In Vitro Activities of Colistin and Sitafloxacin Combinations against Multidrug-, Carbapenem-, and Colistin-Resistant Acinetobacter baumannii Using the Broth Microdilution Checkerboard and Time-Kill Methods
Abstract
:1. Introduction
2. Results
2.1. Susceptibility and Minimum Inhibitory Concentration (MIC) Testing
2.2. Synergy Testing
2.2.1. Broth Microdilution Checkerboard Method
2.2.2. Time-Kill Method
3. Discussion
4. Materials and Methods
4.1. Clinical Isolates
4.2. Antimicrobial Agents
4.3. Synergy Testing
4.3.1. Broth Microdilution Checkerboard Method
4.3.2. Time-Kill Method
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chung, D.R.; Song, J.H.; Kim, S.H.; Thamlikitkul, V.; Huang, S.G.; Wang, H.; So, T.M.K.; Yasin, R.M.D.; Hsueh, P.R.; Carlos, C.C.; et al. High Prevalence of Multidrug-Resistant Nonfermenters in Hospital-acquired Pneumonia in Asia. Am. J. Respir. Crit. Care Med. 2011, 184, 1409–1417. [Google Scholar] [CrossRef]
- Sunenshine, R.H.; Wright, M.O.; Maragakis, L.L.; Harris, A.D.; Song, X.; Hebden, J.; Cosgrove, S.E.; Anderson, A.; Carnell, J.; Jernigan, D.B.; et al. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg. Infect. Dis. 2007, 13, 97–103. [Google Scholar] [CrossRef]
- Kaye, K.S.; Pogue, J.M. Infections Caused by Resistant Gram-Negative Bacteria: Epidemiology and Management. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, 949–962. [Google Scholar] [CrossRef]
- Moubareck, C.A.; Halat, D.H. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics 2020, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.K.; Kuo, S.C.; Chang, K.C.; Cheng, C.C.; Yu, P.Y.; Chang, C.H.; Chen, T.Y.; Tseng, C.C. Clinical Antibiotic-resistant Acinetobacter baumannii Strains with Higher Susceptibility to Environmental Phages than Antibiotic-sensitive Strains. Sci. Rep. 2017, 7, 6319. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kasiakou, S.K.; Saravolatz, L.D. Colistin: The Revival of Polymyxins for the Management of Multidrug-Resistant Gram-Negative Bacterial Infections. Clin. Infect. Dis. 2005, 40, 1333–1341. [Google Scholar] [CrossRef] [Green Version]
- Cheng, I.L.; Chen, Y.H.; Lai, C.C.; Tang, H.J. Intravenous Colistin Monotherapy versus Combination Therapy against Carbapenem-Resistant Gram-Negative Bacteria Infections: Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2018, 7, 208. [Google Scholar] [CrossRef] [Green Version]
- Schmid, A.; Wolfensberger, A.; Nemeth, J.; Schreiber, P.W.; Sax, H.; Kuster, S.P. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 15290. [Google Scholar] [CrossRef]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary Study of Colistin versus Colistin plus Fosfomycin for Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2014, 58, 5598–5601. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Gutiérrez, B.; Salamanca, E.; De Cueto, M.; Hsueh, P.R.; Viale, P.; Paño-Pardo, J.R.; Venditti, M.; Tumbarello, M.; Daikos, G.; Canton, R.; et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): A retrospective cohort study. Lancet Infect. Dis. 2017, 17, 726–734. [Google Scholar] [CrossRef]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and Rifampicin Compared With Colistin Alone for the Treatment of Serious Infections Due to Extensively Drug-Resistant Acinetobacter baumannii: A Multicenter, Randomized Clinical Trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Chai, D.; Wang, R.; Liang, B.; Bai, N. Colistin resistance of Acinetobacter baumannii: Clinical reports, mechanisms and antimicrobial strategies. J. Antimicrob. Chemother. 2012, 67, 1607–1615. [Google Scholar] [CrossRef]
- Biswas, S.; Brunel, J.M.; Dubus, J.C.; Reynaud-Gaubert, M.; Rolain, J.M. Colistin: An update on the antibiotic of the 21st century. Expert Rev. Anti-Infect. Ther. 2012, 10, 917–934. [Google Scholar] [CrossRef]
