Carbapenem-Resistant but Cephalosporin-Susceptible Pseudomonas aeruginosa in Urinary Tract Infections: Opportunity for Colistin Sparing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Epidemiology and Antibiotic Susceptibility of Car-R/Ceph-S P. aerugonisa from UTIs
2.2. Phenotypic Characterization of Resistance Determinants in Car-R/Ceph-S P. aerugonisa Isolates
2.3. Discussion and Literature Review
3. Materials and Methods
3.1. Study Design and Data Collection
3.2. Identification of P. aeruginosa Isolates
3.3. Antibiotic Susceptibility Testing and Determination of the Minimum Inhibitory Concentrations (MICs)
3.4. Phenotypic Detection of AmpC Overexpression and Carbapenemase Production
3.5. Phenotypic Detection of Efflux Pumps
3.6. Statistical Anaylsis
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Gajdács, M. The Concept of an Ideal Antibiotic: Implications for Drug Design. Molecules 2019, 24, e892. [Google Scholar] [CrossRef] [Green Version]
- Ruppé, É.; Werther, P.L.; Barbier, F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann. Intensive Care 2015, 5, e21. [Google Scholar] [CrossRef] [Green Version]
- Enoch, D.A.; Birkett, C.I.; Ludlam, H.A. Non-fermentative Gram-negative bacteria. Int. J. Antimicrob. Agents 2007, 29, S33–S41. [Google Scholar] [CrossRef]
- Schaumann, R.; Knopp, N.; Genzel, G.H.; Losensky, K.; Rosenkranz, C.; Stingu, C.S.; Schellenberger, W.; Rodloff, A.C.; Eschrich, K. Discrimination of Enterobacteriaceae and non-fermenting Gram-negative bacilli. Indian J. Med. Res. 2017, 145, 665–672. [Google Scholar]
- Asif, M.; Alvi, I.A.; Rehmann, S.U. Insight into Acinetobacter baumannii: Patogenesis, global resistance, mechanisms of resistance, treatment options and alternative modalities. Infect. Drug Res. 2018, 11, 1249–1260. [Google Scholar] [CrossRef] [Green Version]
- Wiedemann, B.; Heising, A.; Heising, P. Uncomplicated urinary tract infections and antibiotic resistance-epidemiological and mechanistic aspects. Antibiotics 2014, 3, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Foxman, B. Epidemiology of urinary tract infections: Incidence, morbidity and economic costs. Dis. Mon. 2003, 49, 53–70. [Google Scholar] [CrossRef]
- Gajdács, M.; Bátori, Z.; Ábrók, M.; Lázár, A.; Burián, K. Characterization of Resistance in Gram-Negative Urinary Isolates Using Existing and Novel Indicators of Clinical Relevance: A 10-Year Data Analysis. Life 2020, 10, e16. [Google Scholar] [CrossRef] [Green Version]
- Stefaniuk, E.; Suchocka, U.; Bosacka, K.; Hryniewicz, W. Etiology and antibiotic susceptibility of bacterial pathogens responsible for community-acquired urinary tract infections in Poland. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1363–1369. [Google Scholar] [CrossRef] [Green Version]
- Mittal, R.; Aggarwal, S.; Sharma, S.; Chhibber, S.; Harjai, K. Urinary tract infections caused by Pseudomonas aeruginosa: A minireview. J. Infect. Public Health 2009, 2, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Gajdács, M.; Burián, K.; Terhes, G. Resistance Levels and Epidemiology of Non-Fermenting Gram-Negative Bacteria in Urinary Tract Infections of Inpatients and Outpatients (RENFUTI): A 10-Year Epidemiological Snapshot. Antibiotics 2019, 8, e143. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, e212527. [Google Scholar] [CrossRef]
- Gajdács, M. Intravenous or oral antibiotic therapy: Sophie’s choice? Gen. Int. Med. Clin. Innov. 2019, 4, 1–2. [Google Scholar] [CrossRef]
- Khalili, Y.; Yekani, M.; Goli, H.R.; Memar, M.Y. Characterization of carbapenem-resistant but cephalosporin-susceptible Pseudomonas aeruginosa. Acta Microbiologica Immunologica Hungarica 2019, 66, 529–540. [Google Scholar] [CrossRef]
- Khuntayaporn, P.; Montakantikul, P.; Santanirand, P.; Kiratisin, P.; Chomnawang, M.T. Molecular investigation of carbapenem resistance among multidrug-resistant Pseudomonas aerugonisa isolated clinically in Thailand. Microbiol. Immunol. 2013, 57, 170–178. [Google Scholar] [CrossRef]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med. Sci. 2018, 6, e1. [Google Scholar] [CrossRef] [Green Version]
