Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.)
Abstract
:1. Introduction
2. Methods
2.1. Plant Materials
2.2. Morphological Characteristics
2.3. Essential Oil Extraction
2.4. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
2.5. DNA Extraction
2.6. Randomly Amplified Polymorphic DNA (RAPD) Analysis
2.7. Statistical Analysis
3. Results
3.1. Morphological Characteristics of the Thyme Cultivars
3.2. The Chemical Composition of Essential Oils
3.3. RAPD Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Echeverrigaray, S.; Agostini, G.; Atti-Serfini, L.; Paroul, N.; Pauletti, G.F.; dos Santos, A.C. Correlation between the chemical and genetic relationships among commercial thyme cultivars. J. Agric. Food Chem. 2001, 49, 4220–4223. [Google Scholar] [CrossRef]
- Maissa, B.J.; Walid, H. Antifungal activity of chemically different essential oils from wild Tunisian Thymus spp. Nat. Prod. Res. 2015, 29, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Lee, S.J.; Hwang, J.W.; Kim, E.K.; Kim, S.E.; Kim, E.H.; Moon, S.H.; Jeon, B.T.; Park, P.J. In vitro protective effects of Thymus quinquecostatus Celak extracts on t-BHP-induced cell damage through antioxidant activity. Food Chem. Toxicol. 2012, 50, 4191–4198. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Gao, T.; Xin, H. Changes in structure and histochemistry of glandular trichomes of Thymus quinquecostatus Celak. Sci. World J. 2012, 2012, 187261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; He, T.; Wang, X.; Shen, M.; Yan, X.; Fan, S.; Wang, L.; Wang, X.; Xu, X.; Sui, H.; et al. Trditional uses, chemical constituents and biological activities of plants from the genus Thymus. Chem. Biodivers. 2019, 17, e1900254. [Google Scholar]
- Hyun, T.K.; Kim, H.C.; Kim, J.S. Antioxidant and antidiabetic activity of Thymus quinquecostatus Celak. Ind. Crops Prod. 2014, 52, 611–616. [Google Scholar] [CrossRef]
- Jia, P.; Liu, H.; Gao, T.; Xin, H. Glandular trichomes and essential oil of Thymus quinquecostatus. Sci. World J. 2013, 2013, 387952. [Google Scholar]
- Shin, S.; Kim, J.H. Antifungal activities of essential oils from Thymus quinquecostatus and T. magnus. Planta Med. 2004, 70, 1090–1092. [Google Scholar] [CrossRef]
- Kykkidou, S.; Giatrakou, V.; Papavergou, A.; Kontominas, M.G.; Savvaidis, I.N. Effect of thyme essential oil and packaging treatments on fresh Mediterranean swordfish fillets during storage at 4 °C. Food Chem. 2009, 115, 169–175. [Google Scholar] [CrossRef]
