYGYYCGCCAGTCGAA | |||||
qnrC | F GGGTTGTACATTTATTGAATC | 57 °C | 447 | [16] | |
R TCCACTTTACGAGGTTCT | |||||
qnrD | F CGAGATCAATTTACGGGGAATA | 57 °C | 582 | [17] | |
R AACAAGCTGAAGCGCCTG | |||||
qnrS | F GCAAGTTCATTGAACAGGGT | 57 °C | 428 | [15] | |
R TCTAAACCGTCGAGTTCGGCG | |||||
aac(6′)-Ib-cr | F TTGGAAGCGGGGACGGAM | 52 °C | 260 | [18] | |
R ACACGGCTGGACCATA | |||||
oqxA | F GACAGCGTCGCACAGAATG | 62 °C | 339 | [4] | |
R GGAGACGAGGTTGGTATGGA | |||||
oqxB | F CGAAGAAAGACCTCCCTACCC | 62 °C | 240 | [4] | |
R CGCCGCCAATGAGATACA | |||||
qepA | F GCAGGTCCAGCAGCGGGTAG | 62 °C | 218 | [19] | |
R CTTCCTGCCCGAGTATCGTG | |||||
AME genes | aac(2′)-Ia, | F AGAAGCGCTTTACGATTTATTA | 55 °C | 406 | [20] |
R GACTCCGCCTTCTTCTTCAA | 55 °C | ||||
aac(3)-Ia | F GCAGTCGCCCTAAAACAAA | 55 °C | 441 | [20] | |
R CACTTCTTCCCGTATGCCCAACTT | |||||
aac(3)-Ib | F GCAGTCGCCCTAAAACAAA | 55 °C | 417 | [20] | |
R GGATCGTCACCGTAGTCTGC | |||||
aac(3)-IIa | F GGCAATAACGGAGGCGCTTCAAAA | 55 °C | 563 | [20] | |
R TTCCAGGCATCGGCATCTCATACG | |||||
aac(6′)-Ia | F ATGAATTATCAAATTGTG | 55 °C | 558 | [20] | |
R TTACTCTTTGATTAAACT | |||||
aac(6′)-Ib | F CAAAGTTAGGCATCACA | 55 °C | 540 | [20] | |
R ACCTGTACAGGATGGAC | |||||
aac(6′)-Ic | F CTACGATTACGTCAACGGCTGC | 55 °C | 130 | [20] | |
R TTGCTTCGCCCACTCCTGCACC | |||||
ant(2″)-Ia | F ACGCCGTGGGTCGATGTTTGATGT | 55 °C | 572 | [20] | |
R CTTTTCCGCCCCGAGTGAGGTG | |||||
ant(3″)-Ia | F TCGACTCAACTATCAGAGG | 55 °C | 245 | [20] | |
R ACAATCGTGACTTCTACAGCG | |||||
ant(4″)-IIa | F CCGGGGCGAGGCGAGTGC | 55 °C | 423 | [20] | |
R TACGTGGGCGGATTGATGGGAACC | |||||
aph(3′)-Ia | F CGAGCATCAAATGAAACTGC | 55 °C | 625 | [20] | |
R GCGTTGCCAATGATGTTACAG | |||||
aph(3″)-Ia | F CGGCGTGGGCGGCGACTG | 55 °C | 557 | [20] | |
R CCGGATGGAGGACGATGTTGG | |||||
aph(3″)-Ib | F GTGGCTTGCCCCGAGGTCATCA | 55 °C | 612 | [20] | |
R CCAAGTCAGAGGGTCCAATC | |||||
armA | F ATTTTAGATTTTGGTTGTGGC | 54.5 °C | 101 | [21] | |
R ATCTCAGCTCTATCAATATCG | |||||
R TACGTGGGCGGATTGATGGGAACC | |||||
TMP-SMX resistance genes | sul1 | F CGGCGTGGGCTACCTGAACG | 55 °C | 432 | [22] |
R GCCGATCGCGTGAAGTTCCG | |||||
sul2 | F GCGCTCAAGGCAGATGGCATT | 53 °C | 293 | [22] | |
R GCGTTTGATACCGGCACCCGT | |||||
dfrA1 | F TGGAGTTATCGGGAATGGC | 34 °C | 334 | [22] | |
R AACATCACCTTCCGGCTCG |
Antibiotics | Organisms | |||||||
---|---|---|---|---|---|---|---|---|
Escherichia coli, N = 58 (%) | Klebsiella Pneumoniae, N = 74 (%) | Proteus mirabilis, N = 15 (%) | Citrobacter freundii, N = 13 (%) | Klebsiella oxytoca, N = 11 (%) | Enterobacter cloacae, N = 9 (%) | Proteus vulgaris, N = 3 (%) | Morganella morganii, N = 3 (%) | |
