Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way?
Abstract
:1. Introduction
2. One Health
One Health, Zoonosis, and MDR
3. Bacteriophages
3.1. Phages as Human Therapy against Zoonotic Pathogens
3.2. Phages in Food Production and Animal Therapy Contributing to One Health
3.3. The Issue of Phages Promoting Pathogenesis and AMR
3.4. Antifungal Phages, Mycosis, and One Health
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Monnet, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. 2020. Available online: https://www.who.int/news-room/detail/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 10 June 2020).
- Dafale, N.A.; Srivastava, S.; Purohit, H.J. Zoonosis: An emerging link to antibiotic resistance under “One Health approach”. Indian J. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Huang, Y.; Lv, X. Crisis of antimicrobial resistance in China: Now and the future. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Yousfi, H.; Ranque, S.; Rolain, J.M.; Bittar, F. In vitro polymyxin activity against clinical multidrug-resistant fungi. Antimicrob. Resist. Infect. Control 2019, 8. [Google Scholar] [CrossRef]
- Alcazar-fuoli, L.; Mellado, E. Current status of antifungal resistance and its impact on clinical practice. Br. J. Haematol. 2014, 166, 471–484. [Google Scholar] [CrossRef]
- Forsberg, K.; Woodworth, K.; Walters, M.; Berkow, E.L.; Jackson, B.; Chiller, T.; Vallabhaneni, S. Candida auris: The recent emergence of a multidrug-resistant fungal pathogen. Med. Mycol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Van de Pol, J.A.A.; van Best, N.; Mbakwa, C.A.; Thijs, C.; Savelkoul, P.H.; Arts, I.C.W.; Penders, J. Gut colonization by methanogenic archaea is associated with organic dairy consumption in children. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef]
- Savage, M.; Meade, E.; Slattery, M.A.; Garvey, M. Antibiotic resistance: An important issue for public health safety. Ann. Microbiol. Res. 2017, 1, 26–30. [Google Scholar] [CrossRef]
- Meade, E.; Slattery, M.A.; Garvey, M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species. Resistance is futile? Antibiotics 2020, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Jamal, M.; Hussain, T.; Rajanna Das, C.; Andleeb, S. Isolation and characterization of a Myoviridae MJ1 bacteriophage against multi-drug resistant Escherichia coli 3. Jundishapur J. Microbiol. 2015, 8, e25917. [Google Scholar] [CrossRef] [Green Version]
- Rabinowitz, P.M.; Kock, R.; Kachani, M.; Kunkel, R.; Thomas, J.; Gilbert, J.; Wallace, R.; Blackmore, C.; Wong, D.; Karesh, W.; et al. Toward proof of concept of a One Health approach to disease prediction and control. Emerg. Infect. Dis. 2013, 19, e130265. [Google Scholar] [CrossRef]
- Doyle, S.; Meade, E.; Fowley, C.; Garvey, M. A comprehensive review of current environmental pollutants of pharmaceutical, agricultural and industrial origin. Eur. J. Exp. Biol. 2020, 10, 2. [Google Scholar] [CrossRef]
- Min, B.; Allen-Scott, L.K.; Buntain, B. Transdisciplinary research for complex One Health issues: A scoping review of key concepts. Prev. Vet. Med. 2013, 112, 222–229. [Google Scholar] [CrossRef]
- Komolafe, O.O. Antibiotic resistance in bacteria-an emerging public health problem. Malawi Med. J. 2003, 15, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2015, 57, 2857–2876. [Google Scholar] [CrossRef]
- White, A.; Hughes, J.M. Critical importance of a One Health approach to antimicrobial resistance. EcoHealth 2019, 16, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Partridge, S.R. Resistance mechanisms in Enterobacteriaceae. Pathology 2015, 47, 276–284. [Google Scholar] [CrossRef]