- Chang, Y.L.; Shen, M.; Ren, X.Y.; He, T.; Wang, L.; Fan, S.S.; Wang, X.H.; Li, X.; Wang, X.P.; Chen, X.Y.; et al. Multi-response extraction optimization based on anti-oxidative activity and quality evaluation by main indicator ingredients coupled with chemometric analysis on Thymus quinquecostatus Celak. Molecules 2018, 23, 957. [Google Scholar] [CrossRef] [Green Version]
- Solomakos, N.; Govaris, A.; Koidis, P.; Botsoglou, N. The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage. Food Microbiol. 2008, 25, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P.; Socorro, M.; Elizondo, G.; Elizondo, M.G.; Slinkman, E. A new subalpine variety of Juniperus blancoi Martinez (Cupressaceae) from Durango, Mexico. Biochem. Syst. Ecol. 2006, 34, 205–211. [Google Scholar] [CrossRef]
- Younsi, F.; Rahali, N.; Mehdi, S.; Boussaid, M.; Messaoud, C. Relationship between chemotypic and genetic diversity of natural populations of Artemisia herba-alba Asso growing wild in Tunisia. Phytochemistry 2018, 148, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Boulila, A.; Bejaoui, A.; Messaoud, C.; Boussaid, M. Variation of volatiles in Tunisian populations of Teucrium polium L. (Lamiaceae). Chem. Biodivers. 2008, 7, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Trindade, H.; Costa, M.M.; Sofia, B.L.A.; Pedro, L.G.; Figueiredo, A.C.; Barroso, J.G. Genetic diversity and chemical polymorphism of Thymus caespititius from Pico, Sao Jorge and Terceira islands (Azores). Biochem. Syst. Ecol. 2008, 36, 790–797. [Google Scholar] [CrossRef]
- Torras, J.; Dolors Grau, M.; Lopez, J.F.; de Las Heras, F.X.C. Analysis of essential oils from chemotypes of Thymus vulgaris in Catalonia. J. Sci. Food Agric. 2007, 87, 2327–2333. [Google Scholar] [CrossRef]
- Gajera, B.B.; Kumar, N.; Singh, A.S.; Punvar, B.S.; Ravikiran, R.; Subhash, N.; Jadeja, G.C. Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Ind. Crops Prod. 2010, 32, 491–498. [Google Scholar] [CrossRef]
- Mahajan, V.; Chouhan, R.; Kitchlu, S.; Bindu, K.; Koul, S.; Singh, B.; Bedi, Y.S.; Gandhi, S.G. Assessment of chemical and genetic variability in Tanacetum gracile accessions collected from cold desert of Western Himalaya. 3 Biotech 2018, 8, 284. [Google Scholar] [CrossRef]
- Chowdhury, T.; Mandal, A.; Roy, S.C.; Sarker, D.D. Diversity of the genus Ocimum (Lamiaceae) through morpho-molecular (RAPD) and chemical (GC–MS) analysis. J. Genet. Eng. Biotechnol. 2017, 15, 275–286. [Google Scholar] [CrossRef]
- Rustaiee, A.R.; Yavari, A.; Nazeri, V.; Shokrpour, M.; Sefidkon, F.; Rasouli, M. Genetic diversity and chemical polymorphism of some Thymus species. Chem. Biodivers. 2013, 10, 1088–1098. [Google Scholar] [CrossRef]
