Strain-Specific Adaptations of Streptococcus mitis-oralis to Serial In Vitro Passage in Daptomycin (DAP): Genotypic and Phenotypic Characteristics
Abstract
:1. Introduction
2. Methods
2.1. S. mitis-oralis Strains
2.2. Phospholipid (PL) Profiling
2.3. CL Localization
2.4. DAP Binding Assays
2.5. Surface Charge
2.6. CM Fluidity
2.7. Whole Genome Sequencing
2.8. Statistics
3. Results
3.1. Generation of DAP-R S. mitis-oralis Strain SF100
3.2. PL Content of DAP-R S. mitis-oralis Strains
3.3. Distribution of Anionic PL Microdomains
3.4. Cell Surface Positive Charge
3.5. DAP CM Binding Profiles
3.6. CM Fluidity
3.7. Whole-Genome Sequencing (WGS)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holland, T.L.; Bayer, A.S.; Fowler, V.G. Endocarditis and Intravascular Infections. In Principles and Practices of Infectious Diseases; Mandel, G.L., Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 80. [Google Scholar]
- Ahmed, R.; Hassall, T.; Morland, B.; Gray, J. Viridans streptococcus bacteremia in children on chemotherapy for cancer: An underestimated problem. Pediatr. Hematol. Oncol. 2003, 20, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Husain, E.; Whitehead, S.; Castell, A.; Thomas, E.E.; Speert, D.P. Viridans streptococci bacteremia in children with malignancy: Relevance of species identification and penicillin susceptibility. Pediatr. Infect. Dis. J. 2005, 24, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Marron, A.; Carratala, J.; Gonzalez-Barca, E.; Fernandez-Sevilla, A.; Alcaide, F.; Gudiol, F. Serious complications of bacteremia caused by Viridans streptococci in neutropenic patients with cancer. Clin. Infect. Dis. 2000, 31, 1126–1130. [Google Scholar] [CrossRef]
- Huang, W.T.; Chang, L.Y.; Hsueh, P.R.; Lu, C.Y.; Shao, P.L.; Huang, F.Y.; Lee, P.I.; Chen, C.M.; Lee, C.Y.; Huang, L.M. Clinical features and complications of viridans streptococci bloodstream infection in pediatric hemato-oncology patients. J. Microbiol. Immunol. Infect. 2007, 40, 349–354. [Google Scholar]
- Shelburne, S.A.; Sahasrabhojane, P.; Saldana, M.; Hui, Y.; Xiaoping, S.; Horstmann, N.; Thompson, E.; Flores, A.R. Streptococcus mitis strains causing severe clinical disease in cancer patients. Emerg. Infect. Dis. 2014, 20, 762–771. [Google Scholar] [CrossRef]
- Freifeld, A.G.; Razonable, R.R. Viridans group streptococci in febrile neutropenic cancer patients: What should we fear? Clin. Infect. Dis. 2014, 59, 231–233. [Google Scholar] [CrossRef]
- Prabhu, R.M.; Piper, K.E.; Baddour, L.M.; Steckelberg, J.M.; Wilson, W.R.; Patel, R. Antimicrobial susceptibility patterns among viridans group streptococci isolates from infective endocarditis patients from 1971–1986 and 1994–2002. Antimicrob. Agents Chemother. 2004, 48, 4463–4465. [Google Scholar] [CrossRef] [Green Version]
- Shelburne, S.A.; Lasky, R.E.; Sahasrabhojane, P.; Tarrand, J.T.; Rolston, K.V.I. Development and validation of a clinical model to predict the presence of β-lactam resistance in viridians group streptococci causing bacteremia in neutropenic cancer patients. Clin. Infect. Dis. 2014, 59, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Ron-Bin, H.; Lin, F.-Y. Effect of penicillin resistance on presentation and outcome of nonenterococcal streptococcal infective endocarditis. Cardiology 2006, 105, 234–239. [Google Scholar]
- Sabella, C.; Murphy, D.; Drummond-Webb, J. Endocarditis due to Streptococcus mitis with high-level resistance to penicillin and ceftriaxone. JAMA 2001, 285, 2195. [Google Scholar] [CrossRef]
- Garcia-de-la-Maria, C.; Pericas, J.M.; del Rio, A.; Castañeda, X.; Vila-Farrés, X.; Armero, Y.; Espinal, P.A.; Cervera, C.; Soy, D.; Falces, C.; et al. Early In Vitro and In Vivo development of high-level daptomycin resistance is common in mitis group of streptococci after exposure to daptomycin. Antimicrob. Agents Chemother. 2013, 57, 2319–2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayer, A.S.; Schneider, T.; Sahl, H.-G. Mechanisms of daptomycin resistance in Staphylococcus aureus: Role of the cell membrane and cell wall. Ann. NY Acad. Sci. 2013, 1277, 139–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaatz, G.W.; Lundstrom, T.S.; Seo, S.M. Mechanisms of daptomycin resistance in Staphylococcus aureus. Int. J. Antimicrob. Agents. 