- Garvey, M. Chronic bovine mastitis: A food safety issue and public health hazard. Nutr. Food Sci. Int. J. 2019, 8, 1–6. [Google Scholar] [CrossRef]
- Maragakis, L.L.; Perl, T.M.; Eliopoulos, G.M. Antimicrobial resistance: Acinetobacter baumannii: Epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis. 2008, 46, 1254–1263. [Google Scholar] [CrossRef] [Green Version]
- Lambertini, E.; Karns, J.S.; Van Kessel, J.A.S.; Cao, H.; Schukken, Y.; Wolfgang, D.R.; Smith, J.M.; Pradhan, A.K. Dynamics of Escherichia coli virulence factors in dairy herds and farm environments in a longitudinal study in the United States. Appl. Environ. Microbiol. 2015, 81, 4477–4488. [Google Scholar] [CrossRef] [Green Version]
- Mamat, W.; Wilke, K.; Bramhill, D.; Schromm, A.B.; Lindner, B.; Kohl, T.A.; Corchero, J.L.; Villaverde, A.; Schaffer, L.; Head, S.R.; et al. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb. Cell Factories 2015, 14, 57. [Google Scholar] [CrossRef] [Green Version]
- Manchanda, V.; Sinha, S.; Singh, N.; Sanchaita, S. Multidrug resistant Acinetobacter. J. Glob. Infect. Dis. 2010, 2, 291–304. [Google Scholar] [CrossRef]
- Bhagirath, A.Y.; Li, Y.; Somayajula, D.; Dadashi, M.; Badr, S.; Duan, K. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm. Med. 2016, 16, 174. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, A.P.R.D.C.; Dos Santos, K.T.B.; Moreira, B.M.; Fracalanzza, S.E.L.; Bonelli, R.R. Antimicrobial resistance in Neisseria gonorrhoeae: History, molecular mechanisms and epidemiological aspects of an emerging global threat. Braz. J. Microbiol. 2017, 48, 617–628. [Google Scholar] [CrossRef]
- Johnson, S.R.; Morse, S.A. Antibiotic resistance in Neisseria gonorrhoeae: Genetics and mechanisms of resistance. Sex. Transm. Dis. 1988, 15, 217–224. [Google Scholar] [CrossRef]
- Su, L.-H.; Chiu, C.-H.; Chu, C.; Ou, J.T. Antimicrobial resistance in nontyphoid salmonella serotypes: A global challenge. Clin. Infect. Dis. 2004, 39, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Cloeckaert, A.; Chaslus-Dancla, E. Mechanisms of quinolone resistance in Salmonella. Vet. Res. 2001, 32, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Biswas, S.; Paudyal, N.; Pan, H.; Li, X.; Fang, W.; Yue, M. Antibiotic Resistance in Salmonella Typhimurium Isolates Recovered from the Food Chain Through National Antimicrobial Resistance Monitoring System between 1996 and 2016. Front. Microbiol. 2019, 10, 985. [Google Scholar] [CrossRef] [Green Version]
- Britto, C.D.; Wong, V.K.; Dougan, G.; Pollard, A.J. A systematic review of antimicrobial resistance in Salmonella enterica serovar Typhi, the etiological agent of typhoid. PLoS Negl. Trop. Dis. 2018, 12, e0006779. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Guo, Q.; Yuan, Y. The antibiotic resistance of Helicobacter pylori to five antibiotics and influencing factors in an area of China with a high risk of gastric cancer. BMC Microbiol. 2019, 19, 152. [Google Scholar] [CrossRef] [Green Version]
- Mégraud, F. The challenge of Helicobacter pylori resistance to antibiotics: The comeback of bismuth-based quadruple therapy. Ther. Adv. Gastroenterol. 2012, 5, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, W.; Graham, D. Antibiotic-resistant, H. pylori Infection and its treatment. Curr. Pharm. Des. 2000, 6, 1537–1544. [Google Scholar] [CrossRef]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti-Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef]
- Levitus, M.; Rewane, A.; Perera, T.B. Vancomycin-Resistant Enterococci (VRE). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513233/ (accessed on 10 June 2020).