- Trindade, H.; Costa, M.M.; Sofia, B.L.A.; Pedro, L.G.; Figueiredo, A.C.; Barroso, J.G. A combined approach using RAPD, ISSR and volatile analysis for the characterization of Thymus caespititius from Flores, Corvo and Graciosa islands (Azores, Portugal). Biochem. Syst. Ecol. 2009, 37, 670–677. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by gAs Chromatography/Mass Spectrometry; Allured Publishing Co.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Pluhár, Z.; Kocsis, M.; Kuczmog, A.; Csete, S.; Simkó, H.; Sárosi, S.; Molnár, P.; Horváth, G. Essential oil composition and preliminary molecular study of four Hungarian Thymus species. Acta Biol. Hung. 2012, 63, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Hudaib, M.; Aburjai, T. Volatile components of Thymus vulgaris L. from wild-growing and cultivated plants in Jordan. Flavour Frag. J. 2007, 22, 322–327. [Google Scholar] [CrossRef]
- Hudaib, M.; Speroni, E.; Di Pietra, A.M.; Cavrini, V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. Pharm. Biomed. Anal. 2002, 29, 691–700. [Google Scholar] [CrossRef]
- Dhouioui, M.; Boulila, A.; Chaabane, H.; Zina, M.S.; Casabianca, H. Seasonal changes in essential oil composition of Aristolochia longa L. ssp. paucinervis Batt. (Aristolochiaceae) roots and its antimicrobial activity. Ind. Crops Prod. 2016, 83, 301–306. [Google Scholar]
- Mewes, S.; Kruger, H.; Pank, F. Physiological, morphological, chemical and genomic diversities of different origins of thyme (Thymus vulgaris L.). Genet. Resour. Crop Evol. 2008, 55, 1303–1311. [Google Scholar] [CrossRef]
- Rajabi, Z.; Ebrahimi, M.; Farajpour, M.; Mirza, M.; Ramshini, H. Compositions and yield variation of essential oils among and within nine Salvia species from various areas of Iran. Ind. Crops Prod. 2014, 61, 233–239. [Google Scholar] [CrossRef]
- Vieira, R.F.; Grayer, R.J.; Paton, A.; Simon, J.E. Genetic diversity of Ocimum gratissimum L. based on volatile oil constituents, flavonoids and RAPD markers. Biochem. Syst. Ecol. 2001, 29, 287–304. [Google Scholar] [CrossRef]
- Keskitalo, M.; Pehu, E.; Simon, J.E. Variation in volatile compounds from tansy (Tanacetum vulgare L.) related to genetic and morphological differences of genotypes. Biochem. Syst. Ecol. 2001, 29, 267–285. [Google Scholar] [CrossRef]
- Khalil, R.; Khalil, R.; Li, Z. Determination of genetic variation and relationship in Thymus vulgaris populations in Syria by random RAPD markers. Plant Biosyst. 2012, 146, 217–225. [Google Scholar] [CrossRef]
