Evaluation of Antibacterial and Cytotoxic Properties of a Fluorinated Diamond-Like Carbon Coating for the Development of Antibacterial Medical Implants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluorinated Diamond-Like Carbon Coating
2.2. Evaluation of Antibacterial Activity
2.2.1. Bacterial Fluid Preparation
2.2.2. Viable Cell Count and Antibacterial Activity Evaluation
2.3. Evaluation of Cytotoxicity
2.3.1. Preparation of Test Pieces and Sample Extract Fluids
2.3.2. Test Material for Cytotoxicity Evaluation
2.3.3. Cell Culture
2.4. Evaluation of Antibacterial Activity by Changes in Fluorine Density
3. Results
3.1. Evaluation of Antibacterial Activity
3.2. Evaluation of Cytotoxicity
3.3. Evaluation of Antibacterial Activity by Changes in Fluorine Density
4. Discussion
- Since this was an in vitro study, it is necessary to confirm whether similar safety and antibacterial efficacy are present in vivo.
- The coating’s antibacterial effects on other bacteria, such as coagulase-negative staphylococci and pneumococci, remain to be determined.
- We did not rule out the possibility that the fluorine coating reduced the bone affinity of DLC in vivo.
- It is unknown how long fluorine can maintain its antibacterial properties in vivo.
- Although F-DLC has low cytotoxicity, it is necessary to confirm whether biotransformation of the immune system or of the metabolic system occurs.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davne, S.H.; Myers, D.L. Complications of lumbar spinal fusion with transpedicular instrumentation. Spine 1992, 17 (Suppl. 6), S184–S189. [Google Scholar] [CrossRef] [PubMed]
- Sponseller, P.D.; LaPorte, D.M.; Hungerford, M.W.; Eck, K.; Bridwell, K.H.; Lenke, L.G. Deep wound infections after neuromuscular scoliosis surgery: A multicenter study of risk factors and treatment outcomes. Spine 2000, 25, 2461–2466. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.A.; McCabe, J.P.; Cammisa, F.P., Jr. Postoperative spinal wound infection: A review of 2,391 consecutive index procedures. J. Spinal Disord. 2000, 13, 422–426. [Google Scholar] [CrossRef]
- Sperling, J.W.; Kozak, T.K.; Hanssen, A.D.; Cofield, R.H. Infection after shoulder arthroplasty. Clin. Orthop. Relat. Res. 2001, 382, 206–216. [Google Scholar] [CrossRef]
- Minnema, B.; Vearncombe, M.; Augustin, A.; Gollish, J.; Simor, A.E. Risk factors for surgical-site infection following primary total knee arthroplasty. Infect. Control. Hosp. Epidemiol. 2004, 25, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Bengtson, S.; Knutson, K. The infected knee arthroplasty. A 6-year follow-up of 357 cases. Acta Orthop. Scand. 1991, 62, 301–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrie, R.S.; Hanssen, A.D.; Osmon, D.R.; Ilstrup, D. Metal-backed patellar component failure in total knee arthroplasty: A possible risk for late infection. Am. J. Orthop. (Belle Mead N. J.) 1998, 27, 172–176. [Google Scholar]
- Poon, P.C.; Rennie, J.; Gray, D.H. Review of total hip replacement. The Middlemore Hospital experience, 1980–1991. N. Z. Med. J. 2001, 114, 254–256. [Google Scholar]
- Tang, W.M.; Chiu, K.Y.; Ng, T.P.; Yau, W.P.; Ching, P.T.; Seto, W.H. Efficacy of a single dose of cefazolin as a prophylactic antibiotic in primary arthroplasty. J. Arthroplast. 2003, 18, 714–718. [Google Scholar] [CrossRef]