- Stapleton, P.D.; Taylor, P.W. Methicillin resistance in Staphylococcus aureus: Mechanisms and modulation. Sci. Prog. 2002, 85, 57–72. [Google Scholar] [CrossRef]
- Meade, E.; Fowley, C.; Savage, M.; Slattery, M.A. Antibacterial activity of Roussin’s black salt $gainst multidrug resistant zoonotic pathogens isolated from companion animals. Acta Sci. Vet. Sci. 2020, 2, 01–09. [Google Scholar] [CrossRef]
- Spigaglia, P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Infect. Dis. 2016, 3, 23–42. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, M.R. Drug-resistant streptococcus pneumoniae: Rational antibiotic choices. Am. J. Med. 1999, 106, 19–25. [Google Scholar] [CrossRef]
- Cherazard, R.; Epstein, M.; Doan, T.L.; Salim, T.; Bharti, S.; Smith, M.A. Antimicrobial resistant streptococcus pneumoniae. Am. J. Ther. 2017, 24, e361–e369. [Google Scholar] [CrossRef]
- Palomino, J.C.; Martin, A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics 2014, 3, 317–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scorpio, A.; Lindholm-Levy, P.; Heifets, L.; Gilman, R.; Siddiqi, S.; Cynamon, M.; Zhang, Y. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 1997, 41, 540–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philalay, J.S.; Palermo, C.O.; Hauge, K.A.; Rustad, T.R.; Cangelosi, G.A. Genes required for intrinsic multidrug resistance in Mycobacterium avium. Antimicrob. Agents Chemother. 2004, 48, 3412–3418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown-Elliott, B.A.; Nash, K.A.; Wallace, R.J., Jr. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin. Microbiol. Rev. 2012, 25, 545–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaffré, J.; Aubry, A.; Maitre, T.; Morel, F.; Brossier, F.; Robert, J. Rational choice of antibiotics and media for mycobacterium avium complex drug susceptibility testing. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, S.M.; Park, H.Y.; Kim, S.-Y.; Jhun, B.W.; Lee, H.; Jeon, K.; Kim, D.H.; Huh, H.J.; Ki, C.-S.; Lee, N.Y.; et al. Clinical characteristics, treatment outcomes, and resistance mutations associated with macrolide-resistant Mycobacterium avium complex lung disease. Antimicrob. Agents Chemother. 2016, 60, 6758–6765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argudín, M.A.; Deplano, A.; Meghraoui, A.; Dodémont, M.; Heinrichs, A.; Denis, O.; Nonhoff, C.; Roisin, S. Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics 2017, 6, 12. [Google Scholar] [CrossRef]
- Rozman, V.; Bogovič Matijašić, B.; Smole Možina, S. Antimicrobial resistance of common zoonotic bacteria in the food chain: An emerging threat. Antimicrob. Resist. Glob. Threat 2019. [Google Scholar] [CrossRef] [Green Version]
- Scott, H.M.; Acuff, G.; Bergeron, G.; Bourassa, M.W.; Gill, J.; Graham, D.W.; Kahn, L.H.; Morley, P.S.; Salois, M.J.; Simjee, S.; et al. Critically important antibiotics: Criteria and approaches for measuring and reducing their use in food animal agriculture. Ann. N. Y. Acad. Sci. 2019, 1441, 8–16. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int. 2016, 2475067. [Google Scholar] [CrossRef] [Green Version]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Savin, M.; Bierbaum, G.; Hammerl, J.A.; Heinemann, C.; Parcina, M.; Sib, E.; Kreyenschmidt, J. Isolation and characterization of ESKAPE-bacteria and ESBL-producing E. coli from waste- and process water of German poultry slaughterhouses. Appl. Environ. