Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Human Bloodstream Infections: Detection of MLSB Resistance
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Bacterial Isolates
4.2. Antimicrobial Resistance Profile
4.3. Characterization of Virulence Factors
4.4. Molecular Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohanty, A.; Mohapatra, K.; Pal, B. Isolation and identification of staphylococcus aureus from skin and soft tissue infection in sepsis cases, Odisha. J. Pure Appl. Microbiol. 2018, 12, 419–424. [Google Scholar] [CrossRef]
- Powers, M.E.; Wardenburg, J.B. Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog. 2014, 10, e1003871. [Google Scholar] [CrossRef] [PubMed]
- Zha, G.-F.; Wang, S.-M.; Rakesh, K.P.; Bukhari, S.N.A.; Manukumar, H.M.; Vivek, H.K.; Mallesha, N.; Qin, H.-L. Discovery of novel arylethenesulfonyl fluorides as potential candidates against methicillin-resistant of Staphylococcus aureus (MRSA) for overcoming multidrug resistance of bacterial infections. Eur. J. Med. Chem. 2019, 162, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Kong, E.F.; Johnson, J.K.; Jabra-Rizk, M.A. Community-associated methicillin-resistant Staphylococcus aureus: An enemy amidst us. PLoS Pathog. 2016, 12, e1005837. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, K.; Rao, S.; Rao, V. Inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. J. Lab. Physicians 2011, 3, 25–27. [Google Scholar] [CrossRef]
- Coutinho, V.D.L.S.; Paiva, R.M.; Reiter, K.C.; de-Paris, F.; Barth, A.L.; Machado, A.B.M.P. Distribution of erm genes and low prevalence of inducible resistance to clindamycin among staphylococci isolates. Braz. J. Infect. Dis. 2010, 14, 564–568. [Google Scholar]
- Khodabandeh, M.; Mohammadi, M.; Abdolsalehi, M.R.; Alvandimanesh, A.; Gholami, M.; Bibalan, M.H.; Pournajaf, A.; Kafshgari, R.; Rajabnia, R. Analysis of resistance to macrolide-lincosamide-streptogramin B among mecA-positive Staphylococcus aureus isolates. Osong Public Health Res. Perspect. 2019, 10, 25–31. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Almeida, F.; Carvalho, J.A.; Castro, A.P.; Ferreira, E.; Manageiro, V.; Tejedor-Junco, M.T.; Caniça, M.; Igrejas, G.; Poeta, P. Emergence of community-acquired methicillin-resistant Staphylococcus aureus EMRSA-15 clone as the predominant cause of diabetic foot ulcer infections in Portugal. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 179–186. [Google Scholar] [CrossRef]
- Dat, V.Q.; Vu, H.N.; Nguyen The, H.; Nguyen, H.T.; Hoang, L.B.; Vu Tien Viet, D.; Bui, C.L.; Van Nguyen, K.; Nguyen, T.V.; Trinh, D.T.; et al. Bacterial bloodstream infections in a tertiary infectious diseases hospital in Northern Vietnam: Aetiology, drug resistance, and treatment outcome. BMC Infect. Dis. 2017, 17, 493. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—A review of recent developments in MRSA management and treatment. Crit. Care 2017, 21, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piechota, M.; Kot, B.; Frankowska-Maciejewska, A.; Gruzewska, A.; Woźniak-Kosek, A. Biofilm formation by Methicillin-resistant and Methicillin-sensitive Staphylococcus aureus strains from hospitalized patients in Poland. Biomed. Res. Int. 2018, 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jokinen, E.; Lindholm, L.; Huttunen, R.; Huhtala, H.; Vuento, R.; Vuopio, J.; Syrjänen, J. Spa type distribution in MRSA and MSSA bacteremias and association of spa clonal complexes with the clinical characteristics of bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 937–943. [Google Scholar] [CrossRef]
- Antimicrobial Consumption in the EU/EEA, Annual Epidemiological Report for 2018. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial-consumption-EU-EEA.pdf (accessed on 10 April 2020).