- Hill, G.E.; Droller, D.G. Acute and subacute deep infection after uncemented total hip replacement using antibacterial prophylaxis. Orthop. Rev. 1989, 18, 617–623. [Google Scholar]
- Wymenga, A.B.; van Horn, J.R.; Theeuwes, A.; Muytjens, H.L.; Slooff, T.J. Perioperative factors associated with septic arthritis after arthroplasty: Prospective multicenter study of 362 knee and 2,651 hip operations. Acta Orthop. Scand. 1992, 63, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.B.; Barrett, J.A.; Losina, E.; Mahomed, N.N.; Lingard, E.A.; Guadagnoli, E.; Baron, J.A.; Harris, W.H.; Poss, R.; Katz, J.N. Incidence rates of dislocation, pulmonary embolism, and deep infection during the first six months after elective total hip replacement. J. Bone Jt. Surg. Am. 2003, 85, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Bratzler, D.W.; Houck, P.M.; Richards, C.; Steele, L.; Patchen Dellinger, E.; Fry, D.E.; Wright, C.; Ma, A.; Carr, K.; Red, L. Use of antimicrobial prophylaxis for major surgery: Baseline results from the National Surgical Infection Prevention Project. Arch. Surg. 2005, 140, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gristina, A.G.; Costerton, J.W. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J. Bone Jt. Surg. Am. 1985, 67, 264–273. [Google Scholar] [CrossRef]
- Nishimura, S.; Tsurumoto, T.; Yonekura, A.; Adachi, K.; Shindo, H. Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus epidermidis biofilms isolated from infected total hip arthroplasty cases. J. Orthop. Sci. 2006, 11, 46–50. [Google Scholar] [CrossRef]
- Sakimura, T.; Kajiyama, S.; Adachi, S.; Chiba, K.; Yonekura, A.; Tomita, M.; Koseki, H.; Miyamoto, T.; Tsurumoto, T.; Osaki, M. Biofilm-forming Staphylococcus epidermidis expressing vancomycin resistance early after adhesion to a metal surface. Biomed. Res. Int. 2015, 943056. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, S.M.; Lau, E.; Watson, H.; Schmier, J.K.; Parvizi, J. Economic burden of periprosthetic joint infection in the United States. J. Arthroplast. 2012, 27 (Suppl. 8), 61–65.e1. [Google Scholar] [CrossRef]
- Whitehouse, J.D.; Friedman, N.D.; Kirkland, K.B.; Richardson, W.J.; Sexton, D.J. The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: Adverse quality of life, excess length of stay, and extra cost. Infect. Control. Hosp. Epidemiol. 2002, 23, 183–189. [Google Scholar] [CrossRef]
- Helwig, P.; Morlock, J.; Oberst, M.; Hauschild, O.; Hübner, J.; Borde, J.; Südkamp, N.P.; Konstantinidis, L. Periprosthetic joint infection—Effect on quality of life. Int. Orthop. 2014, 38, 1077–1081. [Google Scholar] [CrossRef] [Green Version]
- Lucke, M.; Schmidmaier, G.; Sadoni, S.; Wildemann, B.; Schiller, R.; Haas, N.P.; Raschke, M. Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone 2003, 32, 521–531. [Google Scholar] [CrossRef]
- Antoci, V., Jr.; Adams, C.S.; Hickok, N.J.; Shapiro, I.M.; Parvizi, J. Vancomycin bound to Ti rods reduces periprosthetic infection: Preliminary study. Clin. Orthop. Relat. Res. 2007, 461, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.A.; Song, L.; Li, X.S.; Nelson, B.J.; Bottoni, C.; Brooks, D.E.; Dejong, E.S. Development, characterization, and anti-microbial efficacy of hydroxyapatite-chlorhexidine coatings produced by surface-induced mineralization. J. Biomed. Mater. Res. 2000, 53, 400–407. [Google Scholar] [CrossRef]