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiller, R.C. Hidden dangers of antibiotic use: Increased gut permeability mediated by increased pancreatic proteases reaching the colon. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 347–348.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michielan, A.; D’Incà, R. Intestinal permeability in inflammatory bowel disease: Pathogenesis, clinical evaluation, and therapy of leaky gut. Mediat. Inflamm. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhong, D.; Wu, C.; Zeng, X.; Wang, Q. The role of gut microbiota in the pathogenesis of rheumatic diseases. Clin. Rheumatol. 2017, 37, 25–34. [Google Scholar] [CrossRef]
- Batinovic, S.; Wassef, F.; Knowler, S.A.; Rice, D.T.F.; Stanton, C.R.; Rose, J.; Tucci, J.; Nittami, T.; Vinh, A.; Drummond, G.R.; et al. Bacteriophages in natural and artificial environments. Pathogens 2019, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Yutin, N.; Makarova, K.S.; Gussow, A.B.; Krupovic, M.; Segall, A.; Edwards, R.A.; Koonin, E.V. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 2017, 3, 38–46. [Google Scholar] [CrossRef]
- SenÄcilo, A.; Roine, E. A glimpse of the genomic diversity of haloarchaeal tailed viruses. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef]
- Ackermann, H.W. Tailed bacteriophages: The order caudovirales. Adv. Virus Res. 1998, 51, 135–201. [Google Scholar] [CrossRef]
- Elbreki, M.; Ross, R.P.; Hill, C.; O’Mahony, J.; McAuliffe, O.; Coffey, A. Bacteriophages and their derivatives as biotherapeutic agents in disease prevention and treatment. J. Viruses 2014, 2014, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Verheust, C.; Pauwels, K.; Mahillon, J.; Helinski, D.R.; Herman, P. Contained use of bacteriophages: Risk assessment and biosafety recommendations. Appl. Biosaf. 2010, 15, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Geng, H.; Zou, W.; Zhang, M.; Xu, L.; Liu, F.; Li, X.; Wang, L.; Xu, Y. Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice. Folia Microbiol. (Praha) 2020, 65, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Harada, L.K.; Silva, E.C.; Campos, W.F.; Del Fiol, F.S.; Vila, M.; Dąbrowska, K.; Balcão, V.M. Biotechnological applications of bacteriophages: State of the art. Microbiol. Res. 2018, 212–213, 38–58. [Google Scholar] [CrossRef]
- Jończyk, E.; Kłak, M.; Międzybrodzki, R.; Górski, A. The influence of external factors on bacteriophages—Review. Folia Microbiol. 2011, 56, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackermann, H.W. Bacteriophage observations and evolution. Res. Microbiol. 2003, 154, 245–251. [Google Scholar] [CrossRef]
- Rodríguez-Rubio, L.; Gutiérrez, D.; Donovan, D.M.; Martínez, B.; Rodríguez, A.; García, P. Phage lytic proteins: Biotechnological applications beyond clinical antimicrobials. Crit. Rev. Biotechnol. 2016, 36, 542–552. [Google Scholar] [CrossRef] [Green Version]
- Fortier, L.C.; Sekulovic, O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 2013, 4, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, A.J.F.; Gelbart, W.M.; Miller, J.H. Modern Genetic Analysis; Freeman, W.H., Ed.; The Nature of Genomes: New York, NY, USA, 1999. Available online: https://www.ncbi.nlm.nih.gov/books/NBK21342/ (accessed on 10 June 2020).