- Lindsay, J.A. Hospital-associated MRSA and antibiotic resistance—What have we learned from genomics? Int. J. Med. Microbiol. 2013, 303, 318–323. [Google Scholar] [CrossRef]
- Horváth, A.; Dobay, O.; Sahin-Tóth, J.; Juhász, E.; Pongrácz, J.; Iván, M.; Fazakas, E.; Kristóf, K. Characterisation of antibiotic resistance, virulence, clonality and mortality in MRSA and MSSA bloodstream infections at a tertiary-level hospital in Hungary: A 6-year retrospective study. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1–11. [Google Scholar] [CrossRef]
- Bal, A.M.; Coombs, G.W.; Holden, M.T.G.; Lindsay, J.A.; Nimmo, G.R.; Tattevin, P.; Skov, R.L. Genomic insights into the emergence and spread of international clones of healthcare-, community-and livestock-associated meticillin-resistant Staphylococcus aureus: Blurring of the traditional definitions. J. Glob. Antimicrob. Resist. 2016, 6, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Knight, G.M.; Budd, E.L.; Lindsay, J.A. Large mobile genetic elements carrying resistance genes that do not confer a fitness burden in healthcare-associated meticillin-resistant Staphylococcus aureus. Microbiology (UK) 2013, 159, 1661–1672. [Google Scholar] [CrossRef]
- Faria, N.A.; Miragaia, M.; de Lencastre, H.; The Multi Laboratory Project Collaborators. Massive dissemination of methicillin resistant Staphylococcus aureus in bloodstream infections in a high MRSA prevalence country: Establishment and diversification of EMRSA-15. Microb. Drug Resist. 2013, 19, 483–490. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M.; Correia, B.; de Lencastre, H.; Collaborators, M.P. Changing patterns in frequency of recovery of five methicillin-resistant Staphylococcus aureus clones in Portuguese hospitals: Surveillance over a 16-year period. J. Clin. Microbiol. 2008, 46, 2912–2917. [Google Scholar] [CrossRef] [Green Version]
- Reinheimer, C.; Kempf, V.A.J.; Jozsa, K.; Wichelhaus, T.A.; Hogardt, M.; O’Rourke, F.; Brandt, C. Prevalence of multidrug-resistant organisms in refugee patients, medical tourists and domestic patients admitted to a German university hospital. BMC Infect. Dis. 2017, 17, 17. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.K.L.; Koo, S.H.; Quek, Q.; Pang, W.S.; Jiang, B.; Ng, L.S.Y.; Tan, S.H.; Tan, T.Y. Development of a real-time assay to determine the frequency of qac genes in methicillin resistant Staphylococcus aureus. J. Microbiol. Methods 2018, 153, 133–138. [Google Scholar] [CrossRef]
- Williamson, D.A.; Roberts, S.A.; Ritchie, S.R.; Coombs, G.W.; Fraser, J.D.; Heffernan, H. Clinical and molecular epidemiology of methicillin-resistant Staphylococcus aureus in New Zealand: Rapid emergence of sequence type 5 (ST5)-SCCmec-IV as the dominant community-associated MRSA clone. PLoS ONE 2013, 8, e62020. [Google Scholar] [CrossRef]
- Otter, J.A.; Klein, J.L.; Watts, T.L.; Kearns, A.M.; French, G.L. Identification and control of an outbreak of ciprofloxacin-susceptible EMRSA-15 on a neonatal unit. J. Hosp. Infect. 2007, 67, 232–239. [Google Scholar] [CrossRef]
- Goudarzi, M.; Seyedjavadi, S.S.; Nasiri, M.J.; Goudarzi, H.; Sajadi Nia, R.; Dabiri, H. Molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from patients with bacteremia based on MLST, SCCmec, spa, and agr locus types analysis. Microb. Pathog. 2017, 104, 328–335. [Google Scholar] [CrossRef]