- Neut, D.A.; Dijkstra, R.J.; Thompson, J.I.; Kavanagh, C.; van der Mei, H.C.; Busscher, H.J. biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses. Eur. Cell Mater. 2015, 2, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Alt, V.; Bitschnau, A.; Österling, J.; Sewing, A.; Meyera, C.; Kraus, R.; Meissner, S.A.; Wenisch, S.; Domann, E.; Schnettler, R. The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials 2006, 27, 4627–4634. [Google Scholar] [CrossRef]
- Stigter, M.; de Groot, K.; Layrolle, P. Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials 2002, 23, 4143–4153. [Google Scholar] [CrossRef]
- Oka, Y.; Kim, W.C.; Yoshida, T.; Hirashima, T.; Mouri, H.; Urade, H.; Itoh, Y.; Kubo, T. Efficacy of titanium dioxide photocatalyst for inhibition of bacterial colonization on percutaneous implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 86, 530–540. [Google Scholar] [CrossRef]
- Noda, I.; Miyaji, F.; Ando, Y.; Miyamoto, H.; Shimazaki, T.; Yonekura, Y.; Miyazaki, M.; Mawatari, M.; Hotokebuchi, T. Development of novel thermal sprayed antibacterial coating and evaluation of release properties of silver ions. J. Biomed. Mater. Res. Part B. 2009, 89B, 456–465. [Google Scholar] [CrossRef]
- Funao, H.; Nagai, S.; Sasaki, A.; Hoshikawa, T.; Tsuji, T.; Okada, Y.; Koyasu, S.; Toyama, Y.; Nakamura, M.; Aizawa, M.; et al. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection. Sci. Rep. 2016, 23238. [Google Scholar] [CrossRef] [Green Version]
- Ando, Y.; Miyamoto, H.; Noda, I.; Sakurai, N.; Akiyama, T.; Yonekura, Y.; Shimazaki, T.; Miyazaki, M.; Mawatari, M.; Hotokebuchi, T. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion. Mater. Sci. Eng. C 2010, 30, 175–180. [Google Scholar] [CrossRef]
- Zainali, K.; Danscher, G.; Jakobsen, T.; Jakobsen, S.S.; Baas, J.; Møller, P.; Bechtold, J.E.; Soballe, K. Effects of gold coating on experimental implant fixation. J. Biomed. Mater. Res. A 2009, 88, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Shirai, T.; Shimizu, T.; Ohtani, K.; Zen, Y.; Takaya, M.; Tsuchiya, H. Antibacterial iodine-supported titanium implants. Acta Biomater. 2011, 7, 1928–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eto, S.; Kawano, S.; Someya, S.; Miyamoto, H.; Sonohata, M.; Mawatari, M. First clinical experience with thermal-sprayed silver oxide-containing hydroxyapatite coating implant. J. Arthroplast. 2016, 31, 1498–1503. [Google Scholar] [CrossRef] [PubMed]
- Borei, H. Inhibition of cellular oxidation by fluoride. Ark. För KemiMineral. Och Geol. 1945, 20A, 1–215. [Google Scholar]
- Aisenberg, S.; Chabot, R. Ion-beam deposition of thin films of diamondlike carbon. J. Appl. Phys. 1971, 42, 2953. [Google Scholar] [CrossRef]
- Saito, T.; Hasebe, T.; Yohena, S.; Matsuoka, Y.; Kamijo, A.; Takahashi, K.; Suzuki, T. Antithrombogenicity of fluorinated diamond-like carbon films. Diam. Relat. Mat. 2005, 3–7, 1116–1119. [Google Scholar] [CrossRef]
- Marciano, F.R.; Lima-Oliveira, D.A.; Da-Silva, N.S.; Corat, E.J.; Trava-Airoldi, V.J. Antibacterial activity of fluorinated diamond-like carbon films produced by PECVD. Surf. Coat. Tech. 2010, 204, 2986–2990. [Google Scholar] [CrossRef]
