Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antimicrobial Susceptibility Testing
2.2. Molecular Typing of Colistin-Resistant S. Infantis Isolates
2.3. Resistome of Colistin-Resistant S. Infantis Isolates
2.4. Plasmidome Analysis
2.5. Virulence and Salmonella Pathogenicity Islands
2.6. Pan-Genome Analysis
2.7. Expression Analysis of Colistin-Resistance Associated Genes
3. Materials and Methods
3.1. Isolates
3.2. Antimicrobial Susceptibility Testing
3.3. Minimal Inhibitory Concentrations for Colistin
3.4. Whole Genome Sequencing and Genome Analyses
3.5. Bacterial Pan-Genome Analysis
3.6. Transcriptional Analysis by Reverse Transcription Quantitative PCR (RT-qPCR)
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ferrari, R.G.; Rosario, D.K.A.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Junior, C.A. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, E.; Tietze, E.; Helmuth, R.; Junker, E.; Prager, R.; Schroeter, A.; Rabsch, W.; Fruth, A.; Toboldt, A.; Malorny, B. Clonal dissemination of Salmonella enterica serovar Infantis in Germany. Foodborne Pathog. Dis. 2012, 9, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Ikeda, A.; Ishikawa, K.; Murakami, M.; Kusukawa, M.; Asai, T.; Yamada, Y. Prevalence and antimicrobial susceptibility of Salmonella in Japanese broiler flocks. Epidemiol. Infect. 2012, 140, 2074–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, T.; Brockmann, S.; Spackova, M.; Wetzig, J.; Frank, C.; Pfeifer, Y.; Braun, P.G.; Prager, R.; Rabsch, W. Recurrent outbreaks caused by the same Salmonella enterica serovar Infantis clone in a German rehabilitation oncology clinic from 2002 to 2009. J. Hosp. Infect. 2018, 100, e233–e238. [Google Scholar] [CrossRef] [PubMed]
- Aviv, G.; Tsyba, K.; Steck, N.; Salmon-Divon, M.; Cornelius, A.; Rahav, G.; Grassl, G.A.; Gal Mor, O. A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ. Microbiol. 2014, 16, 977–994. [Google Scholar] [CrossRef] [PubMed]
- Marzel, A.; Desai, P.T.; Goren, A.; Schorr, Y.I.; Nissan, I.; Porwollik, S.; Valinsky, L.; McClelland, M.; Rahav, G.; Gal-Mor, O. Persistent infection by nontyphoidal Salmonella in humans: Epidemiology and genetics. Clin. Infect. Dis. 2016, 62, 870–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nógrády, N.; Tóth, A.; Kostyák, A.; Pászti, J.; Nagy, B. Emergency of multidrug-resistant clones of Salmonella Infantis in broiler chickens and humans in Hungary. J. Antimicrob. Chemother. 2007, 60, 645–648. [Google Scholar] [CrossRef] [Green Version]
- Nógrády, N.; Király, M.; Davies, R.; Nagy, B. Multidrug resistant clones of Salmonella Infantis of broiler origin in Europe. Inter. J. Food Microbiol. 2012, 157, 108–112. [Google Scholar] [CrossRef]
- Bogomazova, A.N.; Gordeeva, V.D.; Krylova, E.V.; Soltynskaya, I.V.; Davydova, E.E.; Ivanova, O.E.; Komarov, A.A. Mega-plasmid found worldwide confers multiple antimicrobial resistance in Salmonella Infantis of broiler origin in Russia. Int. J. Food Microbiol. 2020, 319, 108497. [Google Scholar] [CrossRef]
- Franco, A.; Leekitcharoenphon, P.; Feltrin, F.; Alba, P.; Cordaro, G.; Iurescia, M.; Tolli, R.; D’Incau, M.; Staffolani, M.; Di Giannatale, E.; et al. Emergency of a clonal lineage of multidrug-resistant ESBL-producing Salmonella Infantis transmitted from broilers and broiler meat to humans in Italy between 2011 and 2014. PLoS ONE 2015, 10, e0144802. [Google Scholar] [CrossRef] [Green Version]