- Chibani-Chennoufi, S.; Bruttin, A.; Dillmann, M.L.; Brüssow, H. Phage-host interaction: An ecological perspective. J. Bacteriol. 2004, 186, 3677–3686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, P.; Mathie, J.; Li, M.; Dai, Z.; Alvarez, P.J.J. Isolation of polyvalent bacteriophages by sequential multiple-host approaches. Appl. Environ. Microbiol. 2016, 82, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clokie, M.R.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Yu, X.; Gu, Y.; Huang, X.; Liu, G.; Liu, X. Characterization and genomic study of phage vB_EcoS-B2 infecting multidrug-resistant Escherichia coli. Front. Microbiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Łusiak-Szelachowska, M.; Zaczek, M.; Weber-Dąbrowska, B.; Międzybrodzki, R.; Kłak, M.; Fortuna, W.; Letkiewicz, S.; Rogóż, P.; Szufnarowski, K.; Jończyk-Matysiak, E.; et al. Phage neutralization by sera of patients receiving phage therapy. Viral Immunol. 2014, 27, 295–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoll, B.M.; Mylonakis, E. Antibacterial bioagents based on principles of bacteriophage biology: An overview. Clin. Infect. Dis. 2014, 58, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Orquera, S.; Gölz, G.; Hertwig, S.; Hammerl, J.; Sparborth, D.; Joldic, A.; Alter, T. Control of Campylobacter spp. and Yersinia enterocolitica by virulent bacteriophages. J. Mol. Genet. Med. 2012, 6, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Krylov, V.; Shaburova, O.; Pleteneva, E.; Bourkaltseva, M.; Krylov, S.; Kaplan, A.; Chesnokova, E.; Kulakov, L.; Magill, D.; Polygach, O. Modular Approach to Select Bacteriophages Targeting Pseudomonas aeruginosa for Their Application to Children Suffering with Cystic Fibrosis. Front. Microbiol. 2016, 7, 1–15. [Google Scholar] [CrossRef]
- Duplessis, C.; Biswas, B.; Hanisch, B.; Perkins, M.; Henry, M.; Quinones, J. Refractory pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy. J. Pediatric Infect. Dis. Soc. 2018, 7, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Jennes, S.; Merabishvili, M.; Soentjens, P.; Pang, K.W.; Rose, T.; Keersebilck, E.; Soete, O.; François, P.M.; Teodorescu, S.; Verween, G.; et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury-a case report. Crit. Care 2017, 21, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Barceló, C. The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg. Microbes Infect. 2018, 7, 168. [Google Scholar] [CrossRef] [PubMed]
- Lacroix-Gueu, P.; Briandet, R.; Lévêque-Fort, S.; Bellon-Fontaine, M.N.; Fontaine-Aupart, M.P. In situ measurements of viral particles diffusion inside mucoid biofilms. Comptes Rendus Biol. 2005, 328, 1065–1072. [Google Scholar] [CrossRef]
- Briers, Y.; Walmagh, M.; Van Puyenbroeck, V.; Cornelissen, A.; Cenens, W.; Aertsen, A.; Oliveira, H.; Azeredo, J.; Verween, G.; Pirnay, J.P.; et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. MBio 2014, 5, e01379-14. [Google Scholar] [CrossRef] [Green Version]
- Sausset, R.; Petit, M.A.; Gaboriau-Routhiau, V.; De Paepe, M. New insights into intestinal phages. Mucosal Immunol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabrowska, K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 2019, 39, 2000–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, A. Pharmacological limitations of phage therapy. Upsala J. Med. Sci. 2019, 124, 218–227. [Google Scholar] [CrossRef]
- Örmälä, A.-M.; Jalasvuori, M. Phage therapy. Bacteriophage 2013, 3, e24219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loc-Carrillo, C.; Abedon, S.T. Pros and cons of phage therapy. Bacteriophage 2011, 1, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Dufour, N.; Delattre, R.; Ricard, J.D.; Debarbieux, L. The lysis of pathogenic Escherichia coli by bacteriophages releases less endotoxin than by β-lactams. Clin. Infect. Dis. 2017, 64, 1582–1588. [Google Scholar] [CrossRef]