- Ishihara, M.; Kosaka, T.; Nakamura, T.; Tsugawa, K.; Hasegawa, M.; Kokai, F.; Koga, Y. Antibacterial activity of fluoride incorporated DLC films. Diam. Relat. Mat. 2006, 15, 1011–1014. [Google Scholar] [CrossRef]
- Del Prado, G.; Terriza, A.; Ortiz-Pérez, A.; Molina-Manso, D.; Mahillo, I.; Yubero, F.; Puértolas, J.A.; Manrubia-Cobo, M.; Gómez Barrena, E.; Esteban, J. DLC coatings for UHMWPE: Relationship between bacterial adherence and surface properties. J. Biomed. Mater. Res. A 2012, 100, 2813–2820. [Google Scholar] [CrossRef]
- Bendavid, A.; Martin, P.J.; Randeniya, L.; Amin, M.S. The properties of fluorine containing diamond-like carbon films prepared by plasma-enhanced chemical vapour deposition. Diam. Relat. Mater. 2009, 18, 66–71. [Google Scholar] [CrossRef]
- ASTM International. ASTM B348/B348M-19. Standard Specification for Titanium and Titanium Alloy Bars and Billets; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Kalita, G.; Aryal, H.R.; Adhikari, S.; Ghimire, D.C.; Afre, R.A.; Soga, T.; Sharon, M.; Umeno, M. Fluorine incorporated amorphous carbon thin films prepared by Surface Wave Microwave Plasma CVD. Diam. Relat. Mater. 2008, 17, 1697–1701. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 22196. Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- International Organization for Standardization. ISO 10993-5. Biological Evaluation of Medical Devices—Part 5. Tests for In Vitro Cytotoxicity; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Arnold, F.A., Jr.; Dean, H.T.; Jay, P.; Knutson, J.W. Effect of fluoridated public water supplies on dental caries prevalence. Public Health Rep. 1956, 71, 652–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbrun, E. Effectiveness of water fluoridation. J. Public Health Dent. 1989, 49, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Dunning, J.M. Principles of Dental Public Health, 4th ed.; Harvard University Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Hamilton, I.R. Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism. Caries Res. 1977, 11 (Suppl. 1), 262–291. [Google Scholar] [CrossRef]
- Murphy, A.J.; Hoover, J.C. Inhibition of the Na,K-ATPase by fluoride. Parallels with its inhibition of the sarcoplasmic reticulum CaATPase. J. Biol. Chem. 1992, 267, 16995–17000. [Google Scholar] [PubMed]
- Yoshida, H.; Nagai, K.; Kamei, M.; Nakagawa, Y. Irreversible inactivation of (Na+ -K+)-dependent ATPase and K+-dependent phosphatase by fluoride. Biochim. Biophys. Acta 1968, 150, 162–164. [Google Scholar] [CrossRef]
- Robinson, J.D. Functionally distinct classes of K+ sites on the (Na+ + K+)-dependent ATPase. Biochim. Biophys. Acta 1975, 384, 250–264. [Google Scholar] [CrossRef]
- Torra, M.; Rodamilans, M.; Corbella, J. Serum and urine ionic fluoride: Normal range in a nonexposed population. Biol. Trace Elem. Res. 1998, 63, 67–71. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: Washington DC, USA, 1997; pp. 288–313. [Google Scholar]
- Gorzelanny, C.; Kmeth, R.; Obermeier, A.; Bauer, A.T.; Halter, N.; Kümpel, K.; Schneider, M.F.; Wixforth, A.; Gollwitzer, H.; Burgkart, R.; et al. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties. Sci. Rep. 2016, 6, 22849. [Google Scholar] [CrossRef] [Green Version]