- March, G.A.; Bratos, M.A. A meta-analysis of in vitro antibiotic synergy against Acinetobacter baumannii. J. Microbiol. Methods 2015, 119, 31–36. [Google Scholar] [CrossRef]
- Hornsey, M.; Phee, L.; Longshaw, C.; Wareham, D.W. In vivo efficacy of telavancin/colistin combination therapy in a Galleria mellonella model of Acinetobacter baumannii infection. Int. J. Antimicrob. Agents 2013, 41, 285–287. [Google Scholar] [CrossRef]
- Wei, W.; Yang, H.; Hu, L.; Ye, Y.; Li, J. Activity of levofloxacin in combination with colistin against Acinetobacter baumannii: In vitro and in a Galleria mellonella model. J. Microbiol. Immunol. Infect. 2017, 50, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Ak, O.; Haciseyitoglu, D.; Cag, Y.; Gencer, S.; Biteker, F.; Ozer, S. In vitro activities of colistin combined with imipenem, tigecycline or cefoperazone-sulbactam against multidrug-resistant Acinetobacter baumannii blood-stream isolates. Dis. Mol. Med. 2016, 4, 51–54. [Google Scholar] [CrossRef]
- Leelasupasri, S.; Santimaleeworagun, W.; Jitwasinkul, T. Antimicrobial Susceptibility among Colistin, Sulbactam, and Fosfomycin and a Synergism Study of Colistin in Combination with Sulbactam or Fosfomycin against Clinical Isolates of Carbapenem-Resistant Acinetobacter baumannii. J. Pathog. 2018, 2018, 3893492. [Google Scholar] [CrossRef] [Green Version]
- Park, G.C.; Choi, J.A.; Jang, S.J.; Jeong, S.H.; Kim, C.M.; Choi, I.S.; Kang, S.H.; Park, G.; Moon, D.S. In Vitro Interactions of Antibiotic Combinations of Colistin, Tigecycline, and Doripenem Against Extensively Drug-Resistant and Multidrug-Resistant Acinetobacter baumannii. Ann. Lab. Med. 2016, 36, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Timurkaynak, F.; Can, F.; Azap, O.; Demirbilek, M.; Arslan, H.; Karaman, S. In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. Int. J. Antimicrob. Agents 2006, 27, 224–228. [Google Scholar] [CrossRef]
- Safarika, A.; Galani, I.; Pistiki, A.; Giamarellos-Bourboulis, E.J.; Giamarellos-Bourboulis, E.J. Time–kill effect of levofloxacin on multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: Synergism with imipenem and colistin. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 34, 317–323. [Google Scholar] [CrossRef]
- Kheshti, R.; Pourabbas, B.; Mosayebi, M.; Vazin, A. In vitro activity of colistin in combination with various antimicrobials against Acinetobacter baumannii species, a report from South Iran. Infect. Drug Resist. 2018, 12, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Chen, F.; Zhang, Y.; Liu, H.; Liu, Y.; Ma, L. In vitro activities of sitafloxacin tested alone and in combination with rifampin, colistin, sulbactam, and tigecycline against extensively drug-resistant Acinetobacter baumannii. Int. J. Clin. Exp. Med. 2015, 8, 8135–8140. [Google Scholar]
- Keating, G.M. Sitafloxacin. Drugs 2011, 71, 731–744. [Google Scholar] [CrossRef]
- Xu, N.; Wang, G.; Leng, Y.; Dong, X.; Chen, F.; Xing, Q. Sulbactam enhances the in vitro activity of sitafloxacin against extensively-drug resistant Acinetobacter baumannii. Exp. Ther. Med. 2018, 16, 3485–3491. [Google Scholar] [CrossRef] [Green Version]
- Kmietowicz, Z. Few novel antibiotics in the pipeline, WHO warns. BMJ Br. Med. J. (Online) 2017, 358, j4339. [Google Scholar] [CrossRef]
- Guelfi, K.; Tognim, M.; Cardoso, C.; Gales, A.C.; Carrara-Marrone, F.; Garcia, L. In vitro evaluation of the antimicrobial activity of meropenem in combination with polymyxin B and gatifloxacin Against Pseudomonas aeruginosa and Acinetobacter baumannii. J. Chemother. 2008, 20, 180–185. [Google Scholar] [CrossRef]
- Landman, D.; Georgescu, C.; Martin, D.A.; Quale, J. Polymyxins Revisited. Clin. Microbiol. Rev. 2008, 21, 449–465. [Google Scholar] [CrossRef] [Green Version]
- 7-[(7S)-7-amino-5-azaspiro[2.4]heptan-5-yl]-8-chloro-6-fluoro-1-[(2S)-2-fluorocyclopropyl]-4-oxoquinoline-3-carboxylic acid. Available online: http://www.molbase.com/moldata/30521.html (accessed on 25 December 2018).