- Nordine, A.; Udupa, S.M.; Iraqi, D.; Meksem, K.; Hmamouchi, M.; ElMeskaoui, A. Correlation between the chemical and genetic relationships among Thymus saturejoides genotypes cultured under in vitro and in vivo environments. Chem. Biodivers. 2016, 13, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Masi, L.; Siviero, P.; Esposito, C.; Castaldo, D.; Siano, F.; Laratta, B. Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.). Eur. Food Res. Technol. 2006, 223, 273–281. [Google Scholar] [CrossRef]
S. No. | Primer | Sequence |
---|---|---|
1 | OPA-09 | GGGTAACGCC |
2 | OPA-10 | GTGATCGCAG |
3 | OPA-11 | CAATCGCCGT |
4 | OPA-12 | TCGGCGATAG |
5 | OPA-13 | CAGCACCCAC |
6 | OPA-14 | TCTGTGCTGG |
7 | OPA-15 | TTCCGAACCC |
8 | OPA-16 | AGCCAGCGAA |
9 | OPA-17 | GACCGCTTGT |
10 | OPA-18 | AGGTGACCGT |
11 | OPA-19 | CAAACGTCGG |
12 | OPA-20 | GTTGCGATCC |
13 | OPB-01 | GTTTCGCTCC |
14 | OPB-02 | TGATCCCTGG |
15 | OPB-03 | CATCCCCCTG |
16 | OPB-04 | GGACTGGAGT |
Thymus Sp. | Variety | Stem Type | Stem Branch | Stem Color | Leaf Shape | Number of Auxiliary Leaves | Trichome Position | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Length (cm) | Number | Purple | Pale Purple | Pale Green | Leaf Petiole | Leaf Margin | Leaf Surface | |||||
Thymus vulgaris | Lemon | Erect | >3 | 2 | - | - | √ | Oval | 0 | - | - | - |
Golden | Erect | 0~8 | 2 | - | √ | √ | Elliptical | 2 | √ | - | - | |
Carpet | Creeping | 0~4 | 4 | - | √ | - | Oval | 0 | √ | √ | √ | |
Orange | Erect | 0~11 | 0e | - | - | √ | Oblanceolate /Oblong | 0~2 | √ | - | - | |
Silver | Erect | 0~5 | 0 | - | √ | - | Oblong | 0~2 | - | - | - | |
Creeping | Creeping | 0~2 | 2 | √ | - | - | Oval | 0~2 | √ | - | - | |
Bak-ri-hyang (Thymus quinquecostatus) | Odae Mt. | Creeping | >2 | 0 | √ | - | - | Oval | 2~6 | √ | - | - |
Wolchul Mt. | Creeping | 0~8 | 2 | - | √ | √ | Oblanceolate | 2~8 | - | √ | - | |
Jiri Mt. | Creeping | >2 | 0 | √ | - | - | Oval | 2~6 | √ | - | - |
Thymus Sp. | Cultivar | Essential Oil Yield (%) | Essential Oil Color |
---|---|---|---|
Thymus vulgaris | Lemon | 0.34 ± 0.013 | Yellow |
Golden | 0.29 ± 0.020 | Yellow | |
Carpet | 0.23 ± 0.015 | Pale yellow | |
Orange | 0.29 ± 0.033 | Pale yellow | |
Silver | 0.33 ± 0.042 | Yellow | |
Creeping | 0.24 ± 0.021 | Yellow | |
Thymus quinquecostatus (Bakrihyang) | Odae Mt. | 0.43 ± 0.067 | Yellow |
Wolchul Mt. | 0.28 ± 0.017 | White | |
Jiri Mt. | 0.12 ± 0.014 | Yellow |
S. No. | Compound Name | RI Lit | RI Cal | Area (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lemon | Golden | Carpet | Orange | Silver | Creeping | Odae | Wolchul | Jiri | ||||
1 | Tricyclene | 926 | 923 | - | - | - | - | - | - | 0.05 ± 0.01 | 0.01 ± 0.00 | - |