- Shallcross, L.J.; Fragaszy, E.; Johnson, A.M.; Hayward, A.C. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: A systematic review and meta-analysis. Lancet. Infect. Dis. 2013, 13, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Sila, J.; Sauer, P.; Kolar, M. Comparison of the prevalence of genes coding for enterotoxins, exfoliatins, Panton-Valentine leukocidin and TSST-1 between methicillin-resistant and methicillin-susceptible isolates of Staphylococcus Aureus at the University Hospital in Olomouc. Biomed. Pap. 2009, 153, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Abdulgader, S.M.; van Rijswijk, A.; Whitelaw, A.; Newton-Foot, M. The association between pathogen factors and clinical outcomes in patients with Staphylococcus aureus bacteraemia in a tertiary hospital, Cape Town. Int. J. Infect. Dis. 2020, 91, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Aschbacher, R.; Pagani, E.; Larcher, C.; Pichon, B.; Pike, R.; Ganner, M.; Hill, R.; Kearns, A.; Wootton, M.; Davies, L.; et al. Molecular epidemiology of methicillin-resistant Staphylococcus aureus from bacteraemia in northern Italy. Infez. Med. 2012, 20, 256–264. [Google Scholar]
- Ben Ayed, S.; Boutiba-Ben Boubaker, I.; Samir, E.; Ben Redjeb, S. Prevalence of agr specificity groups among methicilin resistant Staphylococcus aureus circulating at Charles Nicolle hospital of Tunis. Pathol. Biol. 2006, 54, 435–438. [Google Scholar] [CrossRef]
- He, W.; Chen, H.; Zhao, C.; Zhang, F.; Li, H.; Wang, Q.; Wang, X.; Wang, H. Population structure and characterisation of Staphylococcus aureus from bacteraemia at multiple hospitals in China: Association between antimicrobial resistance, toxin genes and genotypes. Int. J. Antimicrob. Agents 2013, 42, 211–219. [Google Scholar] [CrossRef]
- Bouchiat, C.; Moreau, K.; Devillard, S.; Rasigade, J.-P.; Mosnier, A.; Geissmann, T.; Bes, M.; Tristan, A.; Lina, G.; Laurent, F.; et al. Staphylococcus aureus infective endocarditis versus bacteremia strains: Subtle genetic differences at stake. Infect. Genet. Evol. 2015, 36, 524–530. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Hong, J.S.; Yoon, E.-J.; Lee, H.; Kim, Y.A.; Shin, K.S.; Shin, J.H.; Uh, Y.; Shin, J.H.; Park, Y.S.; et al. Toxic shock syndrome toxin 1-producing methicillin-resistant Staphylococcus aureus of clonal complex 5, the New York/Japan epidemic clone, causing a high early-mortality rate in patients with bloodstream infections. Antimicrob. Agents Chemother. 2019, 63, e01362–e01419. [Google Scholar] [CrossRef] [Green Version]
- Boswihi, S.S.; Udo, E.E.; Al-Sweih, N. Shifts in the Clonal Distribution of Methicillin-Resistant Staphylococcus aureus in Kuwait Hospitals: 1992–2010. PLoS ONE 2016, 11, e0162744. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Fang, Y.-P.; Chang, Y.-F.; Wu, T.-H.; Yang, Y.-Y.; Huang, Y.-C. Comparison of molecular epidemiology of bloodstream methicillin-resistant Staphylococcus aureus isolates between a new and an old hospital in central Taiwan. Int. J. Infect. Dis. 2019, 79, 162–168. [Google Scholar] [CrossRef] [Green Version]
- David, M.Z. The Importance of Staphylococcus aureus genotypes in outcomes and complications of bacteremia. Clin. Infect. Dis. 2019, 69, 1878–1880. [Google Scholar] [CrossRef]
- Mišić, M.; Čukić, J.; Vidanović, D.; Šekler, M.; Matić, S.; Vukašinović, M.; Baskić, D. Prevalence of genotypes that determine resistance of staphylococci to macrolides and lincosamides in Serbia. Front. Public Health 2017, 5, 200. [Google Scholar] [CrossRef] [Green Version]
