How Does Antimicrobial Stewardship Affect Inappropriate Antibiotic Therapy in Urological Patients?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Antimicrobial Stewardship Team (AST) Meetings
2.3. Infectious Diseases and Reasons for Intervention
2.4. Antibiotics Prescribed
2.5. Microbiological Culture Collections
2.6. Statistical Analysis
3. Results
3.1. Patients
3.2. Reasons for Intervention
3.3. Microbiological Culture Collections
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Government of Japan. National Action Plan on Antimicrobial Resistance (AMR) 2016–2020. Ministry of Health, Labour & Welfare Website. 2016. Available online: https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/0000138942.pdf (accessed on 10 August 2019).
- Saito, H.; Noda, H.; Takakura, S.; Jindai, K.; McLellan, R.T.; Asanuma, K. First practical major step toward appropriate antimicrobial use by the Government of Japan. Jpn. J. Infect. Dis. 2019, 72, 56–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morikane, K. Infection control in healthcare settings in Japan. J. Epidemiol. 2012, 22, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarchini, G.; Liau, K.H.; Solomkin, J.S. Antimicrobial stewardship in surgery: Challenges and opportunities. Clin. Infect. Dis. 2017, 64 (Suppl. 2), S112–S114. [Google Scholar] [CrossRef]
- Deguchi, T.; Matsumoto, T. Antimicrobial stewardship in urology. Int. J. Urol. 2014, 21, 628–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, T.; Uda, A.; Sakaue, T.; Yamashita, K.; Nishioka, T.; Nishimura, S.; Ebisawa, K.; Nagata, M.; Ohji, G.; Nakamura, T.; et al. Long-term efficacy of comprehensive multidisciplinary antibiotic stewardship programs centered on weekly prospective audit and feedback. Infection 2018, 46, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Ohmagari, N. National Action Plan on Antimicrobial Resistance (AMR), Japan, 2016–2020. Nihon Naika Gakkai Zasshi 2017, 106, 2259–2264. [Google Scholar] [CrossRef]
- Garau, J.; Nicolau, D.P.; Wullt, B.; Bassetti, M. Antibiotic stewardship challenges in the management of community-acquired infections for prevention of escalating antibiotic resistance. J. Glob. Antimicrob. Resist. 2014, 2, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Honda, H.; Higuchi, N.; Shintani, K.; Higuchi, M.; Warren, D.K. Inadequate empiric antimicrobial therapy and mortality in geriatric patients with bloodstream infection: A target for antimicrobial stewardship. J. Infect. Chemother. 2018, 24, 807–811. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Ji, J.; Shen, P.; Ying, C.; Li, L.; Xiao, Y. The professional status of infectious disease physicians in China: A nationwide cross-sectional survey. Clin. Microbiol. Infect. 2018, 24, 82.e5–82.e10. [Google Scholar] [CrossRef] [Green Version]
- Molloy, L.; McGrath, E.; Thomas, R.; Kaye, K.S.; Rybak, M.J. Acceptance of pharmacist-driven antimicrobial stewardship recommendations with differing levels of physician involvement in a children’s hospital. Clin. Pediatr. 2017, 56, 744–751. [Google Scholar] [CrossRef]
