Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms
Abstract
:1. Introduction
2. Results
2.1. Light Characterization
2.2. Differences in Microorganisms’ Biofilms
2.3. P. Fluorescens
2.3.1. Inactivation Kinetics, Parameters and log10 Reductions
2.3.2. Sublethal Injury
2.4. S. Epidermidis
2.4.1. Inactivation Kinetics, Parameters and log10 Reduction
2.4.2. Sublethal Injury
2.5. Inactivation by Light and Dose for 1-log10 Reduction
3. Discussion
3.1. P. fluorescens and S. epidermidis Inactivation by LEDs
3.1.1. Violet Light
3.1.2. Blue Light
3.1.3. Green, Yellow and Red Light
3.2. Sublethal Injury
3.3. Factors Influencing the Inactivation Kinetics
3.4. Doses and Bacterial Trends
4. Materials and Methods
4.1. Bacterial Strains and Pre-Culture Preparation
4.2. Biofilm Growth
4.3. Rinsing Procedure
4.4. Light Set up and Optical Conditions
4.5. Biofilm Treatments
4.6. Biofilm Quantification
4.7. Inactivation Model
4.8. Sublethal Injury
4.9. Dose for 1 log10 Reduction
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Tan, X.; Du, R.; Zhao, F.; Zhang, L.; Han, Y.; Zhou, Z. Bacterial composition of biofilms formed on dairy-processing equipment. Prep. Biochem. Biotechnol. 2019, 50, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Leriche, V.; Sibille, P.; Carpentier, B. Use of an enzyme-linked lectinsorbent assay to monitor the shift in polysaccharide composition in bacterial biofilms. Appl. Environ. Microbiol. 2000, 66, 1851–1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, E.E.; Wozniak, D.J. Pseudomonas biofilm matrix composition and niche biology. Fems Microb. Rev. 2012, 36, 893–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seviour, T.; Derlon, N.; Du, M.; Flemming, H.-C.; Girbal-Neuhauser, E.; Horn, H.; Kjelleberg, S.; van Loosdrecht, M.C.M.; Lotti, T.; Malpei, M.F.; et al. Extracellular polymeric substances of biofilms: Suffering from an identity crisis. Water Res. 2019, 151, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Fang, H.H. Quantification of extracellular polymeric substances in biofilms by confocal laser scanning microscopy. Biotechnol. Lett. 2001, 23, 405–409. [Google Scholar] [CrossRef]
- Cochran, W.L.; McFeters, G.A.; Stewart, P.S. Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. J. Appl. Microbiol. 2000, 88, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Luque-Sastre, L.; Fox, E.M.; Jordan, K.; Fanning, S. A comparative study of the susceptibility of Listeria species to sanitizer treatments when grown under planktonic and biofilm conditions. J. Food Prot. 2018, 81, 1481–1490. [Google Scholar] [CrossRef]
- Majumdar, S.; Pal, S. Cross-species communication in bacterial world. J. Cell Commun. Signal. 2017, 11, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Mah, T.F.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Bryers, J.D. Medical biofilms. Biotechnol. Bioeng. 2008, 100, 1. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, J.; Khan, S.; Su, J.Q.; El-Latif Hesham, A.; Ditta, A.; Nawab, J.; Ali, A. Antibiotics in poultry manure and their associated health issues: A systematic review. J. Soils Sediments 2020, 20, 486–497. [Google Scholar] [CrossRef]