- Bhal, S.K. LogP—Making Sense of the Value; Advanced Chemistry Development: Toronto, ON, Canada, 2007; pp. 1–4. [Google Scholar]
- Zhanel, G.G.; Mayer, M.; Laing, N.; Adam, H.J. Mutant Prevention Concentrations of Levofloxacin Alone and in Combination with Azithromycin, Ceftazidime, Colistin (Polymyxin E), Meropenem, Piperacillin-Tazobactam, and Tobramycin against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006, 50, 2228–2230. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.E.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- M100-S11. Performance standards for antimicrobial susceptibility testing. Clin. Microbiol. Newsl. 2001, 23, 49. [Google Scholar] [CrossRef]
- Brisse, S.; Milatovic, D.; Fluit, A.C.; Kusters, K.; Toelstra, A.; Verhoef, J.; Schmitz, F.J. Molecular surveillance of European quinolone-resistant clinical isolates of Pseudomonas aeruginosa and Acinetobacter spp. using automated ribotyping. J. Clin. Microbiol. 2000, 38, 3636–3645. [Google Scholar] [CrossRef] [Green Version]
- Moody, J. Synergism Testing: Broth Microdilution Checkerboard and Broth Macrodilution Methods. In Clinical Microbiology Procedures Handbook, 2nd ed.; Isenberg, H.D., Ed.; ASM Press: Washington, DC, USA, 2007; Volume 1, p. 5. [Google Scholar]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. M26-A Methods for Determining Bactericidal Activity of Antimicrobial Agents. In Approved Guideline Clinical and Laboratory Standards Institute (CLSI); Clinical Laboratory Standards Institute: Wayne, PA, USA, 1999; Volume 19. [Google Scholar]
Agent | MDR-AB (263 Isolates) | CRAB (258 Isolates) | CoR-AB (43 Isolates) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alone | In Combination | Alone | In Combination | Alone | In Combination | |||||||||||||
MIC Range (mg/L) | MIC50/90 (mg/L) | %S | MIC Range (mg/L) | MIC50/90 (mg/L) | %S | MIC Range (mg/L) | MIC50/90 (mg/L) | %S | MIC Range (mg/L) | MIC50/90 (mg/L) | %S | MIC Range (mg/L) | MIC50/90 (mg/L) | %S | MIC Range (mg/L) | MIC50/90 (mg/L) | %S | |
colistin | 0.5–16 | 2/4 | 86.7 | 0.06–8 | 0.5/1 | 99.6 | 0.5–16 | 2/4 | 87.2 | 0.06–8 | 0.5/1 | 99.6 | 4–16 | 8/8 | 0 | 0.05–8 | 1/2 | 95.4 |
sitafloxacin | 0.02–8 | 1/2 | 96.6 | 0.01–4 | 0.5/1 | 99.2 | 0.02–8 | 1/2 | 96.5 | 0.01–4 | 0.5/1 | 99.2 | 0.02–8 | 0.5/1 | 95.4 | 0.02–2 | 0.25/1 | 100 |
Isolates | Synergy (FICI: ≤ 0.5) | No Interaction (FICI: > 0.5 to 4) | Antagonism (FICI: > 4) |
---|---|---|---|
MDR-AB (263 isolates) | 3.4% | 96.6% | 0% |
CRAB (258 isolates) | 3.1% | 96.9% | 0% |
CoR-AB (43 isolates) | 20.9% | 79.1% | 0% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodjun, V.; Houngsaitong, J.; Montakantikul, P.; Paiboonvong, T.; Khuntayaporn, P.; Yanyongchaikit, P.; Sriyant, P. In Vitro Activities of Colistin and Sitafloxacin Combinations against Multidrug-, Carbapenem-, and Colistin-Resistant Acinetobacter baumannii Using the Broth Microdilution Checkerboard and Time-Kill Methods. Antibiotics 2020, 9, 516. https://doi.org/10.3390/antibiotics9080516
Rodjun V, Houngsaitong J, Montakantikul P, Paiboonvong T, Khuntayaporn P, Yanyongchaikit P, Sriyant P. In Vitro Activities of Colistin and Sitafloxacin Combinations against Multidrug-, Carbapenem-, and Colistin-Resistant Acinetobacter baumannii Using the Broth Microdilution Checkerboard and Time-Kill Methods. Antibiotics. 2020; 9(8):516. https://doi.org/10.3390/antibiotics9080516
Chicago/Turabian StyleRodjun, Vipavee, Jantana Houngsaitong, Preecha Montakantikul, Taniya Paiboonvong, Piyatip Khuntayaporn, Pattareeya Yanyongchaikit, and Pusana Sriyant. 2020. "In Vitro Activities of Colistin and Sitafloxacin Combinations against Multidrug-, Carbapenem-, and Colistin-Resistant Acinetobacter baumannii Using the Broth Microdilution Checkerboard and Time-Kill Methods" Antibiotics 9, no. 8: 516. https://doi.org/10.3390/antibiotics9080516
APA StyleRodjun, V., Houngsaitong, J., Montakantikul, P., Paiboonvong, T., Khuntayaporn, P., Yanyongchaikit, P., & Sriyant, P. (2020). In Vitro Activities of Colistin and Sitafloxacin Combinations against Multidrug-, Carbapenem-, and Colistin-Resistant Acinetobacter baumannii Using the Broth Microdilution Checkerboard and Time-Kill Methods. Antibiotics, 9(8), 516. https://doi.org/10.3390/antibiotics9080516