- Hindermann, D.; Gopinath, G.; Chase, H.; Negrete, F.; Althaus, D.; Zurfluh, K.; Tall, B.D.; Stephan, R.; Nüesch-Inderbinen, M. Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010–2015: Poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Front. Microbiol. 2017, 8, 1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tate, H.; Folster, J.P.; Hsu, C.H.; Chen, J.; Hoffmann, M.; Li, C.; Morales, C.; Tyson, G.H.; Mukherjee, S.; Brown, A.C.; et al. Comparative analysis of extended-spectrum-β-lactamase CTXM-65 producing Salmonella enterica serovar Infantis isolates from humans, food animals, and retail chickens in the United States. Antimicrob. Agents Chemother. 2017, 61, e00488-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djeffal, S.; Bakour, S.; Mamache, B.; Elgroud, R.; Agabou, A.; Chabou, S.; Hireche, S.; Bouaziz, O.; Rahal, K.; Rolain, J.M. Prevalence and clonal relationship of ESBL-producing Salmonella strains from humans and poultry in northeastern Algeria. BMC Vet. Res. 2017, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Carfora, V.; Alba, P.; Leekitcharoenphon, P.; Ballaro, D.; Cordaro, G.; Di Matteo, P.; Donati, V.; Ianzano, A.; Iurescia, M.; Stravino, F.; et al. Colistin resistance mediated by mcr-1 in ESBL-producing, multidrug resistant Salmonella Infantis in broiler chickens industry, Italy (2016-207). Front. Microbiol. 2018, 9, 1880. [Google Scholar] [CrossRef] [PubMed]
- Velhner, M.; Kozoderović, G.; Grego, E.; Galić, N.; Stojanov, I.; Jelesić, Z.; Kehrenberg, C. Clonal spread of Salmonella enterica serovar Infantis in Serbia: Acquisition of mutations in the topoisomerase genes gyrA and parC leads to increase resistance to fluoroquinolones. Zoonoses Public Health 2014, 61, 364–370. [Google Scholar] [CrossRef]
- Dionisi, A.M.; Lucarelli, C.; Benedetti, I.; Owczarek, S.; Luzzi, I. Molecular characterization of multidrug-resistant Salmonella enterica serotype Infantis from humans, animals and the environment in Italy. Int. J. Antimicorb. Agents 2011, 38, 384–389. [Google Scholar] [CrossRef]
- Glynn, M.K.; Bopp, C.; Dewitt, W.; Dabney, P.; Mokhtar, M.; Angulo, F.J. Emergency of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States. N. Engl. J. Med. 1998, 338, 1333–1338. [Google Scholar] [CrossRef] [Green Version]
- Le Hello, S.; Bekhit, A.; Granier, S.; Baura, H.; Beutlich, J.; Zaj, M.; Münch, S.; Sintchenko, V.; Bouchrif, B.; Fashae, K.; et al. The global establishment of a highly fluoroquinolne resistant Salmonella enterica serotype Kentucky ST198. Front. Microbiol. 2013, 4, 395. [Google Scholar] [CrossRef] [Green Version]
- Almeida, F.; Pitondo-Silva, A.; Oliveira, M.A.; Falcāo, J.P. Molecular epidemiology and virulence markers of Salmonella Infantis isolated over 25 years in São Paulo State, Brazil. Infect. Genet. Evol. 2013, 19, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Chironna, M.; Tafuri, S.; Gallone, M.S.; Sallustio, A.; Martinelli, D.; Prato, R.; Germinario, C. Outbreak of Salmonella Infantis gastroenteritis among people who had eaten at a hash house in southern Italy. Public Health 2014, 128, 438–443. [Google Scholar] [CrossRef]
- Ranjbar, R.; Rahmati, H.; Shokoohizadeh, L. Detection of common clones of Salmonella enterica serotype Infantis from human sources in Tehran hospitals. Gastroenterol. Hepatol. Bed Bench 2018, 11, 54–59. [Google Scholar] [CrossRef]
- Sodagari, H.R.; Mohammed, A.B.; Wang, P.; O’Dea, M.; Abraham, S.; Robertson, I.; Habib, I. Non-typhoidal Salmonella contamination in egg shells and content from retail in Western Australia: Serovar diversity, multilocus sequence types, and phenotypic and genomic characterizations of antimicrobial resistance. Int. J. Food Microbiol. 2019, 308, 108305. [Google Scholar] [CrossRef] [PubMed]