Ampicillin | 55 (94.83) | - | 15 (100) | - | - | - | - | - |
Cefazolin | 49 (84.48) | 69 (93.24) | 13 (86.67) | 12 (92.31) | 10 (90.91) | 7 (77.78) | 3 (100) | 3 (100) |
Amoxicillin-clavulanic acid | 38 (65.52) | 64 (86.49) | 12 (80) | - | 8 (72.73) | - | - | - |
Cefotaxime | 48 (82.76) | 63 (85.14) | 9 (60) | 13 (100) | 8 (72.73) | 9 (100) | 2 (66.67) | 2 (66.67) |
Cefepime | 46 (79.31) | 41 (55.41) | 10 (66.67) | 11 (84.62) | 9 (81.82) | 5 (55.56) | 1 (33.33) | 2 (66.67) |
Ceftazidime | 52 (89.66) | 66 (89.19) | 13 (86.67) | 11 (84.62) | 11 (100) | 9 (100) | 2 (66.67) | 3 (100) |
Ceftriaxone | 50 (86.21) | 71 (95.95) | 8 (53.33) | 13 (100) | 11 (100) | 7 (77.78) | 1 (33.33) | 2 (66.67) |
Cefoxitin | 41 (70.69) | 64 (86.49) | 11 (73.33) | - | 7 (63.64) | - | 2 (66.67) | 1 (33.33) |
Cefpodoxime | 52 (89.66) | 66 (89.19) | 7 (46.67) | 10 (76.92) | 11 (100) | 9 (100) | - | - |
Cefuroxime | 50 (86.21) | 69 (93.24) | 9 (60) | 11 (84.62) | 10 (90.91) | 7 (77.78) | 2 (66.67) | 2 (66.67) |
Ceftizoxime | 47 (81.03) | 67 (90.54) | 10 (66.67) | 10 (76.92) | 8 (72.73) | 9 (100) | 2 (66.67) | 2 (66.67) |
Imipenem | 22 (37.93) | 30 (40.54) | 12 (80) | 7 (53.85) | 6 (54.55) | 3 (33.33) | 0 | 0 |
Meropenem | 27 (46.55) | 32 (43.24) | 11 (73.33) | 7 (53.85) | 6 (54.55) | 3 (33.33) | 1 (33.33) | 0 |
Aztreonam | 54 (93.1) | 68 (91.89) | 12 (80) | 10 (76.92) | 11 (100) | 9 (100) | 1 (33.33) | 2 (66.67) |
Gentamicin | 40 (68.97) | 46 (62.16) | 7 (46.67) | 5 (38.46) | 4 (36.36) | 8 (88.89) | 2 (66.67) | 2 (66.67) |
Tobramycin | 45 (77.59) | 50 (67.57) | 5 (33.33) | 7 (53.85) | 6 (54.55) | 7 (77.78) | - | 1 (33.33) |
Amikacin | 32 (55.17) | 39 (52.7) | 3 (20) | 3 (23.08) | 5 (45.45) | 6 (66.67) | 1 (33.33) | - |
Kanamycin | 40 (68.97) | 36 (48.65) | 8 (53.33) | 6 (46.15) | 6 (54.55) | 9 (100) | 2 (66.67) | 1 (33.33) |
Ciprofloxacin | 45 (77.59) | 65 (87.84) | 11 (73.33) | 8 (61.54) | 6 (54.55) | 4 (44.44) | 1 (33.33) | 2 (66.67) |
Levofloxacin | 32 (55.17) | 56 (75.68) | 11 (73.33) | 7 (53.85) | 8 (72.73) | 6 (66.67) | 2 (66.67) | 2 (66.67) |
Nalidixic acid | 40 (68.97) | 64 (86.49) | 12 (80) | 5 (38.46) | 8 (72.73) | 5 (55.56) | 1 (33.33) | 2(66.67) |
Gatifloxacin | 46 (79.31) | 62 (83.78) | 10 (66.67) | 6 (46.15) | 7 (63.64) | 4 (44.44) | 2 (66.67) | 2 (66.67) |
Moxifloxacin | 42 (72.41) | 59 (79.73) | 12 (80) | 7 (53.85) | 7 (63.64) | 3 (33.33) | 1 (33.33) | 2 (66.67) |
Trimethoprim- sulfamethoxazole | 57 (98.28 | 65 (87.84) | 15 (100) | 11 (84.62) | 9 (81.82) | 9 (100) | 2 (66.67) | 3 (100) |