- Vestby, L.; Møretrø, T.; Langsrud, S.; Heir, E.; Nesse, L. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories. Bmc Vet. Res. 2009, 5, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iñiguez-Moreno, M.; Gutiérrez-Lomel, M.; Avila-Novoa, M.G. Kinetics of biofilm formation by pathogenic and spoilage microorganisms under conditions that mimic the poultry, meat, and egg processing industries. Int. J. Food Microbiol. 2019, 303, 32–41. [Google Scholar] [CrossRef]
- Røssvoll, E.; Langsrud, S.; Bloomfield, S.; Moen, B.; Heir, E.; Møretrø, T. The effects of different hygiene procedures in reducing bacterial contamination in a model domestic kitchen. J. Appl. Microbiol. 2015, 119, 582–593. [Google Scholar] [CrossRef]
- Song, H.H.; Lee, J.K.; Um, H.S.; Chang, B.S.; Lee, S.Y.; Lee, M.K. Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens. J. Periodontal. Implant. Sci. 2013, 43, 72–78. [Google Scholar] [CrossRef]
- Marti, R.; Schmid, M.; Kulli, S.; Schneeberger, K.; Naskova, J.; Knøchel, S.; Ahrens, C.H.; Hummerjohann, J. Biofilm formation potential of heat-resistant Escherichia coli dairy isolates and the complete genome of multidrug-resistant, heat-resistant strain FAM21845. Appl. Environ. Microbiol. 2017, 83, 15. [Google Scholar] [CrossRef] [Green Version]
- Kip, N.; van Veen, J. The dual role of microbes in corrosion. ISME J. 2015, 9, 542–551. [Google Scholar] [CrossRef]
- Govaert, M.; Smet, C.; Baka, M.; Ećimović, B.; Walsh, J.L.; Van Impe, J. Resistance of L. monocytogenes and S. Typhimurium towards Cold Atmospheric Plasma as function of biofilm age. Appl. Sci. 2018, 8, 2702. [Google Scholar] [CrossRef] [Green Version]
- Rai, M.; Ingle, A.; Gaikwad, S.; Gupta, I.; Gade, A.; Silvério da Silva, S. Nanotechnology based anti-infectives to fight microbial intrusions. J. Appl Microbiol. 2005, 33, 78–82. [Google Scholar] [CrossRef]
- Carmen, J.; Roeder, B.; Nelson, J.; Ogilvie, R.; Robison, R.; Schaalje, G.B.; Pitt, W.G. Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am. J. Infect. Control. 2005, 120, 3, 527–542. [Google Scholar] [CrossRef] [Green Version]
- Stiefel, P.; Mauerhofer, S.; Schneider, J.; Maniura-Weber, K.; Rosenberg, U.; Ren, Q. Enzymes enhance biofilm removal efficiency of cleaners. Antimicrob. Agents Chemother. 2016, 60, 3647–3652. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Kang, D. Elevated inactivation efficacy of a pulsed UVC Light-Emitting Diode system for foodborne pathogens on selective media and food surfaces. Appl. Environ. Microbiol. 2018, 84, 20. [Google Scholar] [CrossRef] [Green Version]
- Lipovsky, A.A.; Nitzan, Y.; Lubart, R. A possible mechanism for visible light-induced wound healing. Lasers Surg. Med. 2008, 40, 509–514. [Google Scholar] [CrossRef]
- Tavares, A.; Carvalho, C.M.B.; Faustino, M.A.; Neves, M.G.P.M.S.; Tomé, J.P.C.; Tomé, A.C.; Cavaleiro, J.A.S.; Cunha, Â.; Gomes, N.C.M.; Alves, E.; et al. Antimicrobial photodynamic therapy: Study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs 2010, 8, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Maresca, J.A.; Keffer, J.L.; Hempel, P.P.; Polson, S.W.; Shevchenko, O.; Bhavsar, J.; Powell, D.; Miller, K.J.; Singh, A.; Hahn, M.W. Light modulates the physiology of nonphototrophic Actinobact. J. Bacteriol. 2019, 24, 201. [Google Scholar] [CrossRef] [Green Version]