- Aghapour, Z.; Gholizadeh, P.; Ganbarov, K.; Bialvaei, A.Z.; Mahmood, S.S.; Tanomand, A.; Yousefi, M.; Asgharzadeh, M.; Yousefi, B.; Kafil, H.S. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect. Drug Resist. 2019, 12, 965–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, J.S. The Salmonella PmrAB regulon: Lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol. 2008, 16, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Negrea, A.; Rhen, M.; Andersson, D.I. Genetic analysis of colistin resistance in Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother. 2009, 53, 2298–2305. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Cao, Y.P.; Lin, Q.Q.; He, W.Y.; Wang, J.; Yi, M.Y.; Lv, L.C.; Yang, J.; Liu, J.H.; Guo, J.Y. Co-selection may explain the unexpectedly high prevalence of plasmid-mediated colistin resistance gene mcr-1 in a Chinese broiler farm. Zool. Res. 2020, 41, 569–575. [Google Scholar] [CrossRef]
- Neuert, S.; Nair, S.; Day, M.R.; Doumith, M.; Ashton, P.M.; Mellor, K.C.; Jenkins, C.; Hopkins, K.L.; Woodford, N.; de Pinna, E.; et al. Prediction of phenotypic antimicrobial resistance profiles from whole genome sequences of non-typhoidal Salmonella enterica. Front. Microbiol. 2018, 9, 592. [Google Scholar] [CrossRef] [Green Version]
- Monte, D.F.; Lincopan, N.; Berman, H.; Cerdeira, L.; Keelara, S.; Thakur, S.; Fedorka-Cray, P.J.; Landgraf, M. Genomic features of high-priority Salmonella enterica serovars circulating in the food production chain, Brazil, 2000–2016. Sci. Rep. 2019, 9, 11058. [Google Scholar] [CrossRef] [Green Version]
- Putman, M.; van Veen, H.W.; Konings, W.N. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 2000, 64, 672–692. [Google Scholar] [CrossRef] [Green Version]
- Kehrenberg, C.; Cloeckaert, A.; Klein, G.; Schwarz, S. Decreased fluoroquinolone susceptibility in mutants of Salmonella serovars other than Typhimurium: Detection of novel mutations involved in modulated expression of ramA and soxS. J. Antimicrob. Chemoth. 2009, 64, 1175–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salipante, S.J.; Hall, B.G. Determining the limits of the evolutionary potential of an antibiotic resistance gene. Mol. Biol. Evol. 2003, 20, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.A.; Yin, X.; Persaud-Lachhman, M.G.; Diarra, M.S. First detection of fosfomycin resistance gene, fosA7, in Salmonella enterica serovar Heidelberg isolated from broiler chickens. Antimicrob. Agents Chemother. 2017, 61, e00410-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadlec, K.; Pomba, C.F.; Couto, N.; Schwarz, S. Small plasmids carrying vga(A) or vga(C) genes mediate resistance to lincosamides, pleuromutilins and streptogramin A antibiotics in methicillin-resistant Staphylococcus aureus ST398 from swine. J. Antimicrob. Chemoth. 2010, 65, 2692–2698. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Shen, J.; Kadlec, K.; Wang, Y.; Michael, G.B.; Feβler, A.T.; Vester, B. Lincosamides, streptogramins, phenicols and pleuromutilins: Mode of action and mechanisms of resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a027037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hoek, A.H.A.M.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.M. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef] [Green Version]