Type of Resistance | Organisms | |||||||
---|---|---|---|---|---|---|---|---|
Escherichia coli, N = 53 (%) | Klebsiella pneumoniae, N = 69 (%) | Proteus mirabilis, N = 13 (%) | Citrobacter freundii, N = 12 (%) | Klebsiella oxytoca, N = 9 (%) | Enterobacter cloacae, N = 9 (%) | Proteus vulgaris, N = 3 (%) | Morganella morganii, N = 3 (%) | |
ESBL | ||||||||
TEM | 46 (86.8) | 58 (84.06) | 12 92.31) | 9 (75) | 7 (77.78) | 7 (77.78) | 3 (100) | 3 (100) |
CTX-M | 39 (73.6) | 61 (88.41) | 8 (61.54) | 8 (66.67) | 6 (66.67) | 4 (44.44) | ND | ND |
SHV | 29 (54.7) | 30 (43.48) | 2 (15.39) | 4 (33.33) | 7 (77.78) | 3 (33.33) | ND | ND |
PER | 8 (15.1) | 13 (18.84) | 3 (23.08) | 3 (25) | 2 (22.22) | 3 (33.33) | 1 (33.33) | ND |
VEB | 1 (1.89) | 5 (7.25) | 8 (61.54) | ND | 1 (11.11) | 2 (22.22) | ND | ND |
PMQR | ||||||||
qnr A | 3 (5.66) | ND | 8 (61.54) | ND | ND | ND | 2 (66.67) | ND |
qnrB | 12 (22.6) | 36 (52.17) | ND | 6 (50) | 5 (55.56) | ND | ND | 1 (33.33) |
qnrC | 4 (7.55) | ND | ND | ND | ND | ND | ND | ND |
qnrD | 7 (13.2) | 17 (24.64) | ND | ND | 3 (33.33) | ND | ND | ND |
qnrS | 11 (20.8) | 3 (4.35) | 9 (69.23) | ND | ND | 3 (33.33) | ND | ND |
Aac-ib-cr | 32 (60.4) | 51 (73.91) | 7 (53.85) | 7 (58.33) | 6 (66.67) | 2 (22.22) | 3 (100) | ND |
oqxA | 14 (26.4) | 58 (84.06) | 9 (69.23) | ND | 4 (44.44) | 2 (22.22) | ND | ND |
oqxB | 21 (39.6) | 62 (89.86) | 8 (61.54) | ND | 3 (33.33) | ND | ND | ND |
qepA | 5 (9.43) | ND | ND | ND | ND | ND | ND | ND |
AME | ||||||||
aac(3)-Ib | 2 (3.77) | 4 (5.8) | ND | 3 (25) | 1 (11.11) | 1 (11.11) | ND | ND |
aac(3)-Ia | 6 (11.3) | ND | ND | 1 (8.33) | ND | ND | ND | ND |
aac(3)-IIa | 18 (34) | 19 (27.54) | 1(7.69) | 3 (25) | 2 (22.22) | 3 (33.33) | ND | 1 (33.33) |
aac(6′)-Ib | 28 (52.8) | 46 (66.67) | 3 (23.08) | 2 (16.67) | 4 (44.44) | 1 (11.11) | ND | 1 (33.33) |
ant(2”)-Ia | 0 | 6 (8.7) | ND | ND | 1 (11.11) | 2 (22.22) | ND | ND |
ant(3”)-Ia | 22 (41.5) | 17 (24.64) | 2 (15.39) | 3 (25) | ND | 1 (11.11) | 1 (33.33) | ND |
ant(4”)-IIa | 8 (15.1) | 4(5.797) | 1 (7.69) | ND | ND | ND | ND | ND |
aph(3′)-Ia | 16 (30.2) | 30 (43.48) | 1 (7.69) | ND | 1 (11.11) | ND | ND | ND |
aph(3”)-Ib | 20 (37.7) | 15 (21.74) | 1 (7.69) | ND | 2 (22.22) | 2 (22.22) | ND | ND |
armA | 5 (9.43) | 10 (14.49) | ND | ND | ND | ND | ND | ND |
TMP-SMX | ||||||||
sul1 | 35 (66) | 46 (66.67) | 6 (46.15) | 7 (58.33) | 6 (66.67) | 5 (55.56) | 2 (66.67) | 1 (33.33) |
sul2 | 9 (17) | 6 (8.7) | ND | ND | 1 (11.11) | 1 (11.11) | ND | ND |
dfrA1 | 20 (37.7) | 28 (40.58) | 2 (15.39) | 4 (33.33) | 1 (11.11) | 2 (22.22) | 1 (33.33) | 1 (33.33) |