- De Souza, S.; Junqueira, J.; Balducci, I.; Koga-Ito, C. Photosensitization of different Candida species by low power laser light. J. Photochem. Photobiol. B Biol. 2006, 83, 34–38. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed light treatments for food preservation. A Review. Food Bioprocess. Technol. 2010, 3, 13. [Google Scholar] [CrossRef]
- Feuerstein, O. Light therapy: Complementary antibacterial treatment of oral biofilm. Adv. Dent. Res. 2012, 24, 103–107. [Google Scholar] [CrossRef]
- Kumar, A.; Ghate, V.; Kim, M.-J.; Zhou, W.; Khoo, G.H.; Yuk, H.-G. Kinetics of bacterial inactivation by 405 nm and 520 nm light emitting. J. Photochem. Photobiol. B Biol. 2015, 149, 37–44. [Google Scholar] [CrossRef]
- Lukšiene, Ž. New approach to inactivation of harmful and pathogenic microorganisms by photosensitization. Food Technol. Biotechnol. 2005, 43, 411–418. [Google Scholar] [CrossRef]
- Ferrer-Espada, R.; Liu, X.; Goh, X.S.; Sharo, X. Antimicrobial blue light inactivation of polymicrobial biofilms. Front. Microbiol. 2019, 10, 721. [Google Scholar] [CrossRef]
- Nitzan, Y.; Kauffman, M. Endogenous porphyrin production in bacteria by δ-aminolaevulinic acid and subsequent bacterial photoeradication. Lasers Med. Sci. 1999, 14, 269. [Google Scholar] [CrossRef]
- Soukos, N.S.; Som, S.; Aberne, A.D.; Ruggiero, K.; Dunham, J.; Lee, C.; Doukas, A.G.; Goodson, J.M. Phototargeting oral black-pigmented bacteria. Antimicrob. Agents Chemother. 2005, 49, 1391–1396. [Google Scholar] [CrossRef] [Green Version]
- Strakhovskaya, M.G.; Belenikina, N.S.; Ivanova, E.; Ivanova, E.V.; Chemeris, Y.K.; Stranadko, E.F. The photodynamic inactivation of the yeast Candida guilliermondii in the presence of photodithazine. Microbiology 2002, 71, 298. [Google Scholar] [CrossRef]
- Wu, J.; Chu, Z.; Ruan, Z.; Wang, X.; Dai, T.; Hu, X. Changes of intracellular porphyrin, reactive oxygen species, and fatty acids profiles during inactivation of methicillin-resistant Staphylococcus aureus by antimicrobial blue light. Front. Physiol. 2018, 28, 1658. [Google Scholar] [CrossRef]
- Amin, R.; Bhayana, B.; Hamblin, M.; Dai, T. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies. Lasers Surg. Med. 2016, 48, 562–568. [Google Scholar] [CrossRef] [Green Version]
- Schmid, J.; Hoenes, K.; Vatter, P.; Hessling, M. Antimicrobial effect of visible light-photoinactivation of Legionella rubrilucens by irradiation at 450, 470 and 620 nm. Antibiotics 2019, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Hoenes, K.; Hess, M.; Vatter, P.; Spellerberg, B.; Hessling, M. 405 nm and 450 nm Photoinactivation of Saccharomyces cerevisiae. Eur. J. Microbiol. Immunol. 2018, 4, 142–148. [Google Scholar] [CrossRef]
- Plavskii, V.Y.; Mikulich, A.V.; Tretyakova, A.I.; Leusenka, I.A.; Plavskaya, L.G.; Kazyuchits, O.A.; Dobysh, I.I.; Krasnenkova, T.P. Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells. J. Photochem. Photobiol. 2018, 183, 172–183. [Google Scholar] [CrossRef]
- Hoenes, K.; Wenzel, U.; Spellerberg, B.; Hessling, M. Photoinactivation sensitivity of Staphylococcus carnosus to visible-light irradiation as a function of wavelength. Photochem. Photobiol. 2020, 96, 156–169. [Google Scholar] [CrossRef]
