Genomic Characterization of New Variant of Hydrogen Sulfide (H2S)-Producing Escherichia coli with Multidrug Resistance Properties Carrying the mcr-1 Gene in China †
Abstract
:1. Introduction
2. Case Study
3. Conclusions
4. Data Availability
Author Contributions
Funding
Conflicts of Interest
References
- Bailey, J.K.; Pinyon, J.L.; Anantham, S.; Hall, R.M. Commensal Escherichia coli of healthy humans: A reservoir for antibiotic-resistance determinants. J. Med. Microbiol. 2010, 59, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Lautrop, H.; Orskov, I.; Gaarslev, K. Hydrogen sulfide producing variants of Escherichia coli. Acta Pathol. Microbiol. Scand. 1971, 79, 641–650. [Google Scholar]
- Jones, R.T.; Thai, L.P.; Silver, R.P. Genetic and molecular characterization of an Escherichia coli plasmid coding for hydrogen sulfide production and drug resistance. Antimicrob. Agents Chemother. 1978, 14, 765–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shatalin, K.; Shatalina, E.; Mironov, A.; Nudler, E. H2S: A Universal Defense Against Antibiotics in Bacteria. Science 2011, 334, 986–990. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, Y.; Palmer, L.D.; Kehl-Fie, T.E.; Skaar, E.P.; Trinidad, J.C.; Giedroc, D.P. Hydrogen Sulfide and Reactive Sulfur Species Impact Proteome S-Sulfhydration and Global Virulence Regulation in Staphylococcus aureus. ACS Infect. Dis. 2017, 3, 744–755. [Google Scholar] [CrossRef] [Green Version]
- Quinn, P.J.; Markey, B.K.; Leonard, F.C.; Hartigan, P.; Fanning, S.; Fitzpatrick, E. Veterinary Microbiology and Microbial Disease: Pathogenic Bacteria; Blackwell Scientific: London, UK; Oxford, UK, 2002; pp. 113–115. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CL SI: Wayne, PA, USA, 2019. [Google Scholar]
- Elbediwi, M.; Li, Y.; Paudyal, N.; Pan, H.; Li, X.; Xie, S.; Rajkovic, A.; Feng, Y.; Fang, W.; Rankin, S.C.; et al. Global Burden of Colistin-Resistant Bacteria: Mobilized Colistin Resistance Genes Study (1980–2018). Microorganisms 2019, 7, 461. [Google Scholar] [CrossRef] [Green Version]
- Harnett, N.; Mangan, L.; Brown, S.; Krishnan, C. Thermosensitive transfer of antimicrobial resistances and citrate utilization and cotransfer of hydrogen sulfide production from an Escherichia coli isolate. Diagn. Microbiol. Infect. Dis. 1996, 24, 173–178. [Google Scholar] [CrossRef]
- Kor, S.B.; Choo, Q.C.; Chew, C.H. New integron gene arrays from multiresistant clinical isolates of members of the Enterobacteriaceae and Pseudomonas aeruginosa from hospitals in Malaysia. J. Med. Microbiol. 2013, 62, 412–420. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Biswas, S.; Brunel, J.M.; Dubus, J.C.; Reynaud-Gaubert, M.; Rolain, J.M. Colistin: An update on the antibiotic of the 21st century. Expert Rev. Anti Infect. Ther. 2012, 10, 917–934. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, H.; Liu, Y.H.; Feng, Y. Towards Understanding MCR-like Colistin Resistance. Trends Microbiol. 2018, 26, 794–808. [Google Scholar] [CrossRef]