Name of the Gene | Name of the Organism | Total Number of Isolates | ESBL Genes | ||||
---|---|---|---|---|---|---|---|
PMQR | TEM | CTX-M | SHV | PER | VEB | ||
qnr A | Escherichia coli | 9 | 4 | 3 | 4 | 1 | ND |
Proteus mirabilis | 8 | 7 | 4 | 1 | 2 | 4 | |
Proteus vulgaris | 2 | 2 | ND | ND | 1 | ND | |
qnrB | Escherichia coli | 12 | 7 | 5 | 8 | ND | ND |
Klebsiella pneumonia | 36 | 30 | 33 | 15 | 5 | 3 | |
Citrobacter freundii | 6 | 5 | 3 | 1 | 1 | ND | |
Klebsiella oxytoca | 5 | 4 | 2 | 3 | 1 | 1 | |
Morganella morganii | 1 | 1 | ND | ND | ND | ND | |
qnrC | Escherichia coli | 4 | 4 | 2 | ND | ND | ND |
qnrD | Escherichia coli | 7 | 7 | 7 | 4 | 2 | ND |
Klebsiella pneumonia | 17 | 15 | 13 | 12 | 7 | 2 | |
Klebsiella oxytoca | 3 | 3 | ND | 1 | ND | 1 | |
qnrS | Escherichia coli | 11 | 9 | 11 | 1 | 3 | 1 |
Klebsiella pneumonia | 3 | 3 | ND | 2 | 1 | 1 | |
Proteus mirabilis | 9 | 9 | 4 | 2 | 2 | 6 | |
Enterobacter cloacae | 3 | 3 | 1 | ND | 1 | 1 | |
Aac-ib-cr | Escherichia coli | 32 | 30 | 29 | 9 | 8 | 1 |
Klebsiella pneumonia | 51 | 46 | 43 | 30 | 13 | 5 | |
Proteus mirabilis | 7 | 6 | 3 | 1 | 2 | 5 | |
Citrobacter freundii | 7 | 5 | 4 | 2 | 1 | 0 | |
Klebsiella oxytoca | 6 | 5 | 4 | 5 | 2 | 1 | |
Enterobacter cloacae | 2 | 2 | 1 | ND | 1 | 1 | |
Proteus vulgaris | 3 | 3 | ND | ND | 1 | ND | |
oqxA | Escherichia coli | 14 | 10 | 9 | 6 | ND | ND |
Klebsiella pneumonia | 58 | 49 | 50 | 30 | 13 | 5 | |
Proteus mirabilis | 9 | 8 | 5 | 1 | 2 | 5 | |
Klebsiella oxytoca | 4 | 3 | 1 | 2 | 1 | 1 | |
Enterobacter cloacae | 2 | 2 | 1 | ND | 1 | 1 | |
oqxB | Escherichia coli | 21 | 16 | 13 | 13 | ND | ND |
Klebsiella pneumonia | 62 | 53 | 54 | 30 | 13 | 5 | |
Proteus mirabilis | 8 | 8 | 4 | 2 | 2 | 5 | |
Klebsiella oxytoca | 3 | 3 | ND | 1 | ND | 1 | |
qepA | Escherichia coli | 5 | 3 | 1 | 4 | ND | ND |
AME | |||||||
aac(3)-Ib | Escherichia coli | 2 | 2 | 2 | ND | ND | ND |
Klebsiella pneumonia | 4 | 4 | 1 | 2 | 2 | 1 | |
Citrobacter freundii | 3 | 1 | 3 | 2 | ND | ND | |
Klebsiella oxytoca | 1 | 1 | ND | ND | ND | ND | |
Enterobacter cloacae | 1 | 1 | ND | ND | 1 | ND | |
aac(3)-Ia | Escherichia coli | 6 | 6 | 6 | 4 | 3 | ND |
Citrobacter freundii | 1 | ND | 1 | 1 | ND | ND | |
aac(3)-IIa | Escherichia coli | 18 | 16 | 18 | 4 | 4 | 1 |
Klebsiella pneumonia | 19 | 17 | 18 | 13 | 5 | ND | |
Proteus mirabilis | 1 | 1 | 1 | 1 | ND | 1 | |
Citrobacter freundii | 3 | 3 | 1 | ND | 1 | ND | |
Klebsiella oxytoca | 2 | 2 | ND | ND | ND | 1 | |
Enterobacter cloacae | 3 | 3 | 1 | ND | 1 | 1 | |
Morganella morganii | 1 | 1 | ND | ND | ND | ND | |