- Nitzan, Y.; Salmon-Divon, M.; Shporen, E.; Malik, Z. ALA induced photodynamic effects on gram positive and negative bacteria. Photochem. Photobiol. Sci. 2004, 3, 430–435. [Google Scholar] [CrossRef]
- Barneck, M.D.; Rhodes, N.L.R.; de la Presa, M.; Allen, J.P.; Poursaid, A.E.; Nourian, M.M.; Firpo, M.A.; Langell, J.T. Violet 405-nm light: A novel therapeutic agent against common pathogenic bacteria. J. Surg. Res. 2016, 206, 316–324. [Google Scholar] [CrossRef]
- Gulías, Ò.; McKenzie, G.; Bayó, M.; Agut, M.; Nonell, S. Effective photodynamic inactivation of 26 Escherlichia coli strain with differen antibiotic susceptibility profiles: A planktonic and biofilm study. Antibiotics 2020, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Abana, C.; Brannon, J.; Ebbott, R.; Dunigan, T.; Guckes, K.; Fuseini, H.; Powers, J.; Rogers, B.R.; Hadjifrangiskou, M. Characterization of blue light irradiation effects on pathogenic and nonpathogenic Escherichia coli. Microbiologyopen 2017, 6, 4006–40014. [Google Scholar] [CrossRef]
- Ghate, V.; Leong, A.; Kumar, A.; Bang, W.; Zhou, W.; Yuk, H. Enhancing the antibacterial effect of 461 and 521 nm light emitting diodes on selected foodborne pathogens in trypticase soy broth by acidic and alkaline pH conditions. Food Microbiol. 2015, 48, 49–57. [Google Scholar] [CrossRef]
- Hessling, M.; Spellerberg, B.; Hoenes, K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelegths—A review on existing data. FEMS Microbiol. Lett. 2017, 362, 1–12. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, J.; Lim, W.B. In vitro bactericidal effects of 625, 525, and 425 nm wavelength (red, green, and blue) light-emitting diode irradiation. Photomed. Laser Surg. 2013, 31, 554–562. [Google Scholar] [CrossRef] [Green Version]
- Ghate, V.S.; Ng, K.S.; Zhou, W.; Yang, H.; Khoo, G.H.; Yoon, W.-B.; Yuk, H.-G. Antibacterial effect of light emitting diodes of visible wavelengths on selected foodborne pathogens at different illumination temperatures. Int. J. Foor Microbiol. 2013, 166, 399–406. [Google Scholar] [CrossRef]
- Hyun, J.-E.; Lee, S.-Y. Antibacterial effect and mechanisms of action of 460–470 nm light-emitting diode against Listeria monocytogenes and Pseudomonas fluorescens on the surface of packaged sliced cheese. Food Microbiol. 2020, 86, 103314. [Google Scholar] [CrossRef]
- Maclean, M.; MacGregor, S.; Anderson, J.; Woolsey, G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl. Environ. Microbiol. 2009, 75, 1932–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Mikš-Krajnik, M.; Kumar, A.; Ghate, V.; Yuk, H. Antibacterial effect and mechanism of high-intensity 405 ± 5 nm light emitting diode on Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus under refrigerated condition. J. Photochem. Photobiol. 2015, 153, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Halstead, F.D.; Thwaite, J.E.; Bu, R.; Laws, T.R.; Raguse, M.; Moeller, R.; Webber, M.A.; Oppenheim, B.A. Antibacterial activity of blue light against nosocomial wound pathogens growing planktonically and as mature biofilms. Public Environ. Health Microbiol. 