- Papa-Ezdra, R.; Grill Diaz, F.; Vieytes, M.; García-Fulgueiras, V.; Caiata, L.; Ávila, P.; Brasesco, M.; Christophersen, I.; Cordeiro, N.F.; Algorta, G.; et al. First three Escherichia coli isolates harboring mcr-1 in Uruguay. J. Glob. Antimicrob. Resist. 2019, 20, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Wang, M.; Park, C.H.; Kim, E.C.; Jacoby, G.A.; Hooper, D.C. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 3582–3584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azargun, R.; Soroush Barhaghi, M.H.; SamadiKafil, H.; AhangarOskouee, M.; Sadeghi, V.; Memar, M.Y.; Ghotaslou, R. Frequency of DNA gyrase and topoisomerase IV mutations and plasmid-mediated quinolone resistance genes among Escherichia coli and Klebsiella pneumoniae isolated from urinary tract infections in Azerbaijan, Iran. J. Glob. Antimicrob. Resist. 2019, 17, 39–43. [Google Scholar] [CrossRef]
- Blahna, M.T.; Zalewski, C.A.; Reuer, J.; Kahlmeter, G.; Foxman, B.; Marrs, C.F. The role of horizontal gene transfer in the spread of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. J. Antimicrob. Chemother. 2006, 57, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Ho, P.L.; Wong, R.C.; Chow, K.H.; Que, T.L. Distribution of integron-associated trimethoprim-sulfamethoxazole resistance determinants among Escherichia coli from humans and food-producing animals. Lett. Appl. Microbiol. 2009, 49, 627–634. [Google Scholar] [CrossRef]
- Moran, R.A.; Holt, K.E.; Hall, R.M. pCERC3 from a commensal ST95 Escherichia coli: A ColV virulence-multiresistance plasmid carrying a sul3-associated class 1 integron. Plasmid 2016, 84–85, 11–19. [Google Scholar] [CrossRef]
- Di Conza, J.A.; Badaracco, A.; Ayala, J.; Rodríguez, C.; Famiglietti, A.; Gutkind, G.O. β-lactamases produced by amoxicillin-clavulanate-resistant enterobacteria isolated in BuenosAires, Argentina: A new blaTEM gene. Rev. Argent. Microbiol. 2014, 46, 210–217. [Google Scholar]
- Dziri, R.; Klibi, N.; Alonso, C.A.; Jouini, A.; Ben Said, L.; Chairat, S.; Bellaaj, R.; Boudabous, A.; Ben Slama, K.; Torres, C. Detection of CTX-M-15-Producing Escherichia coli Isolates of Lineages ST131-B2 and ST167-A in Environmental Samples of a Tunisian Hospital. Microb. Drug Resist. 2016, 22, 399–403. [Google Scholar] [CrossRef]
- Bedenić, B.; Slade, M.; Starčević, L.Ž.; Sardelić, S.; Vranić-Ladavac, M.; Benčić, A.; ZujićAtalić, V.; Bogdan, M.; Bubonja-Šonje, M.; Tomić-Paradžik, M.; et al. Epidemic spread of OXA-48 beta-lactamase in Croatia. J. Med. Microbiol. 2018, 67, 1031–1041. [Google Scholar] [CrossRef]
- Grape, M.; Sundström, L.; Kronvall, G. Sulphonamide resistance gene sul3 found in Escherichia coli isolates from human sources. J. Antimicrob. Chemother. 2003, 52, 1022–1024. [Google Scholar] [CrossRef]
- Vinué, L.; Sáenz, Y.; Rojo-Bezares, B.; Olarte, I.; Undabeitia, E.; Somalo, S.; Zarazaga, M.; Torres, C. Genetic environment of sul genes and characterisation of integrons in Escherichia coli isolates of blood origin in a Spanish hospital. Int. J. Antimicrob. Agents 2010, 35, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Infante, B.; Grape, M.; Larsson, M.; Kristiansson, C.; Pallecchi, L.; Rossolini, G.M.; Kronvall, G. Acquired sulphonamide resistance genes in faecal Escherichia coli from healthy children in Bolivia and Peru. Int. J. Antimicrob. Agents 2005, 25, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Yahiaoui, M.; Robin, F.; Bakour, R.; Hamidi, M.; Bonnet, R.; Messai, Y. Antibiotic Resistance, Virulence, and Genetic Background of Community-Acquired Uropathogenic Escherichia coli from Algeria. Microb. Drug Resist. 2015, 21, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Olowe, O.A.; Idris, O.J.; Taiwo, S.S. Prevalence of tet genes mediating tetracycline resistance in Escherichia coli clinical isolates in OsunState, Nigeria. Eur. J. Microbiol. Immunol. 2013, 3, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seputiené, V.; Povilonis, J.; Ruzauskas, M.; Pavilonis, A.; Suziedéliené, E. Prevalence of trimethoprim resistance genes in Escherichia coli isolates of human and animal origin in Lithuania. J. Med. Microbiol. 2010, 59, 315–322. [Google Scholar] [CrossRef] [PubMed]