2 | α-Thujene | 930 | 926 | 0.17 ± 0.01 | - | - | - | 0.04 ± 0.00 | - | 1.91 ± 0.50 | 0.01 ± 0.00 | 0.11 ± 0.02 |
3 | α-Pinene | 939 | 934 | 0.09 ± 0.01 | - | - | - | 0.02 ± 0.00 | - | 1.32 ± 0.32 | 0.26 ± 0.01 | 0.09 ± 0.02 |
4 | Camphene | 954 | 950 | 0.11 ± 0.01 | - | - | 0.01 ± 0.00 | 0.02 ± 0.00 | - | 1.69 ± 0.42 | 0.67 ± 0.01 | 0.18 ± 0.03 |
5 | β-Pinene | 974 | 978 | 0.24 ± 0.33 | - | - | - | 0.19 ± 0.02 | - | 1.89 ± 0.47 | 0.17 ± 0.01 | 0.30 ± 0.03 |
6 | 1-Octen-3-ol | 979 | 985 | 3.61 ± 0.04 | 0.70 ± 0.06 | 0.57 ± 0.06 | 0.39 ± 0.02 | 1.46 ± 0.05 | 0.44 ± 0.03 | 2.81 ± 0.54 | 2.47 ± 0.02 | 3.29 ± 0.30 |
7 | 3-Octanone | 983 | 989 | 0.76 ± 0.03 | 0.34 ± 0.02 | - | 0.01 ± 0.00 | 0.17 ± 0.01 | 0.0 8 ± 0.00 | 0.07 ± 0.00 | 0.82 ± 0.02 | 1.27 ± 0.20 |
8 | 3-Octanol | 991 | 1000 | 0.38 ± 0.01 | 0.36 ± 0.02 | - | 0.06 ±0.01 | 0.23 ±0.02 | 0.15 ± 0.01 | 0.08 ± 0.02 | 0.70 ± 0.01 | 1.21 ± 0.19 |
9 | α-Phellandrene | 1002 | 1007 | 0.11 ± 0.01 | - | - | 0.04 ± 0.00 | 0.31 ± 0.09 | - | 0.05 ± 0.01 | ||
10 | 3-Carene | 1011 | 1009 | 0.02 ± 0.01 | - | - | 0.08 ± 0.02 | - | 0.02 ± 0.01 | |||
11 | p-Cymene | 1024 | 1026 | 2.84 ± 0.10 | 0.41 ± 0.03 | - | 0.01 ± 0.00 | 2.22 ± 0.04 | 11.13 ± 0.62 | 0.05 ± 0.00 | 2.44 ± 0.15 | |
12 | D-Limonene | 1029 | 1031 | 0.17 ± 0.01 | 0.01 ± 0.00 | - | 0.03 ± 0.01 | 0.53 ± 0.05 | 0.11 ± 0.01 | 0.10 ± 0.02 | ||
13 | Eucalyptol | 1032 | 1034 | 0.29 ± 0.01 | 0.09 ± 0.01 | - | 0.02 ± 0.01 | 0.41 ± 0.03 | 0.02 ± 0.01 | 0.44 ± 0.01 | - | |
14 | β-Ocimene | 1050 | 1049 | 0.25 ± 0.01 | - | - | 0.09 ± 0.00 | 0.04 ± 0.00 | 0.12 ± 0.02 | |||
15 | γ-Terpinene | 1059 | 1060 | 8.44 ± 0.01 | 0.88 ± 0.06 | 0.05 ± 0.00 | 0.04 ± 0.00 | 3.85 ± 0.04 | 0.03 ± 0.00 | 23.92 ± 3.30 | 0.12 ± 0.00 | 3.43 ± 0.24 |
16 | Sabinene hydrate | 1070 | 1073 | 0.87 ± 0.03 | 0.05 ±0.01 | - | 0.15 ± 0.01 | 0.74 ± 0.06 | 3.02 ± 0.51 | - | - | |
17 | 1-Nonen-3-ol | 1078 | 1083 | - | - | - | 0.18 ± 0.01 | 0.30 ± 0.02 | - | - | - | - |
18 | Terpinolene | 1088 | 1087 | 0.93 ± 0.04 | 0.06 ± 0.01 | - | - | - | - | 3.55 ± 0.87 | 0.88 ± 0.02 | 0.56 ± 0.05 |
19 | Nonanone | 1090 | 1088 | - | - | - | - | 0.09 ± 0.01 | - | |||
20 | Linalool | 1096 | 1103 | 2.60 ± 0.12 | 0.47 ± 0.04 | 48.16 ± 0.67 | 0.36 ± 0.02 | 2.08 ± 0.11 | 3.86 ± 0.09 | 0.11 ± 0.03 | 1.49 ± 0.01 | 47.89 ± 3.11 |
21 | Nonanal | 1100 | 1108 | - | - | - | - | - | - | - | 0.07 ± 0.00 | - |
22 | 1-Octen-3-yl-acetate | 1112 | 1109 | - | - | - | - | - | - | - | 0.02 ± 0.00 | - |
23 | Chrysanthemal | 1124 | 1120 | - | - | - | - | - | 0.43 ± 0.01 | - | - | - |
24 | Verbenol | 1141 | 1145 | - | 0.27 ± 0.01 | - | - | - | 0.85 ± 0.17 | - | 0.03 ± 0.00 | - |