- Morency-Potvin, P.; Schwartz, D.N.; Weinstein, R.A. Antimicrobial stewardship: How the microbiology laboratory can right the ship. Clin. Microbiol. Rev. 2017, 30, 381–407. [Google Scholar] [CrossRef] [Green Version]
- Shigemura, K.; Arakawa, S.; Fujisawa, M. Treatment strategies for urinary tract infections under consideration of antibiotic resistant strains: In terms of urologists. Jpn. J. Chemother. 2015, 63, 462–468. [Google Scholar]
- Karl, I.E. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 2003, 348, 138–150. [Google Scholar]
- Micek, S.T.; Hampton, N.; Kollef, M. Risk factors and outcomes for ineffective empiric treatment of sepsis caused by gram-negative pathogens: Stratification by onset of infection. Antimicrob. Agents Chemother. 2018, 62, e01577-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spoorenberg, V.; Hulscher, M.E.; Akkermans, R.P.; Prins, J.M.; Geerlings, S.E. Appropriate antibiotic use for patients with urinary tract infections reduces length of hospital stay. Clin. Infect. Dis. 2013, 58, 164–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doernberg, S.B.; Dudas, V.; Trivedi, K.K. Implementation of an antimicrobial stewardship program targeting residents with urinary tract infections in three community long-term care facilities: A quasiexperimental study using time-series analysis. Antimicrob. Resist. Infect. Control 2015, 4, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dik, J.W.H.; Hendrix, R.; Lo-Ten-Foe, J.R.; Wilting, K.R.; Panday, P.N.; van Gemert-Pijnen, L.E.; Leliveld, A.M.; van der Palen, J.; Friedrich, A.W.; Sinha, B. Automatic day-2 intervention by a multidisciplinary antimicrobial stewardship-team leads to multiple positive effects. Front. Microbiol. 2015, 6, 546. [Google Scholar] [CrossRef]
- Yanai, M.; Ogasawara, M.; Hayashi, Y.; Suzuki, K.; Takahashi, H.; Satomura, A. Impact of interventions by antimicrobial stewardship program team on appropriate antimicrobial therapy in patients with bacteremic urinary tract infection. J. Infect. Chemother. 2018, 24, 206–211. [Google Scholar] [CrossRef]
- Esteve-Palau, E.; Grau, S.; Herrera, S.; Sorli, L.; Montero, M.; Segura, C.; Durán, X.; Horcajada, J.P. Impact of an antimicrobial stewardship program on urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Rev. Esp. Quimioter. 2018, 31, 110. [Google Scholar]
- Carbo, J.F.; Ruh, C.A.; Kurtzhalts, K.E.; Ott, M.C.; Sellick, J.A.; Mergenhagen, K.A. Male veterans with complicated urinary tract infections: Influence of a patient-centered antimicrobial stewardship program. Am. J. Infect. Control 2016, 44, 1549–1553. [Google Scholar] [CrossRef]
- MacDougall, C.; Polk, R.E. Antimicrobial stewardship programs in health care systems. Clin. Microbiol. Rev. 2005, 18, 638–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Infectious disease | 2014–2018 (n = 118) | 2014 (n = 29) | 2015 (n = 39) | 2016 (n = 19) | 2017 (n = 17) | 2018 (n = 14) | p |
---|---|---|---|---|---|---|---|
Disease that require drainage | 28 | 4 | 7 | 8 | 5 | 4 | 0.87 |
Pyelonephritis | 55 | 9 | 15 | 10 | 10 | 11 | 0.63 |
Indefinite infection | 18 | 6 | 6 | 3 | 1 | 2 | 0.033 |