2006, 28, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.N.; Tran, T.T.; Seepersaud, R.; Garcia-de-la-Maria, C.; Faull, K.; Yoon, A.; Miro, J.M.; Rybak, M.J.; Bayer, A.S.; Arias, C.A.; et al. Perturbations of phosphatidate cytidylyltransferase (CdsA) mediate daptomycin resistance in Streptococcus mitis by a novel mechasnism. Antimicrob. Agents Chemother. 2017. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.M.; Joyce, L.R.; Guan, Z.; Akins, R.L.; Palmer, K.L. Streptococcus mitis and S. oralis lack a requirement for CdsA, the enzyme required for synthesis of major membrane phospholipids in bacteria. Antimicrob. Agents Chemother. 2017. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.T.; Mishra, N.N.; Seepersaud, R.; Diaz, L.; Rios, R.; Dinh, A.Q.; Garcia-de-la-Maria, C.; Rybak, M.J.; Miro, J.M.; Shelburne, S.; et al. Mutations in cdsA and pgsA correlate with daptomycin resistance in Streptococcus mitis and S. oralis. Antimicrob. Agents Chemother. 2018, 63, e01531-18. [Google Scholar] [CrossRef] [Green Version]
- Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Seepersaud, R.; Garcia-de-la-Maria, C.; Mishra, N.N.; Miro, J.M.; Arias, C.A.; Tran, T.T.; Sullam, P.M.; et al. Daptomycin dose-ranging evaluation with single-dose versus multidose ceftriaxone combinations against Streptococcus mitis/oralis in an Ex Vivo simulated endocarditis vegetation model. Antimicrob. Agents Chemother. 2019, 63, e00386-19. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.S.; Sullam, P.M. Characterization of the fibrinogen-binding domain of bacteriophage lysin from Streptococcus mitis. Infect. Immun. 2011, 79, 3518–3526. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.N.; Seepersaud, R.; Tran, T.T.; Shelburne, S.; Miro, J.M.; Rybak, M.J.; Arias, C.A.; Sullam, P.; Bayer, A.S. Phenotypic and Genotypic Characteristics of In Vitro-Selected High Level Daptomycin-Resistant (DAP-R) Strains of Clinically Derived Streptococcus mitis-oralis. In Proceedings of the ASM Microbe, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Bogdanov, M.; Dowhan, W. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. J. Biol. Chem. 1995, 270, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.T.; Panesso, D.; Mishra, N.N.; Mileykovskaya, E.; Guan, Z.; Munita, J.M.; Reyes, J.; Diaz, L.; Weinstock, G.M.; Murray, B.E.; et al. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum. mBio 2013, 23, e00281-13. [Google Scholar] [CrossRef] [Green Version]
- Rosch, J.W.; Hsu, F.F.; Caparon, M.G. Anionic lipids enriched at the ExPortal of Streptococcus pyogenes. J. Bacteriol. 2017, 189, 801–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, L.A.; Caparon, M.G. Cationic antimicrobial peptides disrupt the Streptococcus pyogenes ExPortal. Mol. Microbiol. 2012, 85, 1119–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, W.; Weber, M.H.; Marahiel, M.A. Cold shock response of Bacillus subtilis: Isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J. Bacteriol. 1999, 181, 5341–5349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, L.; Alder, J.D.; Silverman, J.A. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 2137–2145. [Google Scholar] [CrossRef] [Green Version]
- Bayer, A.S.; McNamara, P.; Yeaman, M.R.; Lucindo, N.; Jones, T.; Cheung, A.L.; Sahl, H.-G.; Proctor, R.A. Transposon disruption of the complex I NADH oxidoreductase gene (snoD) in Staphylococcus aureus is associated with reduced susceptibility to the microbicidal activity of thrombin-induced platelet microbicidal protein 1. J. Bacteriol. 2006, 188, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Kohler, C.; Proctor, R.A.; Bayer, A.S.; Yeaman, M.R.; Lalk, M.; Engelmann, S.; Mishra, N.N. Proteomic and membrane lipid analysis of a snoD mutant of Staphylococcus aureus: Insights into host defense peptide resistance. Antibiotics (Basel) 2019, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Muraih, J.K.; Pearson, A.; Silverman, J.; Palmer, M. Oligomerization of daptomycin on membranes. Biochim. Biophys. Acta (BBA) Biomembr. 2011, 1808, 1154–1160. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.N.; Yang, S.-J.; Chen, L.; Muller, C.; Saleh-Mghir, A.; Kuhn, S.; Peschel, A.; Yeaman, M.R.; Nast, C.C.; Kreiswirth, B.N. Emergence of daptomycin resistance in daptomycin-naïve rabbits with methicillin-resistant Staphylococcus aureus prosthetic joint infection is associated with resistance to host defense cationic peptides and mprF polymorphisms. PLoS ONE 2013, 8, e71151. [Google Scholar] [CrossRef]