Classes | Antibiotics | Minimum Inhibitory Concentration (MIC) Values (mg/L) | Interpretation | Antibiotic Resistance Genes |
---|---|---|---|---|
Aminoglycosides | Gentamicin | >32 | R | aadA1, aadA2 |
Kanamycin | 64 | R | ||
Streptomycin | >64 | R | ||
β-Lactams | Ampicillin | >128 | R | blaTEM-1B |
Polymyxins | Colistin | 4 | R | mcr-1 |
Fluoroquinolones | Ciprofloxacin | 2 | R | oqxA, oqxB |
Nalidixic acid | 64 | R | ||
Phenicols | Chloramphenicol | 128 | R | floR, cmlA1 |
Trimethoprim /Sulfonamides/ | Trimethoprim/ Sulfamethoxazole | 32/608 | R | dfrA12, sul3 |
Tetracyclines | Tetracycline | >128 | R | Tet(A) |
Carbapenems | Imipenem | <0.5 | S | |
Meropenem | 0.5 | S | ||
Cephalosporins | Cefotaxime | <0.5 | S | |
Ceftiofur | <0.5 | S |
Virulence Factors | Related Genes |
---|---|
Adherence: | |
E. coli laminin-binding fimbriae (ELF) | elfA |
E. coli laminin-binding fimbriae (ELF) | elfC |
E. coli laminin-binding fimbriae (ELF) | elfD |
E. coli laminin-binding fimbriae (ELF) | elfG |
EaeH | eaeH |
Hemorrhagic E. coli pilus (HCP) | hcpA |
Hemorrhagic E. coli pilus (HCP) | hcpB |
Type I fimbriae | fimD |
Type I fimbriae | fimF |
Type I fimbriae | fimG |
Type I fimbriae | fimH |
Autotransporter: | |
Cah, AIDA-I type | cah |
EhaB, AIDA-I type | ehaB |
Invasion: | |
Invasion of brain endothelial cells (Ibes) | ibeB |
Invasion of brain endothelial cells (Ibes) | ibeC |
Non-LEE encoded TTSS effectors: | |
EspL1 | espL1 |
EspL4 | espL4 |
EspR1 | espR1 |
EspR4 | espR4 |
EspX4 | espX4 |
Secretion system: | |
ACE T6SS | aec15 |
ACE T6SS | aec17 |
ACE T6SS | aec18 |
ACE T6SS | aec19 |
ACE T6SS | aec22 |
ACE T6SS | aec24 |
ACE T6SS | aec25 |
ACE T6SS | aec26 |
ACE T6SS | aec27/ clpV |
ACE T6SS | aec28 |
Toxin: | |
Hemolysin/cytolysin A | hlyE/clyA |
Biofilm formation: | |
AdeFGH efflux pump/transport autoinducer | adeG |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, S.; Elbediwi, M.; Gu, G.; Yue, M. Genomic Characterization of New Variant of Hydrogen Sulfide (H2S)-Producing Escherichia coli with Multidrug Resistance Properties Carrying the mcr-1 Gene in China. Antibiotics 2020, 9, 80. https://doi.org/10.3390/antibiotics9020080
Biswas S, Elbediwi M, Gu G, Yue M. Genomic Characterization of New Variant of Hydrogen Sulfide (H2S)-Producing Escherichia coli with Multidrug Resistance Properties Carrying the mcr-1 Gene in China. Antibiotics. 2020; 9(2):80. https://doi.org/10.3390/antibiotics9020080
Chicago/Turabian StyleBiswas, Silpak, Mohammed Elbediwi, Guimin Gu, and Min Yue. 2020. "Genomic Characterization of New Variant of Hydrogen Sulfide (H2S)-Producing Escherichia coli with Multidrug Resistance Properties Carrying the mcr-1 Gene in China" Antibiotics 9, no. 2: 80. https://doi.org/10.3390/antibiotics9020080
APA StyleBiswas, S., Elbediwi, M., Gu, G., & Yue, M. (2020). Genomic Characterization of New Variant of Hydrogen Sulfide (H2S)-Producing Escherichia coli with Multidrug Resistance Properties Carrying the mcr-1 Gene in China. Antibiotics, 9(2), 80. https://doi.org/10.3390/antibiotics9020080