- Maguire, F.; Rehman, M.A.; Carrillo, C.; Diarra, M.S.; Beiko, R.G. Identification of primary antimicrobial resistance drivers in agricultural nontyphoidal Salmonella enterica serovars by using machine learning. Clin. Sci. Epidemiol. 2019, 4, e00211-19. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef]
- Mc Millan, E.A.; Gupta, S.K.; Williams, L.E.; Jové, T.; Hiott, L.M.; Woodley, T.A.; Barrett, J.B.; Jackson, C.R.; Wasilenko, J.L.; Simmons, M.; et al. Antimicrobial resistance genes, cassettes, and plasmids present in Salmonella enterica associated with United States food animals. Front. Microbiol. 2019, 10, 832. [Google Scholar] [CrossRef]
- Szmolka, A.; Szabó, M.; Kiss, J.; Pászti, J.; Adrián, E.; Olasz, F.; Nagy, B. Molecular epidemiology of the endemic multiresistance plasmid pSI54/04 of Salmonella Infantis in broiler and human population in Hungary. Food Microbiol. 2018, 71, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Azriel, S.; Goren, A.; Shomer, I.; Aviv, G.; Rahav, G.; Gal Mor, O. The typhi colonization factor (Tcf) is encoded by multiple non-typhoidal Salmonella serovars but exhibits a varying expression profile and interchanging conribution to intestnal colonization. Virulence 2017, 8, 1791–1807. [Google Scholar] [CrossRef] [Green Version]
- Foley, S.L.; Johnson, T.J.; Ricke, S.C.; Nayak, R.; Danzeisen, J. Salmonella pathogenicity and host adaptation in chicken associated serovars. Microbiol. Mol. Biol. Rev. 2013, 77, 582–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Feng, L.; Yang, B.; Zhang, W.; Wang, P.; Jiang, X.; Wang, L. Signal transduction pathway by the novel regulator LoiA low oxygen tension induced Salmonella Typhimurium invasion. PLoS Pathog. 2017, 13, e1006429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elder, J.R.; Paul, N.C.; Burin, R.; Guard, J.; Shah, D.H. Genomic organization of SPI1-3 in nutritional fitness of Salmonella. Int. J. Med. Microbiol. 2018, 308, 1043–1052. [Google Scholar] [CrossRef]
- Muzzi, A.; Masignani, V.; Rappuoli, R. The pan-genome: Towards a knowledge-based discovery of novel targets for vaccines and antibacterials. Drug Discov. Today 2007, 12, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A. Metabolic adaptations underlying genome flexibility in prokaryotes. PLoS Genet. 2018, 14, e1007763. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; Approved Standard-Tenth Edition. CLSI document M07; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Twenty-fifth Informational Supplement. CLSI document M100; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. Vet. Microbiol. 2010, 24, 1–4. [Google Scholar] [CrossRef]
- Gwozdzinski, K.; Azarderakhsh, S.; Imirzalioglu, C.; Falgenhauer, L.; Chakraborty, T. An improved medium for colistin susceptibility testing. J. Clin. Microbiol. 2018, 56, e01950-17. [Google Scholar] [CrossRef] [Green Version]
- EU Directive 2013/652/EU: Commission Implementing Decision on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria. 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013D0652 (accessed on 4 December 2020).
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria for humans, animals and food in 2017. EFSA J. 2019, 17, e05598. [Google Scholar] [CrossRef]
- Agersø, Y.; Torpdahl, M.; Zachariasen, C.; Seyfarth, A.; Hammerum, A.M.; Nielsen, E.M. Tentative colistin cut-off value for Salmonella spp. Foodborne Pathog. Dis. 2012, 9, 367–369. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 24 June 2015).