Febrile neutropenia | 14 | 1 | 9 | 4 | 0 | 0 | 0.17 |
Wound infection | 5 | 2 | 1 | 1 | 1 | 0 | - |
s/o peritonitis | 4 | 4 | 0 | 0 | 0 | 0 | - |
Acute bacterial prostatitis | 3 | 1 | 0 | 2 | 0 | 0 | - |
CRBSI | 2 | 1 | 1 | 0 | 0 | 0 | - |
Bacteremia | 2 | 2 | 0 | 0 | 0 | 0 | - |
Acute prostatitis | 2 | 0 | 2 | 0 | 0 | 0 | - |
Others | 16 | 3 | 5 | 1 | 6 | 1 | 0.74 |
Total cases | 121 a | 29 | 39 | 21 | 18 | 14 |
Antibiotics | 2014–2018 (n = 118) | 2014 (n = 29) | 2015 (n = 39) | 2016 (n = 19) | 2017 (n = 17) | 2018 (n = 14) | p |
---|---|---|---|---|---|---|---|
Antipseudomonal penicillins | 67 | 18 | 16 | 13 | 12 | 8 | 0.017 |
Carbapenems | 25 | 4 | 9 | 3 | 4 | 5 | 0.94 |
Antipseudomonal cephalosporins | 16 | 7 | 7 | 1 | 0 | 1 | 0.11 |
Fluoroquinolones | 4 | 0 | 1 | 1 | 1 | 1 | - |
Anti-MRSA agents | 10 | 1 | 6 | 2 | 0 | 1 | 0.49 |
Total cases | 122 a | 30 | 39 | 20 | 17 | 16 |
Reason for intervention | 2014–2018 (n = 118) | 2014 (n = 29) | 2015 (n = 39) | 2016 (n = 19) | 2017 (n = 17) | 2018 (n = 14) | p |
---|---|---|---|---|---|---|---|
De-escalation | 35 | 5 | 12 | 7 | 7 | 4 | 0.50 |
Dose optimization | 25 | 10 | 8 | 4 | 0 | 3 | 0.083 |
Inappropriate selection of antibiotics | 20 | 5 | 6 | 4 | 3 | 2 | 0.083 |
No cultures submitted for pathogen identification | 11 | 6 | 3 | 0 | 1 | 1 | 0.17 |
Duration of antimicrobial therapies | 10 | 0 | 2 | 0 | 5 | 3 | 0.17 |
Escalation | 4 | 3 | 1 | 0 | 0 | 0 | - |
Unknown focus | 2 | 0 | 0 | 0 | 1 | 1 | - |
Others | 20 | 6 | 5 | 5 | 2 | 2 | <0.001 |
Total cases | 127 a | 35 | 37 | 20 | 19 | 16 |
Sample Type | 2014 | 2015 | 2016 | 2017 | 2018 | p |
---|---|---|---|---|---|---|
Blood culture | 15.8 | 19.9 | 22.3 | 22.3 | 26.6 | 0.009 |
Urine culture | 14.4 | 25.9 | 35.4 | 36.1 | 27.4 | 0.24 |
Drainage culture | 0.11 | 0.46 | 0.39 | 0.51 | 0.89 | 0.035 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uda, A.; Shigemura, K.; Kitagawa, K.; Osawa, K.; Onuma, K.; Inoue, S.; Kotani, J.; Yan, Y.; Nakano, Y.; Nishioka, T.; et al. How Does Antimicrobial Stewardship Affect Inappropriate Antibiotic Therapy in Urological Patients? Antibiotics 2020, 9, 63. https://doi.org/10.3390/antibiotics9020063
Uda A, Shigemura K, Kitagawa K, Osawa K, Onuma K, Inoue S, Kotani J, Yan Y, Nakano Y, Nishioka T, et al. How Does Antimicrobial Stewardship Affect Inappropriate Antibiotic Therapy in Urological Patients? Antibiotics. 2020; 9(2):63. https://doi.org/10.3390/antibiotics9020063
Chicago/Turabian StyleUda, Atsushi, Katsumi Shigemura, Koichi Kitagawa, Kayo Osawa, Kenichiro Onuma, Shigeaki Inoue, Joji Kotani, Yonmin Yan, Yuzo Nakano, Tatsuya Nishioka, and et al. 2020. "How Does Antimicrobial Stewardship Affect Inappropriate Antibiotic Therapy in Urological Patients?" Antibiotics 9, no. 2: 63. https://doi.org/10.3390/antibiotics9020063
APA StyleUda, A., Shigemura, K., Kitagawa, K., Osawa, K., Onuma, K., Inoue, S., Kotani, J., Yan, Y., Nakano, Y., Nishioka, T., Yano, I., Miyara, T., & Fujisawa, M. (2020). How Does Antimicrobial Stewardship Affect Inappropriate Antibiotic Therapy in Urological Patients? Antibiotics, 9(2), 63. https://doi.org/10.3390/antibiotics9020063