2016, 82, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, Y.; Wang, Y.; Murray, C.K.; Hamblin, M.R.; Hooper, D.C.; Dai, T. Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist. Updat 2017, 33–35, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Brito Aragão, M.G.; Gonçalves de Araújo Costa, C.A.; Lima, R.A.; Azevedo Rodrigues, L.K.; Duarte, S.; Junqueira Zanin, I. Comparative effect of two red lights on Streptococcus mutans biofilms and assessment of temperature variances in human teeth during in vitro photodynamic antimicrobial chemotherapy. Photobiomodul. Photomed. Laser Surg. 2019, 37, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lui, G.Y.; Roser, D.; Corkish, R.; Ashbolt, N.J.; Stuetz, R. Point-of-use water disinfection using ultrviolet and visible light-emitting diodes. Sci. Total Environ. 2016, 553, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Lee, Y.H. Effect of light quality on Bacillus amyloliquefaciens JBC36 and its biocontrol efficacy. Biol. Control 2013, 64, 203–210. [Google Scholar] [CrossRef]
- Yu, S.; Ramkumar, G.; Lee, Y. Light quality influences the virulence and physiological responses of Colletotrichum acutatum causing anthracnose in pepper plants. J. Appl. Microbiol. 2013, 115, 509–516. [Google Scholar] [CrossRef]
- Otter, J.; Vickery, K.; Walker, J.; deLancey Pulcini, E.; Stoodley, P.; Goldenberg, S.; Salkeld, J.A.; Chewins, J.; Yezli, S.; Edgeworth, J.D. Surface-attached cells, biofilms and biocide susceptibility: Implications for hospital cleaning and disinfection. J. Hosp. Infect. 2015, 89, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Nogarol, C.; Acutis, P.; Bianchi, D.; Maurella, C.; Peletto, S.; Gallina, S.; Adriano, D.; Zuccon, F.; Borrello, S.; Caramelli, M.; et al. Molecular characterization of Pseudomonas fluorescens isolates involved in the Italian “blue mozzarella” event. J. Food Prot. 2013, 76, 500–504. [Google Scholar] [CrossRef]
- Eladli, M.G.; Alharbi, N.S.; Khaled, J.M.; Kadaikunnan, S.; Alobaidi, A.S.; Alyahya, S.A. Antibiotic-resistant Staphylococcus epidermidis isolated from patients and healthy students comparing with antibiotic-resistant bacteria isolated from pasteurized milk. Saudi J. Biol. Sci. 2019, 26, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Geeraerd, A.H.; Herremans, C.H.; Van Impe, J.F. Structural model requirements to describe microbial inactivation. Int. J. Food Microbiol. 2000, 59, 185–209. [Google Scholar] [CrossRef]
- Murdoch, L.; McKenzie, K.; Maclean, M.; Macgregor, S.; Anderson, J. Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger. Fungal Biol. 2013, 117, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maclean, M.; McKenzie, K.; Anderson, J.G.; Gettinby, G.; MacGregor, S.J. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J. Hosp. Infect. 2014, 88, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Meurer, L.; Payne, W.; Guffey, J.S. Visible light as an inhibitor of Campylobacter Jejuni. Int. J. Antimicrob. Agents 2020, 55, 1. [Google Scholar] [CrossRef]
- Schmid, J.; Hoenes, K.; Rath, M.; Vatter, P.; Spellerberg, B.; Hessling, M. Photoinactivation of Legionella Rubrilucens by visible light. Eur. J. Microbiol. Immunol. 2017, 7, 146–149. [Google Scholar] [CrossRef] [Green Version]