25 | Camphor | 1146 | 1151 | 0.23 ± 0.03 | - | 0.04 ± 0.01 | 0.03 ± 0.00 | 0.62 ± 0.04 | - | 2.47 ± 0.45 | - | 0.10 ± 0.01 |
26 | β-Pinene oxide | 1159 | 1166 | 0.14 ± 0.02 | 0.02 ± 0.01 | - | - | - | 0.09 ± 0.02 | - | - | - |
27 | Borneol | 1169 | 1180 | 2.07 ± 0.07 | 0.41 ± 0.03 | 1.57 ± 0.16 | 3.05 ± 0.21 | 1.11 ± 0.11 | 0.73 ± 0.02 | 2.17 ± 0.49 | 5.91 ± 0.03 | 2.17 ± 0.34 |
28 | Terpinen-4-ol | 1177 | 1185 | 0.40 ± 0.01 | - | 0.15 ± 0.03 | 0.17 ± 0.01 | 0.37 ± 0.05 | 0.05 ± 0.00 | 1.49 ± 0.33 | 0.63 ± 0.03 | 0.17 ± 0.01 |
29 | α-Terpineol | 1188 | 1200 | 0.11 ± 0.03 | 0.05 ± 0.00 | 0.67 ± 0.01 | 0.04 ± 0.00 | 0.17 ± 0.04 | 0.03 ± 0.02 | 0.21 ± 0.06 | 0.09 ± 0.01 | 0.05 ± 0.01 |
30 | Dihydrocarvone | 1192 | 1202 | - | - | - | 0.04 ± 0.01 | 0.06 ± 0.02 | - | - | 0.13 ± 0.01 | 0.02 ± 0.01 |
31 | Decanal | 1201 | 1211 | 0.05 ± 0.01 | - | 0.06 ± 0.02 | 0.02 ± 0.00 | - | - | 0.07 ± 0.03 | 0.10 ± 0.01 | 0.05 ± 0.02 |
32 | Nerol | 1229 | 1233 | 2.66 ± 0.12 | 1.16 ± 0.05 | 0.17 ± 0.02 | 0.47 ± 0.03 | 1.99 ± 0.05 | 4.70 ± 0.05 | - | 1.34 ± 0.06 | - |
33 | Thymol methyl ether | 1235 | 1235 | 3.00 ± 0.09 | 0.26 ± 0.03 | 0.09 ± 0.03 | - | 2.17 ± 0.10 | - | - | - | 2.27 ± 0.16 |
34 | Neral | 1238 | 1243 | 0.99 ± 0.06 | 3.39 ± 0.21 | - | 0.26 ± 0.02 | 0.18 ± 0.05 | 11.75 ± 0.12 | - | 0.85 ± 0.03 | - |
35 | 2-Isopropyl-4-methylanisole | 1244 | 1242 | - | - | - | - | - | - | - | - | 1.27 ± 0.18 |
36 | Geraniol | 1252 | 1262 | 6.03 ± 0.14 | 65.99 ± 2.30 | 0.73 ± 0.47 | 44.70 ± 0.67 | 3.02 ± 0.26 | 29.57 ± 0.65 | 0.35 ± 0.12 | 42.94 ± 0.32 | 0.03 ± 0.01 |
37 | Geranial | 1276 | 1264 | 1.49 ± 0.02 | 5.42 ± 0.18 | 0.03 ± 0.01 | - | 0.31 ± 0.04 | 18.21 ± 0.83 | - | - | - |
38 | Cyclodecane | 1271 | 1281 | - | - | - | - | - | - | - | - | 0.08 ± 0.03 |
39 | 1-Decanol | 1269 | 1283 | - | - | - | - | - | - | - | 0.18 ± 0.01 | - |
40 | Bornyl acetate | 1285 | 1292 | - | - | 0.09 ± 0.00 | 0.19 ± 0.01 | - | 0.04 ± 0.01 | - | 0.53 ± 0.02 | - |
41 | Thymol | 1290 | 1295 | 43.91 ± 1.64 | 2.70 ± 0.09 | 13.36 ± 0.31 | 8.05 ± 0.03 | 66.24 ± 1.66 | 2.17 ± 0.08 | 30.54 ± 4.37 | 0.44 ± 0.02 | 15.98 ± 0.18 |
42 | Carvacrol | 1299 | 1305 | - | - | 0.78 ± 0.01 | - | 2.62 ± 0.03 | - | - | - | 0.27 ± 0.00 |
43 | Methyl geranate | 1324 | 1324 | - | 0.11 ± 0.01 | - | - | - | 0.03 ± 0.00 | - | - | - |
44 | Thymol acetate | 1352 | 1349 | 0.25 ± 0.01 | - | - | 0.57 ± 0.03 | 0.42 ± 0.03 | - | 0.29 ± 0.08 | - | 0.10 ± 0.02 |
45 | Geranyl acetate | 1381 | 1386 | 2.34 ± 0.11 | 2.89 ± 0.22 | - | 29.86 ± 0.84 | 1.09 ± 0.09 | 6.75 ± 0.08 | 0.20 ± 0.08 | 26.49 ± 0.05 | - |