- Sasirekha, B.; Usha, M.S.; Amruta, J.A.; Ankit, S.; Brinda, N.; Divya, R. Incidence of constitutive and inducible clindamycin resistance among hospital-associated Staphylococcus aureus. 3 Biotech. 2014, 4, 85–89. [Google Scholar] [CrossRef] [Green Version]
Isolate | Antimicrobial Resistance | Virulence | Molecular Typing | ||||
---|---|---|---|---|---|---|---|
Phenotype | Genotype a | MLST (CC) | spa | SCCmec | agr | ||
VS2761 | FOX, PEN, ERY, DA 1, CIP | mecA, ermC, msr(A/B) | hlA | 22 (22) | t747 | IV | I |
VS2762 | FOX, PEN, ERY, DA 2, CN, CIP | mecA, blaZ, ermA, msr(A/B), aac(6’)-Ie-aph(2’’)-Ia | hlA | 105 (5) | t002 | II | II |
VS2763 | FOX, PEN, CIP | mecA, blaZ | hlA, hlB, etA | 22 (22) | t747 | IV | I |
VS2764 | FOX, PEN, ERY, DA 2, CIP | mecA, blaZ, ermC, msr(A/B), mphC | hlA, etA | 22 (22) | t747 | IV | I |
VS2765 | FOX, PEN, ERY, DA 2, CIP | mecA, blaZ, ermC, msr(A/B), mphC | lukF/lukS-PV, hlA, hlB, etA | 22 (22) | t747 | IV | I |
VS2766 | FOX, PEN, ERY, DA 1, CN, TOB, CIP | mecA, blaZ, ermC, msr(A/B), mphC, aac(6’)-Ie-aph(2’’)-Ia, ant(4’)-Ia | lukF/lukS-PV, hlA, hlB, etA | 22 (22) | t020 | IV | I |
VS2767 | FOX, PEN, CIP | mecA, blaZ | hlA, hlB, etA | 22 (22) | t747 | IV | I |
VS2768 | FOX, PEN, ERY, DA 2, CIP | mecA, blaZ, ermC, msr(A/B), mphC | lukF/lukS-PV, hlA, etA | 22 (22) | t747 | IV | I |
VS2769 | FOX, PEN, ERY, DA 2, CIP | mecA, blaZ, msr(A/B), mphC | hlA, hlB | 5 (5) | t002 | II | II |
VS2770 | FOX, PEN, ERY, DA 2, CIP, FD | mecA, blaZ, ermA, ermC, msr(A/B), mphC | hlA, hlB | 5984 | t1084 | II | II |
VS2771 | FOX, PEN, ERY, DA 2, CIP | mecA, blaZ, ermC, msr(A/B), mphC | hlA | 8 (8) | t008 | IV | I |
VS2772 | FOX, PEN, CIP | mecA, blaZ | hlB | 5 (5) | t002 | II | II |
VS2773 | FOX, PEN, ERY, DA 2, CIP | mecA, blaZ, ermA, ermC, msr(A/B), mphC | hlB | 105 (5) | t10682 | II | II |
VS2774 | FOX, PEN, ERY, DA 1, CIP | mecA, blaZ, ermA, mphC | hlB, etA | 22 (22) | t18526 | IV | I |
VS2775 | FOX, PEN, ERY, DA 2, CIP | mecA, blaZ, ermA, ermC, msr(A/B) | hlB, etA | 22 (22) | t1370 | IV | I |
VS2776 | FOX, PEN, FD | mecA, blaZ | hlB | 8 (8) | t008 | IV | I |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, V.; Hermenegildo, S.; Ferreira, C.; Manaia, C.M.; Capita, R.; Alonso-Calleja, C.; Carvalho, I.; Pereira, J.E.; Maltez, L.; Capelo, J.L.; et al. Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Human Bloodstream Infections: Detection of MLSB Resistance. Antibiotics 2020, 9, 375. https://doi.org/10.3390/antibiotics9070375
Silva V, Hermenegildo S, Ferreira C, Manaia CM, Capita R, Alonso-Calleja C, Carvalho I, Pereira JE, Maltez L, Capelo JL, et al. Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Human Bloodstream Infections: Detection of MLSB Resistance. Antibiotics. 2020; 9(7):375. https://doi.org/10.3390/antibiotics9070375
Chicago/Turabian StyleSilva, Vanessa, Sara Hermenegildo, Catarina Ferreira, Célia M. Manaia, Rosa Capita, Carlos Alonso-Calleja, Isabel Carvalho, José Eduardo Pereira, Luis Maltez, José L. Capelo, and et al. 2020. "Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Human Bloodstream Infections: Detection of MLSB Resistance" Antibiotics 9, no. 7: 375. https://doi.org/10.3390/antibiotics9070375
APA StyleSilva, V., Hermenegildo, S., Ferreira, C., Manaia, C. M., Capita, R., Alonso-Calleja, C., Carvalho, I., Pereira, J. E., Maltez, L., Capelo, J. L., Igrejas, G., & Poeta, P. (2020). Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Human Bloodstream Infections: Detection of MLSB Resistance. Antibiotics, 9(7), 375. https://doi.org/10.3390/antibiotics9070375