- Tomb, R.M.; White, T.A.; Coia, J.E.; Anderson, J.G.; MacGregor, S.J.; Maclean, M. Review of the comparative susceptibility of microbial species to photoinactivation using 380–480 nm violet-blue light. Photochem. Photobiol. 2018, 96, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ghate, V.; Kim, M.-J.; Zhou, W.; Khoo, G.; Yuk, H.-G. Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination. Food Microbiol. 2017, 63, 12–21. [Google Scholar] [CrossRef]
- Carmello, J.; Dovigo, L.; Mima, E.; Jorge, J.; de Souza Costa, C.; Bagnato, V.S.; Pavarina, A.C. In vivo evaluation of photodynamic inactivation using Photodithazine® against Candida albicans. Photochem. Photobiol. Sci. 2015, 14, 1319–1328. [Google Scholar] [CrossRef]
- Ogonowska, P.; Woźniak, A.; Pierański, M.K.; Nakonieczna, J. Application and characterization of light-emitting diodes for photodynamic inactivation of bacteria. Lighting Res. Technol. 2018, 1–13. [Google Scholar] [CrossRef]
- Fernández, R.; Pizarro, R. Lethal effect induced in Pseudomonas aeruginosa exposed to ultraviolet-A radiation. Photochem. Photobiol. 1996, 64, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Magro, M.; Baratella, D.; Jakubec, P.; Corraducci, V.; Fasolato, L.; Cardazzo, B.; Novelli, E.; Zoppellaro, G.; Zboril, R.; Vianello, F. H2O2 tolerance in Pseudomonas fluorescens: Synergy between pyoverdine-iron(III) complex and a blue extracellular product revealed by a nanotechnology-based electrochemical approach. ChemElectroChem 2019, 6, 5186–5190. [Google Scholar] [CrossRef]
- Kogan, B.Y. Nonlinear photodynamic therapy. Saturation of a photochemical dose by photosensitizer bleaching. Photochem. Photobiol. Sci. 2003, 6, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Rupel, K.; Zupin, L.; Ottaviani, G.; Bertani, I.; Martinelli, V.; Porrelli, D.; Vodret, S.; Vuerich, R.; Passos da Silva., D.; Bussani, R.; et al. Blue laser light inhibits biofilm formation in vitro and in vivo by inducing oxidative stress. Biofilms Microbiomes 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Busch, S.; Donnelly, C. Development of a repair-enrichment broth for resuscitation of heat-injured Listeria monocytogenes and Listeria innocua. Appl. Environ. Microbiol. 1992, 58, 14–20. [Google Scholar] [CrossRef] [Green Version]
Percentage Maximum Irradiance (Imax) | Irradiance (mW cm−2) | Total Light Dose (J cm−2) |
---|---|---|
Violet (λmax/Δλ 400/20 nm) | ||
100% | 29.2 | 420.5 |
75% | 21 | 302.4 |
25% | 6.9 | 99.4 |
2.5% | 0.7 | 10.1 |
Blue (λmax/Δλ 420/60 nm) | ||
100% | 0.49 | 6.9 |
75% | 0.42 | 6 |
25% | 0.17 | 2.5 |
Green (λmax/Δλ 570/20 nm) | ||
100% | 0.26 | 3.7 |
75% | 0.22 | 3.2 |
25% | 0.11 | 1.6 |
Yellow (λmax/Δλ 584/35 nm) | ||
100% | 0.14 | 2 |
75% | 0.11 | 1.6 |
25% | 0.043 | 0.6 |
Red (λmax/Δλ 698/95 nm) | ||
100% | 0.35 | 5 |
75% | 0.28 | 4 |
25% | 0.11 | 1.7 |
General Medium | Selective Medium | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LED | Imax (%) | Log10 N0 (Log(CFU cm−2)) | Log10 Nres (Log(CFU cm−2)) | kmax (min−1) | Log10 Reduction (Log(CFU cm−2)) | RMSE | Log10 N0 (Log(CFU cm−2)) | Log10 Nres (Log(CFU cm−2)) | kmax (min−1) | Log10 Reduction (Log(CFU cm−2)) | RMSE |