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef] [PubMed]
- Novović, K.; Mihajlović, S.; Dinić, M.; Malešević, M.; Miljković, M.; Kojić, M.; Jovčić, B. Acinetobacter spp. porin Omp33-36: Classification and transcriptional response to carbapenems and host cells. PLoS ONE 2018, 13, e0201608. [Google Scholar] [CrossRef] [PubMed]
Number of Isolates with the Distinctive Resistotype | Salmonella enterica Serovar Numbers | Resistance Patterns |
---|---|---|
127 | S. Enteritidis (78) S. Infantis (13), S. Typhimurium (14), S. Tennessee (6), S. Senftenberg (5), S. Mbandaka (3), S. Yoruba (2), group E (O:19) (1), S. Kotbus (1), S. Nitra (1), S. Napoli (1), S. Stanleyvile (1), S. Bovismorbificans (1) | S |
3 | S. Infantis (3) | CST |
30 | S. Infantis (28), S.Virchow (1), S.Thomson (1) | NAL, TET |
2 | S. Newport (2) | AMP, TET |
1 | S. Infantis (1) | SA, TET |
2 | S. Hadar (2) | STR, TET |
2 | S. Infantis (2) | NAL, CST, TET |
3 | S. Kotbus (1), S. Infantis (1), S. Stanley (1) | AMP, NAL, TET |
1 | S. Typhimurium (1) | AMP, SA, TMP, SXT |
2 | S. Infantis (2) | AMP, NAL, CST, TET, TMP, |
1 | S. Infantis (1) | AMP, GEN, NAL, STR, TET |
Isolate | Sequence Type | Resistance Genes | Detected Amino Acid Substitutions |
---|---|---|---|
821 | ST11 | aac(6′)-Iaa; ampC-like; bacA; MATE transporter; RND, MFS and ABC efflux pumps | / |
92 | ST11 | aac(6′)-Iaa; ampC-like; bacA; MATE transporter; RND, MFS and ABC efflux pumps | / |
1371/1 | ST32 | aac(6′)-Iaa; tetA; ampC-like; bacA; MATE transporter; RND, MFS and ABC efflux pumps | pmrB V164G parC T57S, S80R gyrA S83Y |
9181/1 | ST32 | aac(6′)-Iaa; tetA; ampC-like; bacA; MATE transporter; RND, MFS and ABC efflux pumps | pmrB V164M parC T57S gyrA S83Y |
8418/2948 | ST32 | aac(6′)-Iaa; tetA; tetK; vga(A); ampC-like; bacA; MATE transporter; RND, MFS and ABC efflux pumps | pmrB R92P parC T57S gyrA S83Y |
9520/2 | ST32 | aac(6′)-Iaa; tetA; tetK; blaTEM-1B; ampC-like; bacA; MATE transporter; RND, MFS and ABC efflux pumps | pmrB V164M parC T57S gyrA S83Y |
3842 | ST413 | aac(6′)-Iaa; blaOXA-22; fosA7; ampC-like; bacA; MATE transporter; RND, MFS and ABC efflux pumps | parC T57S |
Salmonella Infantis | MLST Sequence Type | Salmonella Pathogenicity Island |
---|---|---|
821 | ST11 | SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-13, SPI-14, C63PI |
92 | ST11 | SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-13, SPI-14, C63PI |
1371/1 | ST32 | SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-13, SPI-14, C63PI |
9181/1 | ST32 | SPI1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-13, SPI-14, C63PI |
8418/2948 | ST32 | SPI-1, SPI-2, SPI-3, SPI-5, SPI-13, SPI-14, C63PI |
9520/2 | ST32 | SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-13, SPI-14, C63PI |
3842 | ST413 | SPI-1, SPI-2, SPI-4, SPI-8, C63PI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovčić, B.; Novović, K.; Filipić, B.; Velhner, M.; Todorović, D.; Matović, K.; Rašić, Z.; Nikolić, S.; Kiškarolj, F.; Kojić, M. Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia. Antibiotics 2020, 9, 886. https://doi.org/10.3390/antibiotics9120886
Jovčić B, Novović K, Filipić B, Velhner M, Todorović D, Matović K, Rašić Z, Nikolić S, Kiškarolj F, Kojić M. Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia. Antibiotics. 2020; 9(12):886. https://doi.org/10.3390/antibiotics9120886
Chicago/Turabian StyleJovčić, Branko, Katarina Novović, Brankica Filipić, Maja Velhner, Dalibor Todorović, Kazimir Matović, Zoran Rašić, Sonja Nikolić, Ferenc Kiškarolj, and Milan Kojić. 2020. "Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia" Antibiotics 9, no. 12: 886. https://doi.org/10.3390/antibiotics9120886
APA StyleJovčić, B., Novović, K., Filipić, B., Velhner, M., Todorović, D., Matović, K., Rašić, Z., Nikolić, S., Kiškarolj, F., & Kojić, M. (2020). Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia. Antibiotics, 9(12), 886. https://doi.org/10.3390/antibiotics9120886