46 | β-Bourbonene | 1388 | 1387 | 0.04 ± 0.00 | 0.13 ± 0.02 | 0.10 ± 0.01 | - | - | 0.15 ± 0.01 | - | - | 0.14 ± 0.02 |
47 | β-Cubebene | 1388 | 1390 | 2.61 ± 0.14 | 2.20 ± 0.17 | 5.07 ± 0.02 | 0.40 ± 0.04 | 0.81 ± 0.10 | 2.44 ± 0.16 | 0.19 ± 0.08 | - | 3.47 ± 0.27 |
48 | β-Elemene | 1390 | 1394 | 0.06 ± 0.00 | 0.07 ± 0.01 | 0.19 ± 0.02 | 1.02 ± 0.09 | 0.08 ± 0.01 | 0.10 ± 0.02 | 0.65 ± 0.22 | - | 0.67 ± 0.06 |
49 | Caryophyllene | 1419 | 1428 | 3.41 ± 0.16 | 4.56 ± 0.18 | 2.62 ± 0.01 | 4.74 ± 0.66 | 4.48 ± 0.27 | 2.87 ± 0.09 | 4.74 ± 1.04 | 4.73 ± 0.02 | 7.02 ± 0.39 |
50 | Neryl propionate | 1432 | 1439 | - | 0.46 ± 0.22 | - | - | - | 1.34 ± 0.17 | - | - | - |
51 | α-Bergamotene | 1434 | 1438 | - | - | - | - | - | - | - | 0.04 ± 0.01 | - |
52 | γ-Elemene | 1436 | 1442 | - | 0.03 ± 0.01 | - | - | - | - | - | - | - |
53 | Aromadendrene | 1441 | 1438 | - | - | 0.12 ± 0.02 | - | - | - | 0.08 ± 0.02 | - | - |
54 | α-Humulene | 1454 | 1463 | 3.51 ± 0.15 | - | 0.17 ± 0.01 | - | 0.18 ± 0.02 | - | - | 0.66 ± 0.03 | - |
55 | β-Farnesene | 1456 | 1454 | - | - | 0.04 ± 0.00 | 0.02 ± 0.01 | - | - | - | - | - |
56 | Germacrene D | 1480 | 1487 | - | - | - | - | - | - | - | 0.53 ± 0.02 | - |
57 | β-Selinene | 1490 | 1494 | - | - | 0.03 ± 0.00 | - | - | - | - | - | - |
58 | α-Farnesene | 1505 | 1506 | - | - | - | - | - | - | - | - | 0.40 ± 0.07 |
59 | β-Bisabolene | 1505 | 1514 | 2.22 ± 0.10 | 3.70 ± 0.26 | 2.47 ± 0.31 | 3.84 ± 0.45 | 0.23 ± 0.03 | 1.81 ± 0.11 | 1.21 ± 0.34 | 3.86 ± 0.03 | 3.00 ± 0.27 |
60 | γ-Cadinene | 1513 | 1518 | - | - | - | - | - | - | 0.05 ± 0.01 | - | - |
61 | Butylated hydroxytoluene | 1515 | 1518 | 0.14 ± 0.02 | 0.14 ± 0.02 | 0.60 ± 0.09 | 0.06 ± 0.01 | 0.18 ± 0.01 | 0.24 ± 0.04 | - | - | - |
62 | δ-Cadinene | 1523 | 1522 | - | - | 0.11 ± 0.01 | - | - | - | 0.12 ± 0.03 | - | - |
63 | β-Sesquiphellandrene | 1522 | 1528 | 0.12 ± 0.01 | 0.06 ± 0.01 | 1.02 ± 0.12 | 0.08 ± 0.01 | 0.05 ± 0.01 | 0.15 ± 0.03 | - | 0.10 ± 0.01 | 0.36 ± 0.07 |
64 | α-Elemol | 1549 | 1554 | 0.31 ± 0.02 | 0.05 ± 0.01 | 11.62 ± 0.25 | - | 0.04 ± 0.01 | 8.52 ± 0.52 | - | - | - |
65 | Geranyl butyrate | 1562 | 1558 | - | 1.08 ± 0.10 | - | - | - | 0.53 ± 0.12 | - | - | - |
66 | cis-3-Hexenyl benzoate | 1566 | 1570 | - | - | 0.09 ± 0.01 | - | - | - | - | - | - |
67 | Germacrene D-4-ol | 1575 | 1583 | - | - | - | - | - | - | 0.89 ± 0.38 | - | - |
68 | Spathulenol | 1578 | 1584 | - | - | - | 0.04 ± 0.00 | - | - | - | 0.03 ± 0.01 | 0.06 ± 0.01 |
69 | Caryophyllene oxide | 1583 | 1590 | 0.08 ± 0.01 | 0.15 ± 0.01 | 0.15 ± 0.02 | 0.20 ± 0.01 | 0.32 ± 0.06 | 0.23 ± 0.04 | 0.22 ± 0.10 | 0.26 ± 0.01 | 0.26 ± 0.07 |