- Harrasser, N.; Jüssen, S.; Obermeir, A.; Kmeth, R.; Stritzker, B.; Burgkart, H.G.R. Antibacterial potency of different deposition methods of silver and copper containing diamond-like carbon coated polyethylene. Biomater. Res. 2016, 12, 17. [Google Scholar] [CrossRef] [Green Version]
Material | Bacterium | Number of Viable Bacteria (CFUs) | p-Value | |
---|---|---|---|---|
Before Incubation | After Incubation | |||
Fluorinated diamond-like carbon coating | Staphylococcus aureus | 2.4 × 104 | <20 (not detected) | NA |
Escherichia coli | 2.54 × 104 | <20 (not detected) | NA | |
Noncoated titanium-alloy disc | Staphylococcus aureus | 2.4 × 104 | (1.45 ± 1.11) × 106 | <0.001 |
Escherichia coli | 2.54 × 104 | (4.04 ± 0.44) × 106 | <0.001 |
Material | Number of Cells in the V79 Colonies (CFUs) | Colony-Forming Activity (%) |
---|---|---|
Non-extract fluid | 45.6 ± 11.9 | 100 ± 17.1 |
Polyethylene | 49 ± 14.1 | 107.5 ± 31.1 |
0.1% zinc diethyldithiocarbamate | 0 ± 0 | 0 ± 0 |
0.25% zinc dibutyldithiocarbamate | 0 ± 0 | 0 ± 0 |
Titanium alloy without coating | 47 ± 13.6 | 103.1 ± 29.8 |
Fluorinated diamond-like carbon coating | 48.25 ± 11.0 | 105.8 ± 24.1 |
Material | Density (%) | Bacterium | Number of Viable Bacteria (CFUs) | p-Valuea | |
---|---|---|---|---|---|
Before Incubation | After Incubation | ||||
Fluorinated diamond-like carbon coating | 24.09 | S. aureus | 4.45 × 104 | <20 (not detected) | NA |
E. coli | 2.54 × 104 | <20 (not detected) | NA | ||
17.46 | S. aureus | 4.45 × 104 | <20 (not detected) | NA | |
E. coli | 2.54 × 104 | <20 (not detected) | MA | ||
5.44 | S. aureus | 4.45 × 104 | (1.51 ± 0.01) × 106 | <0.05 | |
E. coli | 2.54 × 104 | (8.59 ± 0.16) × 106 | <0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yonezawa, K.; Kawaguchi, M.; Kaneuji, A.; Ichiseki, T.; Iinuma, Y.; Kawamura, K.; Shintani, K.; Oda, S.; Taki, M.; Kawahara, N. Evaluation of Antibacterial and Cytotoxic Properties of a Fluorinated Diamond-Like Carbon Coating for the Development of Antibacterial Medical Implants. Antibiotics 2020, 9, 495. https://doi.org/10.3390/antibiotics9080495
Yonezawa K, Kawaguchi M, Kaneuji A, Ichiseki T, Iinuma Y, Kawamura K, Shintani K, Oda S, Taki M, Kawahara N. Evaluation of Antibacterial and Cytotoxic Properties of a Fluorinated Diamond-Like Carbon Coating for the Development of Antibacterial Medical Implants. Antibiotics. 2020; 9(8):495. https://doi.org/10.3390/antibiotics9080495
Chicago/Turabian StyleYonezawa, Katsutaka, Masahito Kawaguchi, Ayumi Kaneuji, Toru Ichiseki, Yoshitsugu Iinuma, Kae Kawamura, Kazuhiro Shintani, Shinobu Oda, Makoto Taki, and Norio Kawahara. 2020. "Evaluation of Antibacterial and Cytotoxic Properties of a Fluorinated Diamond-Like Carbon Coating for the Development of Antibacterial Medical Implants" Antibiotics 9, no. 8: 495. https://doi.org/10.3390/antibiotics9080495
APA StyleYonezawa, K., Kawaguchi, M., Kaneuji, A., Ichiseki, T., Iinuma, Y., Kawamura, K., Shintani, K., Oda, S., Taki, M., & Kawahara, N. (2020). Evaluation of Antibacterial and Cytotoxic Properties of a Fluorinated Diamond-Like Carbon Coating for the Development of Antibacterial Medical Implants. Antibiotics, 9(8), 495. https://doi.org/10.3390/antibiotics9080495