- Campana, E.H.; Xavier, D.E.; Petrolini, F.V.; Cordeiro-Moura, J.R.; de Araujo, M.R.; Gales, A.C. Carbapenem-resistant and cephalosporin-susceptible: A worrisome phenotype among Pseudomonas aeruginosa clinical isolates in Brazil. Braz. J. Infect. Dis. 2017, 21, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.R.; Wang, W.P.; Huang, M.; Shi, L.N.; Wang, Y.; Shao, H.F. Mechanisms of carbapenem resistance in cephalosporin-susceptible Pseudomonas aeruginosa in China. Diagn. Microbiol. Infect. Dis. 2014, 78, 268–270. [Google Scholar] [CrossRef]
- MacDougall, C. Beyond Susceptible and Resistant, Part I: Treatment of Infections Due to Gram-Negative Organisms with Inducible β-Lactamases. JPPT 2011, 16, 23–30. [Google Scholar]
- Potron, A.; Poirel, L.; Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents 2015, 45, 568–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangogdu, Z.; Wagenlehner, F.M. Global epidemiology of urinary tract infections. Curr. Opin. Infect. Dis. 2016, 19, 73–79. [Google Scholar]
- Cole, S.J.; Records, A.R.; Orr, M.W.; Linden, S.R.; Lee, V.T. Catheter-Associated Urinary Tract Infection by Pseudomonas aeruginosa is Mediated by Exopolysaccharide-Independent Biofilms. Infect. Immun. 2014, 82, 2048–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreiro, J.L.L.; Otero, J.Á.; González, L.G.; Lamazares, L.N.; Blanco, A.A.; Sanjurjo, J.R.B.; Conde, I.R.; Soneira, M.F.; Aguado, J.F. Pseudomonas aeruginosa urinary tract infections in hospitalized patients: Mortality and prognostic factors. PLoS ONE 2017, 12, e0178178. [Google Scholar]
- Shigemura, K.; Arakawa, S.; Sakai, Y.; Kinoshita, S.; Tanaka, K.; Fujisawa, M. Complicated urinary tract infection caused by Pseudomonas aeruginosa in a single institution (1999–2003). Int. J. Urol. 2006, 13, 538–542. [Google Scholar] [CrossRef]
- Vijaya, D.; Kamala, K.; Bavani, S.; Veena, M. Prevalence of nonfermenters in clinical specimens. Ind. J. Med. Sci. 2000, 54, 87–91. [Google Scholar]
- Venier, A.G.; Lavigne, T.; Jarno, P.; L’heriteau, F.; Coignard, B.; Savey, A.; Rogues, A.M. Nosocomial urinary tract infection in the intensive care unit: When should Pseudomonas aeruginosa be suspected? Experience of the French national surveillance of nosocomial infections in the intensive care unit, Rea-Raisin. Clin. Microbiol. Infect. 2012, 18, E13–E15. [Google Scholar] [CrossRef]
- Marcus, N.; Ashkenazi, S.; Samra, Z.; Cohen, A.; Livni, G. Community-Acquired Pseudomonas aeruginosa Urinary Tract Infections in Children Hospitalized in a Tertiary Center: Relative Frequency, Risk Factors, Antimicrobial Resistance and Treatment. Infection 2008, 36, 421–426. [Google Scholar] [CrossRef]
- Li, S.; Jia, X.; Zou, H.; Liu, H.; Guo, Y.; Zhang, L. Carbapenem-resistant and cephalosporin susceptible Pseudomonas aeruginosa: A notable phenotype in patients with bacteremia. Infect. Drug Res. 2018, 11, 1225–1235. [Google Scholar] [CrossRef] [Green Version]
- Wi, Y.M.; Choi, J.Y.; Lee, J.Y.; Kang, C.I.; Chung, D.R.; Peck, K.R.; Song, J.H.; Ko, K.S. Antimicrobial Effects of Beta-Lactams on Imipenem-Resistant Ceftazidime-Susceptible Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e00054-17. [Google Scholar] [CrossRef] [Green Version]
- Zaidenstein, R.; Miller, A.; Tal-Jasper, R.; Ofer-Friedman, H.; Sklarz, M.; Katz, D.E.; Lazarovitch, T.; Lepart, P.R.; Mengesha, B.; Tzuman, O.; et al. Therapeutic Management of Pseudomonas aeruginosa Bloodstream Infection Non-Susceptible to Carbapenems but Susceptible to “Old” Cephalosporins and/or to Penicillins. Microorganisms 2018, 6, e9. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Burián, K. Comparative Epidemiology and Resistance Trends of Common Urinary Pathogens in a Tertiary-Care Hospital: A 10-Year Surveillance Study. Medicina 2019, 55, e356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016, 2016, e2475067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanan, N.; Johnson, L.; MacDougall, C. Beyond Susceptible and Resistant, Part III: Treatment of Infections due to Gram-Negative Organisms Producing Carbapenemases. JPPT 2016, 21, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Corcione, S.; Lupia, T.; Maraolo, A.E.; Mornese Pinna, S.; Gentile, I.; De Rosa, F.G. Carbapenem-sparing strategy: Carbapenemase, treatment, and stewardship. Curr. Opin. Infect. Dis. 2019, 32, 663–673. [Google Scholar] [CrossRef]