70 | Humulene epoxide II | 1608 | 1618 | - | - | - | - | - | - | - | 0.02 ± 0.00 | - |
71 | γ-Eudesmol | 1632 | 1639 | - | - | 1.94 ± 0.19 | - | - | 0.09 ± 0.03 | - | - | - |
72 | T-Muurolol | 1646 | 1651 | - | - | - | - | - | - | 0.03 ± 0.01 | - | - |
73 | β-Eudesmol | 1650 | 1663 | - | - | 2.53 ± 0.26 | - | - | 0.26 ± 0.07 | - | - | - |
74 | α-Cadinol | 1654 | 1664 | 0.04 ± 0.01 | 0.02 ± 0.01 | - | 0.02 ± 0.01 | - | - | 0.08 ± 0.03 | - | - |
75 | α-Bisabolol | 1685 | 1691 | 0.04 ± 0.01 | - | - | 0.01 ± 0.00 | - | - | - | - | - |
76 | Benzyl benzoate | 1760 | 1767 | - | - | 0.30 ± 0.03 | - | - | - | - | - | - |
77 | 1-Hexadecanol | 1875 | 1884 | - | - | - | - | 0.12 ± 0.02 | - | - | - | - |
Total | 98.15 ± 0.51 | 98.67 ± 0.36 | 95.71 ± 1.60 | 99.09 ± 0.30 | 98.66 ± 0.11 | 98.61 ± 0.35 | 98.60 ± 0.56 | 98.32 ± 0.11 | 99.00 ± 0.30 | |||
Monoterpene hydrocarbons | 13.38 | 1.37 | 0.05 | 0.21 | 7.11 | 0.03 | 46.47 | 2.31 | 7.39 | |||
Oxygenated monoterpenes | 72.17 | 84.67 | 66.48 | 88.46 | 85.05 | 79.87 | 43.86 | 85.76 | 76.22 | |||
Sesquiterpene hydrocarbons | 11.98 | 10.74 | 11.94 | 10.09 | 5.83 | 7.51 | 7.04 | 9.93 | 15.07 | |||
Oxygenated sesquiterpenes | 0.62 | 1.89 | 17.23 | 0.33 | 0.67 | 11.20 | 1.23 | 0.32 | 0.32 |
Primer | Total No. of Bands | No. of Polymorphic Bands | Polymorphism (%) |
---|---|---|---|
OPA-09 | 10 | 10 | 100 |
OPA-10 | 8 | 8 | 100 |
OPA-11 | 12 | 11 | 91.67 |
OPA-12 | 4 | 3 | 75 |
OPA-13 | 10 | 8 | 80 |
OPA-14 | 4 | 4 | 100 |
OPA-15 | 8 | 7 | 87.50 |
OPA-16 | 10 | 9 | 90 |
OPA-17 | 5 | 5 | 100 |
OPA-18 | 9 | 9 | 100 |
OPA-19 | 16 | 16 | 100 |
OPA-20 | 10 | 9 | 90 |
OPB-01 | 8 | 8 | 100 |
OPB-02 | 7 | 7 | 100 |
OPB-03 | 8 | 7 | 87.5 |
OPB-04 | 4 | 3 | 75 |
Total | 133 | 124 | |
Average | 8.31 | 7.75 | 93.23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Moon, J.-C.; Kim, S.; Sowndhararajan, K. Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.). Antibiotics 2020, 9, 289. https://doi.org/10.3390/antibiotics9060289
Kim M, Moon J-C, Kim S, Sowndhararajan K. Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.). Antibiotics. 2020; 9(6):289. https://doi.org/10.3390/antibiotics9060289
Chicago/Turabian StyleKim, Minju, Jun-Cheol Moon, Songmun Kim, and Kandhasamy Sowndhararajan. 2020. "Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.)" Antibiotics 9, no. 6: 289. https://doi.org/10.3390/antibiotics9060289
APA StyleKim, M., Moon, J. -C., Kim, S., & Sowndhararajan, K. (2020). Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.). Antibiotics, 9(6), 289. https://doi.org/10.3390/antibiotics9060289