Control | 0 | a 7.781 ± 0.200 | a 3.907 ± 0.182 | a 0.072 ± 0.009 | a 3.873 ± 0.270 | 0.4926 | a 7.629 ± 0.170 | a 4.006 ± 0.142 | a 0.077 ± 0.009 | a,e 3.623 ± 0.222 | 0.4123 |
Violet | 2.5 | a 7.478 ± 0.208 | b 3.275 ± 0.222 | a 0.065 ± 0.007 | a 4.203 ± 0.304 | 0.5263 | a 7.562 ± 0.424 | a 1.200 ± 0.325 | a 0.148 ± 0.023 | a 3.479 ± 0.236 | 0.4311 |
25 | a 7.823 ± 0.215a | c 2.517 ± 0.170a | a 0.132 ± 0.013a | c 5.307 ± 0.274 | 0.5125 | a 7.769 ± 0.272a | c 1.227 ± 0.217a | a 0.157 ± 0.015a | c 5.532 ± 0.307 | 0.5752 | |
75 | a 7.778 ± 0.311a | c 2.158 ± 0.221a | a 0.173 ± 0.024a | c 5.619 ± 0.382 | 0.7229 | a 7.724 ± 0.245a | b 2.192 ± 0.186a | a 0.148 ± 0.017a | b 6.543 ± 0.348 | 0.6525 | |
100 | a 7.804 ± 0.394a | d 1.000 ± 0.329a | a 0.134 ± 0.018a | b 6.804 ± 0.513 | 0.9002 | a 7.390 ± 0.176a | b 3.911 ± 0.157a | a 0.067 ± 0.008a | b 6.362 ± 0.534 | 0.9407 | |
Blue | 25 | a 7.828 ± 0.182a | b 4.583 ± 0.195b | a 0.053 ± 0.007a | a,c 3.245 ± 0.266 | 0.4926 | a 7.467 ± 0.264a | c 2.144 ± 0.391b | a 0.065 ± 0.007a | a 2.977 ± 0.275 | 0.4879 |
75 | a 7.838 ± 0.232a | b 4.794 ± 0.150b | a 0.126 ± 0.028a | c 3.044 ± 0.277 | 0.5279 | a 7.545 ± 0.225a | a,c 4.167 ± 0.148b,c | a 0.130 ± 0.024a | a 3.378 ± 0.269 | 0.5142 | |
100 | a 7.701 ± 0.237a | c 2.327 ± 0.327b | a 0.068 ± 0.007a | b 5.374 ± 0.404 | 0.6217 | a 7.567 ± 0.198a | b 4.591 ± 0.191b | a 0.054 ± 0.009a | b 5.323 ± 0.472 | 0.6978 | |
Green | 25 | a 7.808 ± 0.109a | b 4.693 ± 0.078b | a 0.090 ± 0.009a | b,c 3.115 ± 0.134 | 0.2531 | a 7.554 ± 0.155a | a,b 4.304 ± 0.120b | a 0.080 ± 0.010a | a,b 3.219 ± 0.181 | 0.3462 |
75 | a 7.820 ± 0.207a | b 4.920 ± 0.136c | a 0.113 ± 0.023a | c 2.900 ± 0.248 | 0.4726 | a 7.635 ± 0.218a | b 4.802 ± 0.147c | a 0.103 ± 0.022a | b 2.833 ± 0.263 | 0.5016 | |
100 | a 7.724 ± 0.158a | a 4.063 ± 0.123c | a 0.087 ± 0.009a | a,b 3.660 ± 0.200 | 0.3775 | a 7.618 ± 0.151a | a,b 4.399 ± 0.101c | a 0.118 ± 0.015a | a,b 3.251 ± 0.196 | 0.3680 | |
Yellow | 25 | a 7.841 ± 0.223a | b 4.954 ± 0.210b | a 0.054 ± 0.010a | b 2.888 ± 0.306 | 0.5457 | a 7.604 ± 0.105a | b 4.197 ± 0.081b | a 0.084 ± 0.006a | b 2.828 ± 0.342 | 0.6230 |
75 | a 7.950 ± 0.268a | b 4.828 ± 0.215c | a 0.072 ± 0.015a | b 3.122 ± 0.344 | 0.6421 | a 7.725 ± 0.267a | a,b 4.508 ± 0.245c | a 0.066 ± 0.014a | a,b 3.217 ± 0.362 | 0.6478 | |
100 | a 7.818 ± 0.104a | a 4.033 ± 0.082c | a 0.097 ± 0.007a | a 3.785 ± 0.132 | 0.2453 | a 7.582 ± 0.257a | a 4.754 ± 0.226c | a 0.058 ± 0.013a | a,b 3.407 ± 0.132 | 0.2494 |
Geeraerd et al. Model [62] | |||||||||||
General Medium | Selective Medium | ||||||||||
LED | Imax (%) | Log10 N0 (Log(CFU cm−2)) | Log10 Nres (Log(CFU cm−2)) | kmax (min−1) | Log10 reduction (Log(CFU cm−2)) | RMSE | Log10 N0 (Log(CFU cm−2)) | Log10 Nres (Log(CFU cm−2)) | kmax (min−1) | Log10 reduction (Log(CFU cm−2)) | RMSE |
Control | 0 | a 6.844 ± 0.208 | a 6.275 ± 0.125 | a 0.125 ± 0.446 | a 0.569 ± 0.242 | 0.4645 | a 6.900 ± 0.244 | a 6.132 ± 0.162 | a 0.056 ± 0.060 | a 0.768 ± 0.293 | 0.5486 |
Violet | 2.5 | a 6.847 ± 0.180 | a 6.254 ± 0.112 | a 0.076 ± 0.100 | a 0.593 ± 0.212 | 0.3408 | a 6.771 ± 0.135 | b 3.762 ± 0.157 | a 0.046 ± 0.005 | b,c 3.008 ± 0.207 | 0.4023 |
25 | a 6.859 ± 0.219a | b 5.687 ± 0.179 | a 0.038 ± 0.021a | a 1.172 ± 0.283 | 0.5097 | a 6.842 ± 0.209a | c 4.382 ± 0.219 | a 0.043 ± 0.009a | b 2.460 ± 0.303 | 0.5182 | |