- Abedon, S.T.; Garcia, P.; Mullany, P.; Aminov, R. Editorial: Phage therapy: Past, present and future. Front. Microbiol. 2017, 8, 981. [Google Scholar] [CrossRef] [Green Version]
- Lood, R.; Winer, B.Y.; Pelzek, A.J.; Diez-Martinez, R.; Thandar, M.; Euler, C.W. Novel phage lysin capable of killing the multidrug-resistant Gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob. Agents Chemother. 2015, 59, 1983–1991. [Google Scholar] [CrossRef] [Green Version]
- Cooper, C.J.; Koonjan, S.; Nilsson, A.S. Enhancing whole phage therapy and their derived antimicrobial enzymes through complex formulation. Pharmaceuticals 2018, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, L.; Bolton, D.; McAuliffe, O.; Coffey, A. Bacteriophages in food applications: From foe to friend. Annu. Rev. Food Sci. Technol. 2019, 10, 151–172. [Google Scholar] [CrossRef]
- Gigante, A.; Atterbury, R.J. Veterinary use of bacteriophage therapy in intensively-reared livestock. Virol. J. 2019, 16, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, R.; Dhama, K.; Chakrabort, S.; Kumar, A.; Rahal, A.; Kapoor, S. Bacteriophage therapy for safeguarding animal and human health: A review. Pak. J. Boil. Sci. 2014, 17, 301–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furfaro, L.L.; Payne, M.S.; Chang, B.J. Bacteriophage therapy: Clinical trials and regulatory hurdles. Front. Cell. Infect. Microbiol. 2018, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.; Anderson, J.; Carter, L.; Donjacour, E.; Paros, M. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J. Dairy Sci. 2016, 99, 2053–2062. [Google Scholar] [CrossRef] [PubMed]
- Rashel, M.; Uchiyama, J.; Ujihara, T.; Uehara, Y.; Kuramoto, S.; Sugihara, S.; Yagyu, K.I.; Muraoka, A.; Sugai, M.; Hiramatsu, L.; et al. Efficient Elimination of Multidrug-Resistant Staphylococcus aureus by Cloned Lysin Derived from Bacteriophage φMR11. J. Infect. Dis. 2007, 196, 1237–1247. [Google Scholar] [CrossRef] [Green Version]
- Biswas, B.; Adhya, S.; Washart, P.; Paul, B.; Trostel, A.N.; Powell, B.; Carlton, R.; Merril, C.R. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 2002, 70, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Marcó, M.B.; Moineau, S.; Quiberoni, A. Bacteriophages and dairy fermentations. Bacteriophage 2012, 2, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garvey, M. Mycobacterium avium subspecies paratuberculosis: A causative agent in human morbidity and risk to public health safety. Open Vet. J. 2018, 8, 172–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basra, S.; Anany, H.; Brovko, L.; Kropinski, A.M.; Griffiths, M.W. Isolation and characterization of a novel bacteriophage against mycobacterium avium subspecies paratuberculosis. Arch. Virol. 2014, 159, 2659–2674. [Google Scholar] [CrossRef]
- Chaturongakul, S.; Ounjai, P. Phage–host interplay: Examples from tailed phages and Gram-negative bacterial pathogens. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Ramisetty, B.C.M.; Suhakari, P.A. Bacterial ‘Grounded’ Prophages: Hotspots for genetic renovation and innovation. Front. Genet. 2019. Available online: https://doi.org/10.3389/fgene.2019.00065 (accessed on 14 June 2020). [CrossRef] [PubMed] [Green Version]
- Brussow, H.; Canchava, C.; Hardt, W.D. Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiol. Mol. Boil. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Principi, N.; Silvestri, E.; Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol. 2019, 10, 513. [Google Scholar] [CrossRef] [Green Version]