aac(6′)-Ib | Escherichia coli | 28 | 26 | 28 | 8 | 8 | 1 |
Klebsiella pneumonia | 46 | 41 | 38 | 30 | 13 | 5 | |
Proteus mirabilis | 3 | 3 | 2 | 1 | 1 | 2 | |
Citrobacter freundii | 2 | ND | 2 | 2 | ND | ND | |
aac(6′)-Ib | Klebsiella oxytoca | 4 | 3 | 1 | 2 | 1 | 1 |
Enterobacter cloacae | 1 | 1 | ND | ND | ND | 1 | |
Morganella morganii | 1 | 1 | ND | ND | ND | ND | |
ant(2”)-Ia | Klebsiella pneumonia | 6 | 4 | 6 | 6 | 2 | ND |
Klebsiella oxytoca | 1 | 1 | ND | ND | ND | ND | |
Enterobacter cloacae | 2 | 2 | 1 | ND | 1 | 1 | |
ant(3”)-Ia | Escherichia coli | 22 | 19 | 17 | 9 | 3 | ND |
Klebsiella pneumonia | 17 | 15 | 15 | 13 | 8 | ND | |
Proteus mirabilis | 2 | 2 | 1 | 1 | 1 | 2 | |
Citrobacter freundii | 3 | 3 | 1 | ND | 1 | ND | |
Enterobacter cloacae | 1 | 1 | 1 | ND | 1 | ND | |
Proteus vulgaris | 1 | 1 | ND | ND | 1 | ND | |
ant(4”)-IIa | Escherichia coli | 8 | 8 | 8 | 3 | 1 | ND |
Klebsiella pneumonia | 4 | 4 | 4 | 2 | ND | ND | |
Proteus mirabilis | 1 | 1 | ND | ND | 1 | 1 | |
aph(3′)-Ia | Escherichia coli | 16 | 16 | 16 | 8 | 5 | ND |
Klebsiella pneumonia | 30 | 27 | 25 | 22 | 11 | 1 | |
Proteus mirabilis | 1 | 1 | ND | ND | 1 | 1 | |
Klebsiella oxytoca | 1 | 1 | ND | ND | ND | ND | |
aph(3”)-Ib | Escherichia coli | 20 | 17 | 15 | 9 | 3 | ND |
Klebsiella pneumonia | 15 | 15 | 14 | 10 | 5 | ND | |
Proteus mirabilis | 1 | 1 | ND | ND | 1 | 1 | |
Klebsiella oxytoca | 2 | 2 | ND | ND | ND | 2 | |
Enterobacter cloacae | 2 | 2 | 1 | ND | 1 | 1 | |
armA | Escherichia coli | 5 | 2 | 2 | 5 | ND | ND |
Klebsiella pneumonia | 10 | 10 | 9 | 5 | 3 | ||
TMP-SMX resistance genes | |||||||
sul1 | Escherichia coli | 35 | 31 | 29 | 10 | 8 | 1 |
Klebsiella pneumonia | 46 | 41 | 38 | 30 | 13 | 5 | |
Proteus mirabilis | 6 | 6 | 3 | 1 | 2 | 4 | |
Citrobacter freundii | 7 | 5 | 4 | 2 | 1 | ND | |
Klebsiella oxytoca | 6 | 5 | 3 | 4 | 2 | 1 | |
Enterobacter cloacae | 5 | 4 | 3 | 2 | 2 | 2 | |
Proteus vulgaris | 2 | 2 | ND | ND | 1 | ND | |
Morganella morganii | 1 | 1 | ND | ND | ND | ND | |
sul2 | Escherichia coli | 9 | 7 | 4 | 4 | ND | ND |
Klebsiella pneumonia | 6 | 6 | 3 | 2 | 2 | 2 | |
Klebsiella oxytoca | 1 | 1 | ND | ND | ND | ND | |
Enterobacter cloacae | 1 | 1 | 1 | ND | ND | 1 | |
dfrA1 | Escherichia coli | 20 | 18 | 20 | 5 | 5 | 1 |
Klebsiella pneumonia | 28 | 26 | 23 | 18 | 10 | 2 | |
Proteus mirabilis | 2 | 2 | 1 | 1 | 1 | 2 | |
Citrobacter freundii | 4 | 2 | 3 | 2 | ND | ND | |
Klebsiella oxytoca | 1 | 1 | ND | ND | ND | ND | |
Enterobacter cloacae | 2 | 2 | 1 | ND | 1 | 1 | |
Proteus vulgaris | 1 | 1 | ND | ND | 1 | ND | |