75 | a 6.879 ± 0.193a | c 4.729 ± 0.140 | a 0.076 ± 0.019a | b 2.149 ± 0.238 | 0.4441 | a 6.816 ± 0.164a | b,c 4.086 ± 0.143 | a 0.066 ± 0.010a | b 2.730 ± 0.217 | 0.3894 | |
100 | a 6.923 ± 0.258a | d 3.232 ± 0.189 | a 0.111 ± 0.020a | c 3.690 ± 0.320 | 0.6000 | a 6.892 ± 0.193a | b 3.516 ± 0.145 | a 0.098 ± 0.014a | c 3.376 ± 0.293 | 0.4500 | |
Geeraerd et al. Model, Reduced to Log-Linear Regression | |||||||||||
General Medium | Selective Medium | ||||||||||
LED | Imax (%) | Log10 N0 (Log(CFU cm−2)) | kmax (min−1) | RMSE | Log10 N0 (Log(CFU cm−2)) | kmax (min−2) | RMSE | ||||
Control | 0 | a 6.574 ± 0.174 | a 1.5 × 10−3 ± 1.3 × 10−3 | 0.5002 | a 6.674 ± 0.201 | a 2.8 × 10–3 ± 1.5 × 10−3 | 0.5786 | ||||
Blue | 25 | a 6.564 ± 0.099a | a 1.3 × 10−3 ± 7.0 × 10−4a | 0.2963 | a 6.628 ± 0.104a | a 2.2 × 10−3 ± 8.0 × 10−4a | 0.3110 | ||||
75 | a 6.787 ± 0.123a | a 4.4 × 10−3 ± 9.0 × 10−4a | 0.3534 | a 6.830 ± 0.140a | a 5.2 × 10−3 ± 1.1 × 10−3a | 0.4019 | |||||
100 | a 6.735 ± 0.058a | a 3.1 × 10−3 ± 4.0 × 10−4a | 0.2568 | a 6.735 ± 0.093a | a 3.0 × 10−3 ± 7.0 × 10−4a | 0.1671 | |||||
Green | 25 | a 6.728 ± 0.159a | a 3.5 × 10−3 ± 1.2 × 10−3a | 0.4632 | a 6.714 ± 0.163a | a 3.6 × 10−3 ± 1.2 × 10−3a | 0.4586 | ||||
75 | a 6.815 ± 0.091a | a 2.0 × 10−3 ± 7.0 × 10−4a | 0.2769 | a 6.882 ± 0.096a | a 2.1 × 10−3 ± 7.0 × 10−4a | 0.2627 | |||||
100 | a 6.922 ± 0.139a | a 3.7 × 10−3 ± 1.1 × 10−3a | 0.4645 | a 6.970 ± 0.161a | a 4.3 × 10−3 ± 1.2 × 10−3a | 0.4008 | |||||
Yellow | 25 | a 6.499 ± 0.132a | a 2.0 × 10−3 ± 1.0 × 10−3a | 0.3632 | a 6.559 ± 0.126a | a 2.5 × 10−3 ± 9.0 × 10−4a | 0.3798 | ||||
75 | a 6.779 ± 0.112a | a 2.4 × 10−3 ± 8.0 × 10−4a | 0.3374 | a 6.763 ± 0.117a | a 2.5 × 10−3 ± 8.0 × 10−4a | 0.3222 | |||||
100 | a 6.703 ± 0.122a | a 2.3 × 10−3 ± 9.0 × 10−4a | 0.3497 | a 6.716 ± 0.121a | a 2.7 × 10−3 ± 9.0 × 10−4a | 0.3505 | |||||
Red | 25 | a 6.812 ± 0.120a | a 1.6 × 10−3 ± 4.0 × 10−4a | 0.3478 | a 6.796 ± 0.121a | a 1.0 × 10−3 ± 9.0 × 10−4a | 0.345 | ||||
75 | a 6.989 ± 0.195a | a 4.1 × 10−3 ± 1.5 × 10−3a | 0.6212 | a 7.064 ± 0.219a | a 4.8 × 10−3 ± 1.7 × 10−3a | 0.5626 | |||||
100 | a 6.772 ± 0.081a | a 1.0 × 10−3 ± 6.0 × 10−4a | 0.3034 | a 6.778 ± 0.105a | a 1.1 × 10−3 ± 7.0 × 10−4a | 0.2341 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angarano, V.; Smet, C.; Akkermans, S.; Watt, C.; Chieffi, A.; Van Impe, J.F.M. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics 2020, 9, 171. https://doi.org/10.3390/antibiotics9040171
Angarano V, Smet C, Akkermans S, Watt C, Chieffi A, Van Impe JFM. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics. 2020; 9(4):171. https://doi.org/10.3390/antibiotics9040171
Chicago/Turabian StyleAngarano, Valeria, Cindy Smet, Simen Akkermans, Charlotte Watt, Andre Chieffi, and Jan F.M. Van Impe. 2020. "Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms" Antibiotics 9, no. 4: 171. https://doi.org/10.3390/antibiotics9040171
APA StyleAngarano, V., Smet, C., Akkermans, S., Watt, C., Chieffi, A., & Van Impe, J. F. M. (2020). Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics, 9(4), 171. https://doi.org/10.3390/antibiotics9040171