- Gage, M.J.; Bruenn, J.; Fischer, M.; Sanders, D.; Smith, T.J. KP4 fungal toxin inhibits growth in Ustilago maydis by blocking calcium uptake. Mol. Microbiol. 2001, 41, 775–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorski, A.; Bollyky, P.L.; Przybylski, M.; Borysowski, J.; Jonczyk-Matysiak, E.; Weber-Dabrowska, B. Perspectives of phage therapy in non-bacterial infections. Front. Microbiol. 2019, 9. [Google Scholar] [CrossRef]
- Sande, W.W.J.; Lo-Ten-Foe, J.R.; Belkum, A.; Netea, M.G.; Kullberg, B.J. Mycoviruses: Future therapeutic agents of invasive fungal infections in humans? Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 755–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiler, F.; Schmitt, M.J. Zygocin, a secreted antifungal toxin of the yeast Zygosaccharomyces bailii, and its effect on sensitive fungal cells. FEMS Yeast Res. 2003, 3, 69–76. [Google Scholar] [CrossRef]
Bacterial Species | Resistance Mechanisms | Therapeutics | Morbidity |
---|---|---|---|
Gram-negative | |||
Klebsiella pneumoniae * | Mutations in chromosomal genes, horizontal gene transfer (HGT) [20], efflux pump, ESBL production, intrinsic resistance [21] Reduced access to bacterial targets [22] | Carbapenem, third-generation cephalosporin [2] | Gastroenteritis, hemorrhagic diarrhea, Lipopolysaccharide-induced septic shock [23], deep wound infections, osteomyelitis, respiratory infections, bacteremia [22], enteric pathogenicity [21,24], nosocomial transmission |
Acinetobacter baumannii * | Multi drug resistant—penicillins, cephalosporins, fluroquinolones, and aminoglycosides [25], multi drug resistant above plus carbapenem | ||
Escherichia coli * | Carbapenem, third-generation cephalosporin [2] | ||
Pseudomonas aeruginosa * | Broad intrinsic antimicrobial resistance, efflux pump, extended spectrum beta lactamase production, HGT, psychrotrophic [21] | Multidrug resistant, carbapenem, aminoglycosides, cephalosporins | Fatalities, nosocomial infections—urinary tract infections (UTIs), bacteremia, chronic airway infection in cystic fibrous patients [26] |
Neisseria gonorrhea ** | Cumulative chromosomal mutations in different genes related to cell wall biosynthesis [27], TetM protein conferring tetracycline resistance [28] | Azithromycin, third-generation cephalosporins, fluoroquinolones, sulfonamides, penicillin, tetracycline [27] | Gonorrhea, sexually transmitted disease (STI) and drug resistance |
Salmonella species ** | Gene mutation—DNA gyrase, efflux pump [29], alterations to outer membrane proteins [30], extended-spectrum cephalosporinases | Fluoroquinolone ciprofloxacin [29], ampicillin, chloramphenicol, sulfamethoxazole–trimethoprim tetracycline and streptomycin [31] | Foodborne disease, gastroenteritis, enteric fever, typhoid [32] |
Helicobacter pylori ** | Cytotoxin-associated gene A (cagA) [33] mutations, DNA gyrase [34] | Clarithromycin, metronidazole, levofloxacin [33], amoxicillin, and tetracycline [35] | Peptic ulcer disease, lymphoma, gastric adenocarcinoma [35] |
Gram-positive | |||
VRE ** | β-lactamase, RNA methyltransferase, mutations in genes altering membrane structure [36] | Vancomycin, ampicillin, cephalosporins, aminoglycosides, daptomycin [36], low levels of intrinsic resistance to the quinolones | Nosocomial UTIs, immunosuppressed persons, bacteremia, bacteriuria [37], endocarditis, peritonitis [37] |
MRSA ** | Heat-stable staphylococcal enterotoxin production [21], altered penicillin-binding proteins (PBPs) [38] | Methicillin, amoxicillin, penicillin, oxacillin, cephalosporins, intrinsically resistant to the carbapenems [39] | Toxic shock syndrome, pneumonia, mastitis impetigo, cellulitis, osteomyelitis, endocarditis, bacteremia [38] |