- Tanita, M.T.; Dantas de Maio Carrilho, C.M.; Garcia, J.P.; Festti, J.; Cardoso, L.T.Q.; Grion, C.M.C. Parenteral colistin for the treatment of severe infections: A single center experience. Rev. Bras. Ter. Intensiva 2013, 25, 297–305. [Google Scholar] [CrossRef]
- Nation, R.L.; Garonzik, S.M.; Thamlikitkul, V.; Giamarellos-Bourboulis, E.J.; Forrest, A.; Paterson, D.L.; Li, J.; Silveira, F.P. Dosing Guidance for Intravenous Colistin in Critically Ill Patients. Clin. Infect. Dis. 2017, 64, 565–571. [Google Scholar] [CrossRef]
- Chou, C.H.; Lai, Y.R.; Chi, C.Y.; Ho, M.W.; Chen, C.L.; Liao, W.C.; Ho, C.H.; Chen, Y.A.; Chen, C.Y.; Lin, Y.T.; et al. Long-term surveillance of antibiotic prescriptions and the prevalence of antimicrobial resistance in non-fermenting Gram-negative bacilli. Microorganisms 2020, 8, e397. [Google Scholar] [CrossRef] [Green Version]
- Veeraghavan, B.; Pragasam, A.K.; Bakthavatchalam, Y.D.; Anandan, S.; Swaminathan, S.; Sundaram, B. Colistin-sparing approaches with newer antimicrobials to treat carbapenem-resistant organisms: Current evidence and future prospects. Ind. J. Med. Microbiol. 2019, 37, 72–90. [Google Scholar] [CrossRef]
- Martins, N.; Leroy, S.; Blanc, V. Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: A narrative review for the clinician. J. Infect. 2014, 69, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Martínez, J.M.; Poirel, L.; Nordmann, P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2009, 53, 4783–4788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoneyama, H.; Yamano, Y.; Nakae, T. Role of porins in the antibiotic susceptibility of Pseudomonas aeruginosa: Construction of mutants with deletions in the multiple porin genes. Biochem. Biophys. Res. Commun. 1995, 4, 88–95. [Google Scholar] [CrossRef]
- Gajdács, M.; Urbán, E. Prevalence and Antibiotic Resistance of Stenotrophomonas maltophilia in Respiratory Tract Samples: A 10-Year Epidemiological Snapshot. Health Serv. Manag. Epidemiol. 2019, 6, e2333392819870774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCAST Clinical Breakpoints—Breakpoints and Guidance. Available online: http://www.eucast.org/clinical_breakpoints/ (accessed on 26 February 2020).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Habarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhi, M.T.; Khalili, Y.; Ghotaslou, R.; Yousefi, S.; Kafil, H.S.; Naghili, B.; Sheikhalizadeh, V. Evaluation of carbapenem resistance mechanisms and its association with Pseudomonas aeruginosa infection in the Nortwest of Iran. Microb. Drug Res. 2018, 24, 126–135. [Google Scholar] [CrossRef]
- Rao, M.R.; Chandrashaker, P.; Mahale, R.P.; Shivappa, S.G.; Gowda, R.S.; Chitharagi, V.B. Detection of carbapenemase production in Enterobacteriaceae and Pseudomonas species by carbapenemase Nordmann–Poirel test. J. Lab. Physicians 2019, 11, 107–110. [Google Scholar]
- Morales, S.; Gallego, M.A.; Vanegas, J.M.; Jiménez, J.N. Detection of carbapenem resistance genes in Pseudomonas aeruginosa isolates with several phenotypic susceptibility profiles. CES Med. 2018, 32, 203–2014. [Google Scholar] [CrossRef]
- Pitoutm, J.D.; Revathi, G.; Chow, B.L.; Kabera, B.; Kariuki, S.; Nordmann, P.; Poirel, L. Metallo-β-lactamase-producing Pseudomonas aeruginosa isolates in Tunisia. Clin. Microbiol. Infect. 2008, 14, 755–759. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdács, M. Carbapenem-Resistant but Cephalosporin-Susceptible Pseudomonas aeruginosa in Urinary Tract Infections: Opportunity for Colistin Sparing. Antibiotics 2020, 9, 153. https://doi.org/10.3390/antibiotics9040153
Gajdács M. Carbapenem-Resistant but Cephalosporin-Susceptible Pseudomonas aeruginosa in Urinary Tract Infections: Opportunity for Colistin Sparing. Antibiotics. 2020; 9(4):153. https://doi.org/10.3390/antibiotics9040153
Chicago/Turabian StyleGajdács, Márió. 2020. "Carbapenem-Resistant but Cephalosporin-Susceptible Pseudomonas aeruginosa in Urinary Tract Infections: Opportunity for Colistin Sparing" Antibiotics 9, no. 4: 153. https://doi.org/10.3390/antibiotics9040153
APA StyleGajdács, M. (2020). Carbapenem-Resistant but Cephalosporin-Susceptible Pseudomonas aeruginosa in Urinary Tract Infections: Opportunity for Colistin Sparing. Antibiotics, 9(4), 153. https://doi.org/10.3390/antibiotics9040153