Morganella morganii | 1 | 1 | ND | ND | ND | ND |
Origin of Strain | ||||
---|---|---|---|---|
Type of Resistance Gene | Wound Specimens | Respiratory Tract Specimens | Blood and Body Fluids | |
N = 97 (%) | N = 44 (%) | N = 30 (%) | ||
ESBL | ||||
TEM | 85 (87.62) | 35 (79.54) | 25 (83.33) | |
CTX-M | 70 (72.16) | 34 (77.27) | 22 (73.33) | |
SHV | 40 (41.23) | 19 (43.18) | 16 (53.33) | |
PER | 29 (29.89) | ND | 4 (13.3) | |
VEB | 14 (14.43) | 1 (2.27) | 2 (6.6) | |
PMQR | ||||
qnrA | 13 (13.4) | ND | ND | |
qnrB | 19 (19.58) | 17 (38.63) | 24 (80) | |
qnrC | ND | ND | 4 (13.3) | |
qnrD | 27 (27.83) | ND | ND | |
qnrS | 26 (26.8) | ND | ND | |
aac(6′)-lb-cr | 76 (78.35) | 8 (18.18) | 24 (80) | |
oqxA | 43 (44.33) | 16 (36.36) | 28 (93.33) | |
oqxB | 39 (40.2) | 27 (61.36) | 28 (93.33) | |
qepA | ND | ND | 5 (16.66) | |
AMEs | ||||
aac(3)-Ib | 11 (11.34) | ND | ND | |
aac(3)-Ia | 6 (6.19) | ND | 1 (3.33) | |
aac(3)-IIa | 44 (45.36) | ND | 3 (10) | |
aac(6′)-Ib | 62 (63.91) | 3 (6.82) | 20 (66.67) | |
ant(2”)-Ia | 9 (9.28) | ND | ND | |
ant(3”)-Ia | 33 (34) | ND | 13 (41.94) | |
ant(4”)-IIa | 13 (13.4) | ND | ND | |
aph(3′)-Ia | 39 (40.21) | ND | 9 (30) | |
aph(3”)-Ia | 1 (1.03) | ND | ND | |
aph(3”)-Ib | 25 (25.77) | ND | 15 (50) | |
armA | 8 (8.24) | 4 (9.09) | 3 (10) | |
TMP-SMX resistance gene | ||||
sul 1 | 78 (80.41) | 3 (6.82) | 27 (90) | |
sul 2 | 8 (8.24) | ND | 9 (30) | |
dfr A | 59 (60.82) | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinu, P.; Bareja, R.; Nair, A.B.; Mishra, V.; Hussain, S.; Venugopala, K.N.; Sreeharsha, N.; Attimarad, M.; Rasool, S.T. Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Antibiotics 2020, 9, 884. https://doi.org/10.3390/antibiotics9120884
Shinu P, Bareja R, Nair AB, Mishra V, Hussain S, Venugopala KN, Sreeharsha N, Attimarad M, Rasool ST. Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Antibiotics. 2020; 9(12):884. https://doi.org/10.3390/antibiotics9120884
Chicago/Turabian StyleShinu, Pottathil, Rajesh Bareja, Anroop B. Nair, Vashishth Mishra, Snawar Hussain, Katharigatta N. Venugopala, Nagaraja Sreeharsha, Mahesh Attimarad, and Sahibzada Tasleem Rasool. 2020. "Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates" Antibiotics 9, no. 12: 884. https://doi.org/10.3390/antibiotics9120884
APA StyleShinu, P., Bareja, R., Nair, A. B., Mishra, V., Hussain, S., Venugopala, K. N., Sreeharsha, N., Attimarad, M., & Rasool, S. T. (2020). Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Antibiotics, 9(12), 884. https://doi.org/10.3390/antibiotics9120884