Clostridioides difficile | Erythromycin ribosomal methylase (erm) gene [40] | Aminoglycosides, lincomycin, tetracyclines, erythromycin [40], clindamycin, penicillin, cephalosporins, fluoroquinolones [41] | Nosocomial mortalities, pseudomembranous colitis, toxin-mediated disease [41] |
Streptococcus pneumoniae *** | The erm(B) gene, altered PBPS [42], mutations of DNA gyrase gene, tet(M) and tet(O) genes [43] | Beta-lactam antibiotics [42], macrolides, lincosamides, fluoroquinolones, tetracyclines, trimethoprim–sulfamethoxazole [43] | Community-acquired pneumonia, meningitis, sepsis, bacteremia, and otitis media [43] |
Acid Fast | |||
Mycobacterium tuberculosis | Mutations in the embB gene [44], mutations in the pncA gene [45] | Ethambutol, rifampicin, isoniazid, pyrazinamide [45] | Tuberculosis (TB), multi drug resistant TB [44] |
Mycobacterium avium complex (M. avium, M. intracellulare) | Lipid-rich cell wall [46], gene mutations in PBPs, embB, embR, rpsL [47], efflux pump, β-lactamases | Intrinsic multidrug resistance [46], macrolides [48], clarithromycin [48] | Mycobacterium avium-intracellular infection, lung disease [49], disseminated infection (usually associated with AIDS), lymphadenitis, localized cutaneous infection with tenosynovitis [47] |
Order | Family | Bacteriophage | Features | Target Species |
---|---|---|---|---|
Caudovirales | Myoviridae | T2, T4, vBSM-A1 [64] | dsDNA, linear [58], NE, contractile tail [60] | Escherichia coli, S. aureus |
Siphoviridae | λ, T1, T5, ΦAPCM01 | dsDNA, linear, NE, non-contractile tail [62] | S. mutans [65] | |
Podoviridae | T7, vBSP-A2, PFpW-6 | E. coli, S. aureus [64] | ||
Ligamenvirales | Lipothrixviridae | TTV1, SIFV | Helical, dsDNA, linear, E, rod-shaped | Thermophilic Archaea |
Rudiviridae | SIRV1, AVF-1 | Helical, dsDNA, linear, NE, bottle shaped | Hyperthermophilic Archaea | |
Non grouped | Inoviridae | Fd, pf1, Vf33 [66] | Filamentous, ssDNA, NE, circular | Enterics, Pseudomonas, Vibrio [67] |
Microviridae | PhiX174 | Polyhedral ssDNA [66] | Enterobacteria | |
Tectiviridae | PRD1 | Linear dsDNA | Gram-negative bacteria | |
Corticoviridae | PM2 | Highly supercoiled, dsDNA, NE, circular [66] | ||
Cystoviridae | Phi6 | dsRNA, linear, lipoprotein envelope, spherical | Pseudomonas species-specific | |
Leviviridae | MS2 [66] | Polyhedral ssRNA, linear | Enterics, Acinetobacter, Pseudomonas | |
Ampullaviridae | Acidianus bottle-shaped virus | dsDNA, linear, E, bottle-shaped | Archaea | |
Bicaudaviridae | Acidianus two-tailed virus | dsDNA, circular, NE, lemon-shaped | Hyperthermophilic archaea | |
Clavaviridae | Aeropyrum pernix bacilliform virus 1. | NE, rod shaped, dsDNA, circular | Aeropyrum pernix | |
Fuselloviridae | Sulfolobus spindle-shaped virus 1, SSSV2, SSSV3 | Superhelical dsDNA [67], circular | Thermophilic Archaea | |
Plasmaviridae | Acholeplasma virus L2 | Superhelical dsDNA, E, pleomorphic | Acholeplasma laidlawii | |
Globuloviridae | Pyrobaculum spherical virus | Helical, E, dsDNA, linear [62] | Hyperthermophilic archaea, genera Pyrobaculum, and Thermoproteus |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garvey, M. Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way? Antibiotics 2020, 9, 414. https://doi.org/10.3390/antibiotics9070414
Garvey M. Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way? Antibiotics. 2020; 9(7):414. https://doi.org/10.3390/antibiotics9070414
Chicago/Turabian StyleGarvey, Mary. 2020. "Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way?" Antibiotics 9, no. 7: 414. https://doi.org/10.3390/antibiotics9070414
APA StyleGarvey, M. (2020). Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way? Antibiotics, 9(7), 414. https://doi.org/10.3390/antibiotics9070414