- Mishra, N.N.; Bayer, A.S.; Tran, T.T.; Shamoo, Y.; Mileykovskaya, E.; Dowhan, W.; Guan, Z.; Arias, C.A. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid and cell envelope characteristics. PLoS ONE 2012, 7, e43958. [Google Scholar] [CrossRef]
- Mishra, N.N.; Rubio, A.; Nast, C.C.; Bayer, A.S. Differential adaptations of methicillin-resistant Staphylococcus aureus to serial in vitro passage in daptomycin: Evolution of daptomycin resistance and the role of membrane carotenoid content and fluidity. Intl. J. Microbiol. 2012, 2012, 68345. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.M.; Joyce, L.R.; Guan, Z.; Akins, R.L.; Palmer, K.L. Streptococcus mitis and Streptococcus oralis mutate an ‘essential’ gene upon exposure to daptomycin. FASEB J. 2018. [Google Scholar] [CrossRef]
- Parrett, A.; Reed, J.M.; Gardner, S.G.; Mishra, N.N.; Bayer, A.S.; Powers, R.; Somerville, G.A. Metabolic changes associated with adaptive resistance to daptomycin in Streptococcus mitis-oralis. BMC Microbiol. 2020, 20, 162. [Google Scholar] [CrossRef] [PubMed]
Strains | Relevant Characteristics | DAP MIC (µg/mL) |
---|---|---|
SF100 | Endocarditis isolate from patient | 1 |
D10 | DAP-R derivative produced by in vitro passage | 64 |
D15 | DAP-R derivative produced by in vitro passage | >256 |
D20 | DAP-R derivative produced by in vitro passage | >256 |
Strains | CM PL Composition (% of Total PL [Mean ± SD]) | ||
---|---|---|---|
PG | CL | PA | |
SF100 | 26 ± 6 | 52 ± 9 | 21 ± 10 |
D10 | 24 ± 6 | 40 ± 14 * | 36 ± 14 * |
D15 | 28 ± 9 | 32 ± 15 * | 40 ± 14 * |
D20 | 34 ± 13 | 25 ± 11 * | 41 ± 17 * |
S. mitis-oralis Strains | Surface Charge (% of cyt C in Supernatant) | CM Fluidity (PI Value) |
---|---|---|
SF100 | 94 ± 13 | 0.399 ± 0.0 |
D10 | 46 ± 17 * | 0.350 ± 0.1 |
D15 | 75 ± 24 | 0.388 ± 0.1 |
D20 | 62 ± 16 * | 0.298 ± 0.0 * |
ORF * | NSNP ** | AA Change | Name | Biologic Role and Comments |
---|---|---|---|---|
674 | G446A | T->I | alanine dehydrogenase (ald) homologue | Cellular energy metabolism; SCV (small colony variant) phenotype |
1418 | C194T | G->E | CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyl- transferase (pgsA) | CM phospholipid synthesis |
1433 | G631T | P->T | acetyl-coA acetyl transferase (thlA) | mevalonate pathway, integrity of CM order |
1632 | G1874A | T->I | RNA polymerase β‘ subunit (rpoC) | Interacts with dlt operon; involved in maintenance of surface charge |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, N.N.; Tran, T.T.; Arias, C.A.; Seepersaud, R.; Sullam, P.M.; Bayer, A.S. Strain-Specific Adaptations of Streptococcus mitis-oralis to Serial In Vitro Passage in Daptomycin (DAP): Genotypic and Phenotypic Characteristics. Antibiotics 2020, 9, 520. https://doi.org/10.3390/antibiotics9080520
Mishra NN, Tran TT, Arias CA, Seepersaud R, Sullam PM, Bayer AS. Strain-Specific Adaptations of Streptococcus mitis-oralis to Serial In Vitro Passage in Daptomycin (DAP): Genotypic and Phenotypic Characteristics. Antibiotics. 2020; 9(8):520. https://doi.org/10.3390/antibiotics9080520
Chicago/Turabian StyleMishra, Nagendra N., Truc T. Tran, Cesar A. Arias, Ravin Seepersaud, Paul M. Sullam, and Arnold S. Bayer. 2020. "Strain-Specific Adaptations of Streptococcus mitis-oralis to Serial In Vitro Passage in Daptomycin (DAP): Genotypic and Phenotypic Characteristics" Antibiotics 9, no. 8: 520. https://doi.org/10.3390/antibiotics9080520
APA StyleMishra, N. N., Tran, T. T., Arias, C. A., Seepersaud, R., Sullam, P. M., & Bayer, A. S. (2020). Strain-Specific Adaptations of Streptococcus mitis-oralis to Serial In Vitro Passage in Daptomycin (DAP): Genotypic and Phenotypic Characteristics. Antibiotics, 9(8), 520. https://doi.org/10.3390/antibiotics9080520